JPS61235051A - Prevention of internal crack of continuously cast round ingot - Google Patents

Prevention of internal crack of continuously cast round ingot

Info

Publication number
JPS61235051A
JPS61235051A JP7817685A JP7817685A JPS61235051A JP S61235051 A JPS61235051 A JP S61235051A JP 7817685 A JP7817685 A JP 7817685A JP 7817685 A JP7817685 A JP 7817685A JP S61235051 A JPS61235051 A JP S61235051A
Authority
JP
Japan
Prior art keywords
cooling
slab
shell
temperature
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7817685A
Other languages
Japanese (ja)
Inventor
Susumu Tsujita
辻田 進
Hiroshi Tomono
友野 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7817685A priority Critical patent/JPS61235051A/en
Publication of JPS61235051A publication Critical patent/JPS61235051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent an internal crack by subjecting an ingot in a secondary cooling zone for continuous casting to the cooling satisfying the equation at the point of the time when the recuperation in the cooling thereof is completed. CONSTITUTION:The cooling to satisfy the equation: (TL-TS)/d<=5 deg.C/mm at the point of the time when the recuperation is completed is adopted for the cooling in the secondary cooling zone for continuous casting. In the equation, TS: the surface temp. of the ingot deg.C, TL: the internal temp. of the solidified shell deg.C, d: the thickness of the solidified shell mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続鋳造法で丸鋳片を製造する際の内部割
れ防止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for preventing internal cracks when producing round slabs by continuous casting.

〔従来技術とその問題点〕[Prior art and its problems]

連続鋳造における冷却能の大小は、鋳片の品質に大きな
影響を及ぼす為、冷却能は、鋳造速度、鋳片断面の大き
さ等に応じ適正に保持される必要がある。
Since the magnitude of the cooling capacity in continuous casting has a large effect on the quality of the slab, the cooling capacity needs to be maintained appropriately depending on the casting speed, the size of the slab cross section, etc.

例えば、高速鋳造を行う場合には、バルジング歪(シェ
ルが内部溶鋼の静圧によって張り出すことによる歪)或
いは矯正歪が生じ易くなるため、鋳込速度の増加に伴い
二次冷却水量を増加する必要があり、ことにスラブやブ
ルームなどの大断面を有する鋳片には、一般的に速度比
例型の冷却水量の設定が行われる。
For example, when high-speed casting is performed, bulging distortion (distortion caused by the shell protruding due to the static pressure of internal molten steel) or correction distortion is likely to occur, so the amount of secondary cooling water is increased as the casting speed increases. In particular, for slabs with large cross-sections such as slabs and blooms, the cooling water amount is generally set in a speed-proportional manner.

そして本発明が防止せんとする内部割れの発生率も、冷
却能の適否に左右される。
The rate of occurrence of internal cracks, which the present invention aims to prevent, also depends on the suitability of the cooling capacity.

すなわち、二次冷却帯において鋳片の表皮は、冷却水で
冷却される為シェル内部の温度よりも低温となっており
、従って、シェル内の溶鋼温度が表皮側に向って移動す
る、いわゆる復熱作用を生じ、表皮は復熱履歴を持つこ
とになる。
In other words, in the secondary cooling zone, the skin of the slab is cooled by cooling water, so it is lower than the temperature inside the shell. Therefore, the temperature of the molten steel inside the shell moves toward the skin, which is called a relapse. A thermal effect occurs, and the epidermis has a history of recuperation.

そしてこのように冷却される鋳片は、シェル表皮側が冷
却水によって熱収縮し、シェル内部では熱膨張するので
あり、この内外の温度差に基づく熱応力が内部割れの原
因となる。従ってシェルの内外面の温度差が大きい程熱
応力が大きくなって内部割れの発生率が大きくなるので
あり、丸鋳片の如き鋳片自体の保有する熱容量が小さい
場合には、内部割れの発生率も大きくなる。
In the slab cooled in this manner, the shell skin side is thermally contracted by the cooling water, and the inside of the shell is thermally expanded, and thermal stress based on this temperature difference between the inside and outside causes internal cracks. Therefore, the greater the temperature difference between the inner and outer surfaces of the shell, the greater the thermal stress and the greater the rate of occurrence of internal cracks.If the heat capacity of the slab itself, such as a round slab, is small, internal cracks will occur. The rate also increases.

本発明は、上述の問題点を解決するためになされたもの
である。
The present invention has been made to solve the above-mentioned problems.

〔技術手段〕[Technical means]

本発明は、連続鋳造の二次冷却帯における鋳片の冷却を
、復熱完了時点において、次式Ts:鋳片の表面温度(
℃) TL:凝固シェルの内側温度(℃”)d :凝固シェル
厚(寵) を満足させる冷却としたことを、その特徴とする。
The present invention cools the slab in the secondary cooling zone of continuous casting by using the following formula Ts: Surface temperature of the slab (
TL: Inside temperature of solidified shell (°C) d: Thickness of solidified shell (°C) It is characterized by cooling that satisfies the following.

〔発明の成立過程〕[Process of creation of invention]

本発明は、■熱応力を抑制すること、■熱応力は、単位
厚さ当りのシェル内外温度差で表示できること、の2点
に鑑みなされたもので、下記実験結果等に基づく。
The present invention was developed in view of the following two points: (1) suppressing thermal stress; and (2) thermal stress can be expressed as the difference in temperature between the inside and outside of the shell per unit thickness, and is based on the following experimental results.

すなわち、高炭材(API−J55)、寸法282φの
丸鋼材を、鋳込速度1.0m/mi n、鋳込温度15
00 ’cで連続鋳造するに際し、第1表に示すように
二次冷却水量を変えることによって単位厚さ当りのシェ
ル内外温度差(以下、「シェル内温度勾配」と称する)
を求め、各シェル内温度勾配(第2図に符号りで示す)
に応じた鋳片の内部割れ評価を行った。この結果を第1
図としなお、 (i)鋳片の表皮温度測定は、熱電対を用いて行ったが
、例えばCOP (光高温計)或いは2色部度計を用い
ることも可能である。
That is, a high carbon material (API-J55), a round steel material with a size of 282φ, was cast at a casting speed of 1.0 m/min and a casting temperature of 1.5 m/min.
During continuous casting at 00'C, the temperature difference between the inside and outside of the shell per unit thickness (hereinafter referred to as "temperature gradient inside the shell") can be reduced by changing the amount of secondary cooling water as shown in Table 1.
Find the temperature gradient inside each shell (indicated by the symbol in Figure 2)
We conducted an evaluation of internal cracks in slabs according to the following. This result is the first
As shown in the figure, (i) The skin temperature of the slab was measured using a thermocouple, but it is also possible to use, for example, a COP (optical pyrometer) or a two-color thermometer.

(i;)凝固シェルの内側温度の測定は、液相線温度T
LLで推察した。
(i;) Measurement of the internal temperature of the solidified shell is carried out at the liquidus temperature T
I guessed it from LL.

(iii )シェル厚の測定は、第3図に示すように、
鋳片1に釘2を打ち込み、釘の残存長さdを測ることに
より求めた。第3図において、その他3はモールド、4
はメニスカス、5は溶鋼を示す。
(iii) The shell thickness is measured as shown in Figure 3.
It was determined by driving nail 2 into slab 1 and measuring the remaining length d of the nail. In Figure 3, 3 is a mold, 4 is a mold, and 4 is a mold.
indicates meniscus, and 5 indicates molten steel.

そして上記実験結果を図示した第1図は、内部割れ評価
を縦軸に、シェル内温度勾配を横軸に採ったもので、シ
ェル内温度勾配が5℃を超えた■〜■の場合には丸鋳片
に内部割れが見られ、5℃以内である■〜■の場合には
内部割れを殆んど認め得なかった。
Figure 1, which shows the above experimental results, plots the internal crack evaluation on the vertical axis and the temperature gradient inside the shell on the horizontal axis. Internal cracks were observed in the round slabs, and in cases of ■ to ■, which were within 5°C, almost no internal cracks were observed.

従って、実操業では鋳片温度TLは第2図に示すように
、メニスカス4から遠去かるにつれ低下してゆくが、上
記冷却完了時点のシェル内温度勾配りを5℃/龍以内に
抑えることにより、内部割れの発生が防止できることに
なる。なお、第2図において6は2次冷却帯、7は非水
冷域を、又、破線は麦皮温度Tsを示す。
Therefore, in actual operation, the slab temperature TL decreases as it moves away from the meniscus 4, as shown in Fig. 2, but it is necessary to suppress the temperature gradient inside the shell to within 5°C at the time of completion of cooling. This will prevent the occurrence of internal cracks. In FIG. 2, 6 indicates the secondary cooling zone, 7 indicates the non-water cooling zone, and the broken line indicates the wheat skin temperature Ts.

〔効果〕〔effect〕

以上説明したように本発明は、シェル内温度勾配が内部
割れと関係することに着目し、実験を積み重ねて成され
たもので、本発明を丸鋼材の連続鋳造に1ケ月実施した
ところ、下記第2表に示す如く顕著な効果が得られた。
As explained above, the present invention was achieved by focusing on the fact that the temperature gradient inside the shell is related to internal cracking, and through repeated experiments.When the present invention was applied to continuous casting of round steel materials for one month, the following results were obtained. As shown in Table 2, remarkable effects were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、シェル内温度勾配と内部割れ評価との関係を
示すグラフ、第2図は鋳片の内外温度変化を示すグラフ
で実線は表皮温度破線は内側温度を示す。また第3図は
シェル厚の測定方法を例示する断面図である。 Dはシェル内温度勾配、1は鋳片、6は二次冷却帯。
FIG. 1 is a graph showing the relationship between the temperature gradient inside the shell and the evaluation of internal cracks, and FIG. 2 is a graph showing the change in temperature inside and outside the slab, where the solid line shows the skin temperature and the broken line shows the inside temperature. Further, FIG. 3 is a cross-sectional view illustrating a method of measuring shell thickness. D is the temperature gradient inside the shell, 1 is the slab, and 6 is the secondary cooling zone.

Claims (1)

【特許請求の範囲】 連続鋳造の二次冷却帯における鋳片の冷却を復熱完了時
点において、次式 (T_L−T_S)/d≦5℃/mm T_S:鋳片の表皮温度(℃) T_L:凝固シェルの内側温度(℃) d:凝固シェル厚(mm) を満足させる冷却としたことを特徴とする連続鋳造丸鋳
片の内部割れ防止方法。
[Claims] When the cooling of the slab in the secondary cooling zone of continuous casting is completed, the following formula (T_L-T_S)/d≦5℃/mm T_S: Skin temperature of the slab (℃) T_L : Inside temperature of solidified shell (°C) d : Solidified shell thickness (mm) A method for preventing internal cracks in a continuously cast round slab, characterized by performing cooling that satisfies the following.
JP7817685A 1985-04-11 1985-04-11 Prevention of internal crack of continuously cast round ingot Pending JPS61235051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7817685A JPS61235051A (en) 1985-04-11 1985-04-11 Prevention of internal crack of continuously cast round ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7817685A JPS61235051A (en) 1985-04-11 1985-04-11 Prevention of internal crack of continuously cast round ingot

Publications (1)

Publication Number Publication Date
JPS61235051A true JPS61235051A (en) 1986-10-20

Family

ID=13654650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7817685A Pending JPS61235051A (en) 1985-04-11 1985-04-11 Prevention of internal crack of continuously cast round ingot

Country Status (1)

Country Link
JP (1) JPS61235051A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100861A (en) * 1979-01-29 1980-08-01 Nippon Steel Corp Method and apparatus for continuous casting and working of metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100861A (en) * 1979-01-29 1980-08-01 Nippon Steel Corp Method and apparatus for continuous casting and working of metal

Similar Documents

Publication Publication Date Title
JPS5695461A (en) Continuous casting method by mold provided with mold temperature measuring element
JPS61235051A (en) Prevention of internal crack of continuously cast round ingot
JPH0255642A (en) Method and device for continuously casting strip steel
JPS5847255B2 (en) Steel ingot making method
JP3389864B2 (en) Mold powder for continuous casting
JP4451798B2 (en) Continuous casting method
JP2950152B2 (en) Continuous casting mold for slab
JPH07185755A (en) Method for continuously casting medium carbon steel
JPS626737A (en) Continuous casting mold for steel
JP2003181608A (en) Method for cooling bloom outside continuous casting machine
JP3342774B2 (en) Mold powder for continuous casting
JPS62118948A (en) Continuous casting mold with high-temperature head
JPS5838646A (en) Continuous casting method for slab of middle carbon region steel
JPH0536148B2 (en)
JPS58184049A (en) Continuous casting method of steel in curbed type
JPH0242575B2 (en)
JPH0866752A (en) Continuous casting method for steel
RU1836995C (en) Method of determination of mould wall optimum thickness
JP2005125336A (en) Thin cast strip and method for producing thin cast strip
JPS61108454A (en) Cooling roll
JPH03294047A (en) Ceramic mold for continuous casting
JPS6150703B2 (en)
JPS63238953A (en) Method for casting molten metal by using twin rolls
JPS6054817B2 (en) Mold for horizontal continuous casting
JPS62156052A (en) Method and apparatus for producing rapid cooled thin hoop metal having excellent end-face shape