JP3389864B2 - Mold powder for continuous casting - Google Patents

Mold powder for continuous casting

Info

Publication number
JP3389864B2
JP3389864B2 JP27686998A JP27686998A JP3389864B2 JP 3389864 B2 JP3389864 B2 JP 3389864B2 JP 27686998 A JP27686998 A JP 27686998A JP 27686998 A JP27686998 A JP 27686998A JP 3389864 B2 JP3389864 B2 JP 3389864B2
Authority
JP
Japan
Prior art keywords
mold
powder
temperature
continuous casting
mold powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27686998A
Other languages
Japanese (ja)
Other versions
JP2000102846A (en
Inventor
圭児 渡辺
真 鈴木
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP27686998A priority Critical patent/JP3389864B2/en
Publication of JP2000102846A publication Critical patent/JP2000102846A/en
Application granted granted Critical
Publication of JP3389864B2 publication Critical patent/JP3389864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造にお
いて鋳型内に添加して使用される連続鋳造用モールドパ
ウダーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold powder for continuous casting, which is used by adding it in a mold in continuous casting of steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造において、モールドパウダ
ーは溶鋼の上面にあっては溶鋼の酸化防止、保温、浮上
介在物の吸収、また鋳型と鋳片間に流入し、潤滑、抜熱
制御を行っている。
2. Description of the Related Art In continuous casting of steel, a mold powder is used on the upper surface of molten steel to prevent oxidation of molten steel, maintain heat, absorb floating inclusions, and flow between a mold and a slab to control lubrication and heat removal. Is going.

【0003】鋼の中で、中炭素鋼と称される炭素含有量
が0.08〜0.18%の亜包晶鋼領域の鋼において
は、凝固時のδ→γ変態により体積収縮が大きく、不均
一凝固し易いため、鋳片に縦割れが発生しやすい。この
縦割れ発生は鋳型内の熱流束と相関があり、熱流束を低
下させることで、その発生を抑制することが可能であ
る。したがって、使用するパウダーは緩冷却化が可能な
特性を有することが望ましい。
Among the steels, in the hypoperitectic steel region having a carbon content of 0.08 to 0.18%, which is called medium carbon steel, the volume shrinkage is large due to the δ → γ transformation during solidification. Since uneven solidification is likely to occur, vertical cracks are likely to occur in the slab. The occurrence of this vertical crack has a correlation with the heat flux in the mold, and it is possible to suppress the occurrence by lowering the heat flux. Therefore, it is desirable that the powder used has the property of being capable of being slowly cooled.

【0004】中炭素鋼用モールドパウダーに関しては、
品川技報No.32(市川ら、1989年)に、パウダ
ーの塩基度(CaO/SiO2)を上げることによっ
て、凝固点を上昇させ、かつ凝固の際に結晶化を促進さ
せることによって、モールドと鋳片(凝固シェル)間に
流入する溶融スラグのうちモールド側に固着した凝固層
内に空隙を生じさせ、見かけの凝固層の熱伝導率を低下
させ、鋳片の割れを防止できることが記載されている。
Regarding the mold powder for medium carbon steel,
Shinagawa Technical Report No. 32 (Ichikawa et al., 1989), by increasing the basicity (CaO / SiO2) of the powder to raise the freezing point and accelerate crystallization during solidification, the mold and slab (solidified shell) It is described that, among the molten slag flowing in between, voids are generated in the solidified layer fixed to the mold side, the apparent thermal conductivity of the solidified layer is reduced, and cracks in the cast piece can be prevented.

【0005】また、特開平3−193248号公報で
は、上記技術と同様、モールドに固着した凝固層中の熱
伝導率を下げるという観点から、凝固点が高くかつ溶融
スラグがガラス化せずに結晶化するモールドパウダーと
して、その一成分としてIIIA族およびIVA族から選択
された元素の酸化物を少なくとも1種添加することが望
ましいとしている。そして、その1種または2種以上を
0.01〜15%含有することを特徴としている。
Further, in Japanese Laid-Open Patent Publication No. 3-193248, from the viewpoint of reducing the thermal conductivity in the solidified layer fixed to the mold, the solidification point is high and the molten slag is crystallized without vitrification, as in the above technique. It is said that it is desirable to add at least one oxide of an element selected from the IIIA group and the IVA group as one component of the mold powder. And it is characterized by containing 0.01 to 15% of one or more of them.

【0006】[0006]

【発明が解決しようとする課題】以上の従来技術におけ
るモールドパウダーは、鋳型に接触している凝固層中の
熱抵抗を増大させることにより、鋳型内の緩冷却化を行
うものであり、これにより一定の成果が得ることができ
る。しかしながら、さらに鋳片品質を向上させるために
は、さらなる緩冷却化が望まれている。
The mold powder in the prior art described above is intended to perform slow cooling in the mold by increasing the thermal resistance in the solidified layer in contact with the mold. Certain results can be obtained. However, in order to further improve the quality of the slab, further slow cooling is desired.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、鋳型内を緩冷却化することができ、鋳片品質
を著しく向上させることができる連続鋳造用モールドパ
ウダーを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mold powder for continuous casting which can cool the inside of the mold slowly and can significantly improve the quality of the slab. And

【0008】[0008]

【課題を解決するための手段】上記従来技術におけるパ
ウダーは、鋳型に接触している凝固層を厚くしたり、そ
の中に気孔を設けることで、凝固層中の熱抵抗を増大さ
せることにより、鋳型内緩冷却化を図ったものである。
しかしながら、本発明者らが種々検討した結果、鋳型内
の熱流束に影響を及ぼす最大の因子は、鋳型−凝固層間
の隙間(以下、エアーギャップと呼ぶ)であり、この界
面の熱抵抗を増大させることで、鋳型内を大幅に緩冷却
化することが可能なことを見出した。
Means for Solving the Problems The powder in the above-mentioned prior art is characterized by increasing the thermal resistance in the solidified layer by thickening the solidified layer in contact with the mold or by providing pores therein. This is intended for slow cooling in the mold.
However, as a result of various studies by the present inventors, the largest factor that influences the heat flux in the mold is the gap between the mold and the solidification layer (hereinafter referred to as the air gap), which increases the thermal resistance of this interface. By doing so, it was found that the inside of the mold can be significantly cooled.

【0009】界面熱抵抗は、パウダーの基礎物性である
加熱結晶化温度と密接な関係があるため、その温度が最
適値となるようなパウダーを設計することにより界面熱
抵抗を増大せしめ、その結果鋳型内を緩冷却化すること
ができ、鋳片品質を著しく向上させることができる。
Since the interfacial heat resistance is closely related to the heating crystallization temperature which is the basic physical property of the powder, the interfacial heat resistance is increased by designing the powder so that the temperature has an optimum value. The inside of the mold can be cooled slowly, and the quality of the slab can be significantly improved.

【0010】本発明は、このような知見に基づいてなさ
れたものであり、溶融急冷によりガラス化された後、1
℃/minでの加熱処理により結晶化する温度である
熱結晶化温度が400〜490℃の範囲であることを特
徴とする連続鋳造用モールドパウダーを提供するもので
ある。
The present invention has been made on the basis of such findings, and after vitrification by melting and quenching, 1
Provided is a mold powder for continuous casting, which has a heating crystallization temperature in the range of 400 to 490 ° C., which is a temperature for crystallization by heat treatment at a heating rate of C / min .

【0011】また、このようなモールドパウダーにおい
て、加熱溶融後に10℃/minで冷却した際に結晶の
生じ始める温度である冷却結晶化温度が1100〜12
50℃の範囲であることが好ましい。また、プリメルト
率が75%以上であることが好ましい。
Further, in such a mold powder, when it is melted by heating and then cooled at 10 ° C./min, crystals of the crystal are formed.
The cooling crystallization temperature, which is the temperature at which generation begins, is 1100 to 12
It is preferably in the range of 50 ° C. The premelt rate is preferably 75% or more.

【0012】[0012]

【0013】[0013]

【発明の実施の形態】以下、本発明について具体的に説
明する。鋳型内の緩冷却化を行うためには、結晶化しや
すいパウダーを用いることが効果的であることが、経験
的に知られている。その結晶化と熱流束との相関を検討
した結果、熱流束を支配する最大の因子は、鋳型とパウ
ダーフィルム層間の界面熱抵抗であることが判明した。
この界面熱抵抗は、パウダーフィルムの鋳型側表面の凹
凸により決定される。そして、さらに種々検討した結
果、500℃以下の低温の過冷却液体からの結晶生成が
その凹凸に多大な影響を与えることがわかった。この低
温過冷却液体からの結晶の生成は加熱結晶化温度により
求めることができる。加熱結晶化温度は溶融急冷により
ガラス化された後、1℃/minでの加熱処理により結
晶化する温度であり、パウダーを溶融、冷却してガラス
を作成し、それを示差熱分析装置により加熱すること
で、その発熱ピーク位置から求めることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. It is empirically known that it is effective to use a powder that easily crystallizes in order to perform slow cooling in the mold. As a result of examining the correlation between the crystallization and the heat flux, it was found that the largest factor controlling the heat flux was the interfacial heat resistance between the mold and the powder film layer.
This interfacial heat resistance is determined by the unevenness of the surface of the powder film on the mold side. As a result of further various studies, it was found that crystal formation from a supercooled liquid at a low temperature of 500 ° C. or less greatly affects the unevenness. The formation of crystals from this low temperature supercooled liquid can be determined by the heating crystallization temperature. Heating crystallization temperature is by melt quenching
After vitrification, it is bonded by heat treatment at 1 ° C / min.
It is the temperature for crystallization, and it can be determined from the exothermic peak position by melting and cooling the powder to prepare glass and heating it with a differential thermal analyzer.

【0014】この加熱結晶化温度が400〜490℃に
おいては、表面の凹凸が大きく、緩冷却効果を発揮しや
すいが、490℃を超えると実機においては結晶が生成
し難く、凹凸は小さい。また、400℃未満では凹凸の
大きさに不均一が生じるため、均一冷却が期待できな
い。より好ましい加熱結晶化温度範囲は400〜460
℃であり、この場合は凹凸が大きく、かつその大きさの
不均一性も小さく、鋳型内が均一緩冷却されることで良
好な鋳片が得られる。
When the heating and crystallization temperature is 400 to 490 ° C., the surface irregularities are large and the effect of slow cooling is easily exhibited, but when it exceeds 490 ° C., it is difficult to form crystals in an actual machine and the irregularities are small. Further, if the temperature is lower than 400 ° C., unevenness in size of irregularities occurs, and uniform cooling cannot be expected. A more preferable heating crystallization temperature range is 400 to 460.
C., and in this case, the unevenness is large and the nonuniformity of the size is small, and the inside of the mold is uniformly cooled slowly, so that a good cast piece can be obtained.

【0015】また、通常結晶化温度として用いられる、
パウダーを加熱溶融後、冷却過程で結晶の生じる温度と
して用いられる冷却結晶化温度は、加熱溶融後に10℃
/minで冷却した際に結晶の生じ始める温度であっ
て、凝固層の厚みの均一性と相関があり、その温度が高
いほど均一になるため、冷却結晶化温度は1100℃以
上であることが好ましい。1250℃を超えるとパウダ
ーの潤滑が不十分になるため、結晶化温度の範囲は11
00〜1250℃であることが好ましい。
Further, it is usually used as a crystallization temperature,
After the powder is heated and melted, the cooling and crystallization temperature used as a temperature at which crystals are generated in the cooling process is 10 ° C.
The temperature at which crystals start to form when cooled at
Therefore, the cooling crystallization temperature is preferably 1100 ° C. or higher because it has a correlation with the uniformity of the thickness of the solidified layer and becomes more uniform as the temperature increases. If the temperature exceeds 1250 ° C, the powder lubrication becomes insufficient, so the crystallization temperature range is 11
It is preferably from 0 to 1250 ° C.

【0016】パウダーのプリメルト率は、75%以上で
あることが望ましい。プリメルト率が75%以上では、
界面での凹凸が均一になり、鋳型内の均一冷却が可能と
なるためである。
The premelt rate of the powder is preferably 75% or more. When the premelt rate is 75% or more,
This is because the unevenness at the interface becomes uniform and the inside of the mold can be uniformly cooled.

【0017】以上のような特性を得るためには、モール
ドパウダーのCaO/SiO の比が1.5以上であ
り、かつパウダー中のCaO+SiO +F量が75%
以上であることが好ましい。
In order to obtain the above characteristics, the ratio of CaO / SiO 2 in the mold powder is 1.5 or more, and the amount of CaO + SiO 2 + F in the powder is 75%.
The above is preferable.

【0018】[0018]

【実施例】(第1実施例)従来パウダーを含めた5種類
のパウダーの実機試験を行い、鋳片の縦割れ発生を評価
した。ここでは、従来パウダー使用時における縦割れを
100とした指数で縦割れ発生を評価した。また、鋳型
内熱流束を鋳型内メニスカス部に埋め込んである熱電対
により求めた。鋳造速度:1.8m/min、モールド
サイズ:220mm×2000mmで試験を行った。
EXAMPLES (First Example) Five types of powders including conventional powders were subjected to actual machine tests to evaluate the occurrence of vertical cracks in slabs. Here, the occurrence of vertical cracking was evaluated by an index with vertical cracking when using conventional powder as 100. Further, the heat flux in the mold was determined by a thermocouple embedded in the meniscus portion in the mold. The test was conducted at a casting speed of 1.8 m / min and a mold size of 220 mm × 2000 mm.

【0019】表1に溶鋼成分を示し、表2に各パウダー
の基材成分と実機試験結果を示す。表2に示す基材に対
して外掛けで3wt%となるようにカーボンを添加した
ものをモールドパウダーとして使用した。
Table 1 shows the molten steel composition, and Table 2 shows the base material composition of each powder and the actual machine test result. As the mold powder, a base material shown in Table 2 to which carbon was added so that the weight of the base material was 3 wt% was used as the mold powder.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示すように、本発明例1〜4のパウ
ダーは、従来品と比較し、メニスカス部の熱流束が低減
し、縦割れ指数は低い値を示した。
As shown in Table 2, in the powders of Examples 1 to 4 of the present invention, the heat flux in the meniscus portion was reduced and the vertical cracking index was low as compared with the conventional products.

【0023】(第2実施例)鋳造速度を2.4m/mi
nとした他は実施例1と同様な試験を行った。その際の
縦割れ指数の値を表3に示す。この表に示すように、従
来品では縦割れ指数が大幅に増大したが、本発明例1〜
4では縦割れ指数はわずかに増加するにとどまってお
り、高速鋳造において良好な結果を示した。
(Second Embodiment) The casting speed is 2.4 m / mi.
The same test as in Example 1 was performed except that n was used. Table 3 shows the values of the vertical cracking index at that time. As shown in this table, in the conventional products, the vertical cracking index was significantly increased.
In No. 4, the vertical cracking index increased only slightly, showing good results in high speed casting.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
パウダーの加熱結晶化温度を最適化することで界面熱抵
抗を増大させることにより、鋳型内を緩冷却化すること
ができ、鋳片品質を著しく向上させることができる。
As described above, according to the present invention,
By increasing the interfacial thermal resistance by optimizing the heating crystallization temperature of the powder, the inside of the mold can be slowly cooled, and the quality of the cast piece can be significantly improved.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−216907(JP,A) 特開 平8−141713(JP,A) 特開 平10−58104(JP,A) 特開 平10−258343(JP,A) 特開 平8−332554(JP,A) 特開 平10−34301(JP,A) 特開 平3−193248(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/108 C21C 7/076 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-10-216907 (JP, A) JP-A-8-141713 (JP, A) JP-A-10-58104 (JP, A) JP-A-10- 258343 (JP, A) JP 8-332554 (JP, A) JP 10-34301 (JP, A) JP 3-193248 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/108 C21C 7/076

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融急冷によりガラス化された後、1℃
/minでの加熱処理により結晶化する温度である加熱
結晶化温度が400〜490℃の範囲であることを特徴
とする連続鋳造用モールドパウダー。
1. A temperature of 1 ° C. after vitrification by melt quenching
Mold powder for continuous casting, characterized in that the heat crystallization temperature, which is the temperature for crystallization by the heat treatment at / min, is in the range of 400 to 490 ° C.
【請求項2】 加熱溶融後に10℃/minで冷却した
際に結晶の生じ始める温度である冷却結晶化温度が11
00〜1250℃の範囲であることを特徴とする請求項
1に記載の連続鋳造用モールドパウダー。
2. After melting by heating, it is cooled at 10 ° C./min.
When the cooling crystallization temperature, which is the temperature at which crystals start to form, is 11
The mold powder for continuous casting according to claim 1, wherein the temperature is in the range of 0 to 1250 ° C.
【請求項3】 プリメルト率が75%以上であることを
特徴とする請求項1または請求項2に記載の連続鋳造用
モールドパウダー。
3. The mold powder for continuous casting according to claim 1, wherein the premelt rate is 75% or more.
JP27686998A 1998-09-30 1998-09-30 Mold powder for continuous casting Expired - Fee Related JP3389864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27686998A JP3389864B2 (en) 1998-09-30 1998-09-30 Mold powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27686998A JP3389864B2 (en) 1998-09-30 1998-09-30 Mold powder for continuous casting

Publications (2)

Publication Number Publication Date
JP2000102846A JP2000102846A (en) 2000-04-11
JP3389864B2 true JP3389864B2 (en) 2003-03-24

Family

ID=17575554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27686998A Expired - Fee Related JP3389864B2 (en) 1998-09-30 1998-09-30 Mold powder for continuous casting

Country Status (1)

Country Link
JP (1) JP3389864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131241A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method
JP2014000611A (en) * 2013-10-10 2014-01-09 Nippon Steel & Sumitomo Metal Continuous casting method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569099B2 (en) * 2003-11-25 2010-10-27 Jfeスチール株式会社 Slab continuous casting method for medium carbon steel
JP4751283B2 (en) * 2006-02-01 2011-08-17 新日本製鐵株式会社 Continuous casting powder and steel continuous casting method
JP5342296B2 (en) * 2009-03-27 2013-11-13 品川リフラクトリーズ株式会社 Mold powder for continuous casting of steel
EP2949412B1 (en) * 2013-01-25 2018-06-20 Baoshan Iron & Steel Co., Ltd. Fluoride-free continuous casting mold flux for ultralow carbon steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131241A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method
JP2014000611A (en) * 2013-10-10 2014-01-09 Nippon Steel & Sumitomo Metal Continuous casting method

Also Published As

Publication number Publication date
JP2000102846A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3226829B2 (en) Hollow granule mold flux for continuous casting
JP3389864B2 (en) Mold powder for continuous casting
JP2017170494A (en) Continuous casting mold powder of steel and continuous casting method
JPH08197214A (en) Powder for continuously casting steel
JP3179358B2 (en) Mold powder for continuous casting
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
JP3256147B2 (en) Mold flux for continuous casting of steel
JP4451798B2 (en) Continuous casting method
JP4515287B2 (en) Continuous casting method
JP2004167527A (en) Mold powder for continuously casting steel
KR960000325B1 (en) Mold flux of continuous casting
JPH1058102A (en) Method for continuously casting medium-carbon steel
JP3335616B2 (en) Powder for continuous casting for B-containing steel and method for producing B-containing steel
JPH07185755A (en) Method for continuously casting medium carbon steel
JP4207562B2 (en) Continuous casting method and continuous cast slab manufactured by the method
KR101834421B1 (en) Mold flux and casting method using thereof
KR100749021B1 (en) Mold fiux for continuous casting
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
JP2008207187A (en) Powder for continuously casting ni-cu-based alloy, and continuous casting method
WO2022034864A1 (en) Method for continuously casting steel and test solidification device for steel
JP3261554B2 (en) Continuous casting powder of Cu and Sn steel containing
JPH03210950A (en) Powder for continuous casting
JPH10249500A (en) Powder for continuously casting steel and method for continuously casting steel using the powder
JPS6353902B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees