JPS626737A - Continuous casting mold for steel - Google Patents
Continuous casting mold for steelInfo
- Publication number
- JPS626737A JPS626737A JP14262085A JP14262085A JPS626737A JP S626737 A JPS626737 A JP S626737A JP 14262085 A JP14262085 A JP 14262085A JP 14262085 A JP14262085 A JP 14262085A JP S626737 A JPS626737 A JP S626737A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- powder
- insulating layer
- layer
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は鋼の連続鋳造用鋳型、特にパウダキャスティ
ング用鋳型に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mold for continuous casting of steel, particularly a mold for powder casting.
(従来の技術) 一般に、鋼の連続鋳造では水冷銅鋳型を用い。(Conventional technology) Generally, continuous steel casting uses water-cooled copper molds.
鋳型と鋳片との間の潤滑作用を助けるために、パウダの
添加と鋳型のヒ下振動を行う。溶鋼表面を覆ったパウダ
は、溶鋼の顕熱により一部が溶融し、粉末層と溶融層に
分かれる。Powder is added and the mold is vibrated in order to aid in the lubrication between the mold and the slab. Part of the powder covering the surface of the molten steel melts due to the sensible heat of the molten steel, and is separated into a powder layer and a molten layer.
鋳型の内壁面の一部に断熱層を設けた先行技術として、
欧州特許第83757号がある。第4図はこの先行技術
の実施例を示すもので、水冷鋳型11の内壁12の内側
に、メニスカス8に対応する位置に断熱層13を設けて
いる。この鋳型+1では、凝固殻7の発達速度を抑えて
、鋳片の高温割れと偏析を軽減することができる。As a prior art technology that provided a heat insulating layer on a part of the inner wall surface of the mold,
There is European Patent No. 83757. FIG. 4 shows an embodiment of this prior art, in which a heat insulating layer 13 is provided inside the inner wall 12 of the water-cooled mold 11 at a position corresponding to the meniscus 8. With this mold +1, the development speed of the solidified shell 7 can be suppressed, and hot cracking and segregation of the slab can be reduced.
(発明が解決しようとする問題点)
しかし、L記先行技術の鋳型では、パウダ添加によって
次のような問題が生じる。(Problems to be Solved by the Invention) However, in the mold of the prior art described in L, the following problem occurs due to the addition of powder.
すなわち、鋳型内壁は冷却され、また熱伝導度が高いの
で、内壁表面に接触するパウダは温度が下がり、塊状の
固体層(スラグベア)となる。そして、このスラグベア
が鋳型の振動により凝固殻に押し込まれて、鋳片の表面
に周期的な凹凸(オシレーションマーク)を生じる。こ
のオシレーションマークはしばしば圧延コイルのヘゲ、
表面割れなど表面欠陥の原因となる。このため、鋳片表
面の手入れを必要とし、また不良品発生により製品歩留
りが低下する。That is, since the inner wall of the mold is cooled and has high thermal conductivity, the temperature of the powder in contact with the inner wall surface decreases and becomes a lumpy solid layer (slag bear). This slag bear is then pushed into the solidified shell by the vibration of the mold, creating periodic irregularities (oscillation marks) on the surface of the slab. This oscillation mark is often caused by the sagging of the rolling coil.
It causes surface defects such as surface cracks. Therefore, the surface of the slab needs to be cleaned, and the product yield is reduced due to the occurrence of defective products.
(問題点を解決するための手段)
この発明の鋼の連続鋳造用鋳型は、鋳型の内壁表面の少
なくともパウダ層に接する部分に断熱層を設けている。(Means for Solving the Problems) The mold for continuous casting of steel according to the present invention is provided with a heat insulating layer on at least a portion of the inner wall surface of the mold that is in contact with the powder layer.
実際には、若f余裕をみてパウダ層のやや上からメニス
カスのやや下に至る範囲にわたって断熱層を設けている
。In reality, the heat insulating layer is provided over a range from slightly above the powder layer to slightly below the meniscus, taking into consideration the margin of space.
断熱層を形成する断熱材は、鋳片のオシレーションマー
クおよび表面欠陥を防ぐために次のような性質を必要と
する。The heat insulating material forming the heat insulating layer requires the following properties to prevent oscillation marks and surface defects on the slab.
イ)パウダ層表面から断熱層へ流れる熱流束が50ca
l /c+a2 s以下となる熱伝導度であること。こ
のためには次の条件を満たす必要がある。b) The heat flux flowing from the powder layer surface to the heat insulation layer is 50ca
Thermal conductivity shall be less than l/c+a2s. For this purpose, the following conditions must be met.
k/d≦0,05
ただし、k(cal/cm”c 5ee)は断熱材の熱
伝導度、d (c+s)は断熱層の厚さである。k/d≦0,05 where k (cal/cm”c 5ee) is the thermal conductivity of the heat insulating material, and d (c+s) is the thickness of the heat insulating layer.
口)熱衝撃による断熱層の割れを防ぐため、耐熱衝撃性
に優れていること。Mouth) Must have excellent thermal shock resistance to prevent cracking of the insulation layer due to thermal shock.
ハ)断熱材が溶融したパウダと反応して劣化しないこと
。c) The insulation material should not react with the molten powder and deteriorate.
このような性質を持った材料として、マグネシア−グラ
ファイト、マグネシア−クロマイト、アルミナ、窒化ケ
イ素、窒化ポロンなどがある。Examples of materials having such properties include magnesia graphite, magnesia chromite, alumina, silicon nitride, and poron nitride.
断fj+層の厚さは 1mm以上が好ましい。また、通
常の操業ではパウダ層の直]二からメニスカスの直下に
至る上下幅は30fflffi程度であり、 この範囲
に断熱層を設ける。The thickness of the section fj+ layer is preferably 1 mm or more. Further, in normal operation, the vertical width from directly below the powder layer to directly below the meniscus is about 30fffffi, and a heat insulating layer is provided in this range.
PI5内壁に断熱材を埋め込むか、または鋳型内壁の表
面に断熱材を溶射して断熱層を形成する。A heat insulating layer is formed by embedding a heat insulating material in the inner wall of the PI5 or spraying the heat insulating material on the surface of the inner wall of the mold.
(作用)
断熱層はパウダ層から鋳型内壁への熱の散逸を防ぎ、パ
ウダ層の温度低下を抑える。この結果。(Function) The heat insulating layer prevents the dissipation of heat from the powder layer to the inner wall of the mold and suppresses the temperature drop in the powder layer. As a result.
スラグベアの発生が防IFされ、スラグベアが鋳型の振
動により凝固殻に押し込まれるようなことはない。The generation of slag bears is prevented by IF, and slag bears are not pushed into the solidified shell by the vibration of the mold.
(実施例1)
第1図はこの発明の鋳型の示しており、水冷銅鋳型1の
内壁2表面にマグネシア−グラファイトを埋め込み、断
熱層3を形成している。断熱層3の厚さは2■である。(Example 1) FIG. 1 shows a mold of the present invention, in which magnesia-graphite is embedded in the surface of an inner wall 2 of a water-cooled copper mold 1 to form a heat insulating layer 3. The thickness of the heat insulating layer 3 is 2cm.
また、断熱層3はパウダ粉末層9上面のからパウダ溶融
層10の下端すなわちメニスカス8の位置までを覆って
おり、その9E下幅は50ramである。Further, the heat insulating layer 3 covers from the upper surface of the powder layer 9 to the lower end of the powder fused layer 10, that is, the position of the meniscus 8, and its lower width 9E is 50 ram.
上記鋳型を用いて、冷延薄板用のAl−9i ギルド鋼
を鋳造した。鋳型1にはタンディシュ4より浸漬ノズル
5を介して溶鋼6を供給するとともに、パウダを供給装
置(図示しない)より投入する。Using the above mold, Al-9i guild steel for cold-rolled thin plates was cast. Molten steel 6 is supplied to the mold 1 from a tundish 4 through an immersion nozzle 5, and powder is introduced from a supply device (not shown).
鋳造時にスラグベアは生じなかった。ついで、このよう
にして得られた鋳片を薄板に圧延してコイルとした。No slag bears were generated during casting. The slab thus obtained was then rolled into a thin plate to form a coil.
第2図は上記コイルの表面傷発生率を従来のものと比較
して示している。第2図から明らかなように、圧延コイ
ルの表面傷発生率は従来のものに比べて約1/3である
。FIG. 2 shows the surface flaw occurrence rate of the above-mentioned coil in comparison with that of the conventional coil. As is clear from FIG. 2, the surface flaw occurrence rate of the rolled coil is about 1/3 that of the conventional one.
(実施例2)
水冷銅鋳型の内壁表面にプラズマアークにより窒化ケイ
素を溶射して、断熱層を形成した。断熱層の寸法は第1
の実施例と同じである。(Example 2) Silicon nitride was thermally sprayed onto the inner wall surface of a water-cooled copper mold using a plasma arc to form a heat insulating layer. The dimensions of the insulation layer are the first
This is the same as the embodiment.
上記鋳型を用いて、冷延薄板用のAl−9iキルド鋼を
鋳造した。鋳造時にスラグベアは生じなかった。ついで
、このようにして得られた鋳片を薄板に圧延してコイル
とした。Using the above mold, Al-9i killed steel for cold-rolled thin plates was cast. No slag bears were generated during casting. The slab thus obtained was then rolled into a thin plate to form a coil.
!−91イ11/の夷面柩塁ル末か庁キΦものと田旬し
て第2図に示している。第1実施例と同様に、圧延コイ
ルの表面傷発生率は従来のものに比べて約 1/3であ
る。! Figure 2 shows the end of the coffin of Ei-men, 91-11/, and the end of the coffin. Similar to the first embodiment, the surface flaw occurrence rate of the rolled coil is about 1/3 that of the conventional one.
この発明は上記実施例に限られるものではない。たとえ
ば、第3図に示すようにメニスカス8付近の断熱層3の
厚さを下方に向かって徐々に薄くしてもよい。これより
、断熱層3の下方部の温度が下り、前記スラグベアの押
込みを生じることなく、メニスカス8付近の溶鋼6の凝
固が促進される。This invention is not limited to the above embodiments. For example, as shown in FIG. 3, the thickness of the heat insulating layer 3 near the meniscus 8 may be gradually thinned downward. As a result, the temperature of the lower part of the heat insulating layer 3 decreases, and the solidification of the molten steel 6 near the meniscus 8 is promoted without causing the slag bears to be pushed in.
(発明の効果)
この発明の鋳型を用いることにより、オシレーションマ
ークが軽減するので、圧延コイルのヘゲ、表面割れ等の
欠陥が減少する。また、凝固殻の冷却速度が低下するの
で、固相中の拡散が促進され、凝固偏析が減少する。(Effects of the Invention) By using the mold of the present invention, oscillation marks are reduced, and defects such as curling and surface cracks in rolled coils are reduced. Furthermore, since the cooling rate of the solidified shell is reduced, diffusion in the solid phase is promoted and solidification segregation is reduced.
第1図はこの発明の実施例を示すもので、鋳片鋳込み中
の鋳型の縦断面図、第2図はこの発明および従来の鋳型
をそれぞれ用いて鋳造した鋳片を圧延して得たコイルの
表面傷発生率を示す線図。
第3図は断熱層の他の実施例をしめず断面図、ならびに
第4図は鋳片鋳込み中の従来のn型の縦断面図である。
工、11・・・鋳型、2.12・・・鋳型内壁、3・・
・断熱層、6・・・溶鋼、7・・・凝固殻、8・・・メ
ニスカス、9・・・パウダ粉末層、10・・・パウダ溶
融層。Fig. 1 shows an embodiment of the present invention, which is a longitudinal cross-sectional view of a mold during casting of a slab, and Fig. 2 shows coils obtained by rolling slabs cast using molds of the present invention and a conventional mold. FIG. 2 is a diagram showing the surface scratch incidence rate of FIG. 3 is a cross-sectional view of another embodiment of the heat insulating layer, and FIG. 4 is a vertical cross-sectional view of a conventional n-type during slab casting. Engineering, 11... Mold, 2.12... Mold inner wall, 3...
- Heat insulation layer, 6... Molten steel, 7... Solidified shell, 8... Meniscus, 9... Powder layer, 10... Powder molten layer.
Claims (1)
熱層を設けたことを特徴とする鋼の連続鋳造用鋳型。A mold for continuous casting of steel, characterized in that a heat insulating layer is provided on at least a portion of the inner wall surface of the mold that is in contact with a powder layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14262085A JPS626737A (en) | 1985-07-01 | 1985-07-01 | Continuous casting mold for steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14262085A JPS626737A (en) | 1985-07-01 | 1985-07-01 | Continuous casting mold for steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS626737A true JPS626737A (en) | 1987-01-13 |
Family
ID=15319569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14262085A Pending JPS626737A (en) | 1985-07-01 | 1985-07-01 | Continuous casting mold for steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS626737A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992019399A1 (en) * | 1991-04-27 | 1992-11-12 | Foseco International Limited | Insert for vessels or conduits containing molten metal |
US5188167A (en) * | 1988-06-16 | 1993-02-23 | Davy (Distington) Limited | Continuous casting mould |
KR100661821B1 (en) * | 2000-12-26 | 2006-12-27 | 주식회사 포스코 | Device and Method for preventing the Growth of Slag Bear in the Mold for Continuous Casting of Steel |
JP2009142876A (en) * | 2007-12-17 | 2009-07-02 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
CN104889351A (en) * | 2014-03-04 | 2015-09-09 | 日立金属株式会社 | Casting method and casting mould for casting |
CN112512725A (en) * | 2018-07-13 | 2021-03-16 | Sms康卡斯特股份公司 | Continuous casting method for casting steel, in particular in vertical casting plants |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179254A (en) * | 1983-03-31 | 1984-10-11 | Sumitomo Light Metal Ind Ltd | Production of square cast ingot of al alloy for rolling having good etchability |
-
1985
- 1985-07-01 JP JP14262085A patent/JPS626737A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179254A (en) * | 1983-03-31 | 1984-10-11 | Sumitomo Light Metal Ind Ltd | Production of square cast ingot of al alloy for rolling having good etchability |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188167A (en) * | 1988-06-16 | 1993-02-23 | Davy (Distington) Limited | Continuous casting mould |
WO1992019399A1 (en) * | 1991-04-27 | 1992-11-12 | Foseco International Limited | Insert for vessels or conduits containing molten metal |
KR100661821B1 (en) * | 2000-12-26 | 2006-12-27 | 주식회사 포스코 | Device and Method for preventing the Growth of Slag Bear in the Mold for Continuous Casting of Steel |
JP2009142876A (en) * | 2007-12-17 | 2009-07-02 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
CN104889351A (en) * | 2014-03-04 | 2015-09-09 | 日立金属株式会社 | Casting method and casting mould for casting |
CN112512725A (en) * | 2018-07-13 | 2021-03-16 | Sms康卡斯特股份公司 | Continuous casting method for casting steel, in particular in vertical casting plants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS626737A (en) | Continuous casting mold for steel | |
JPH0581345B2 (en) | ||
US3450188A (en) | Continuous casting method and arrangement | |
JPS60162557A (en) | Continuous casting device for thin plate | |
JP3289118B2 (en) | Shrinkage hole reduction device in continuous casting | |
JPH06339754A (en) | Method for continuously casting thin sheet | |
JPH0562019B2 (en) | ||
JP2006130552A (en) | Mold for continuous casting | |
JPS6227314Y2 (en) | ||
JPS60244013A (en) | Manufacture of magnetic material | |
JPH05245588A (en) | Casting mold for continuous casting | |
JP3134135B2 (en) | Semi-continuous casting mold | |
JPS6326244A (en) | Stationary short side for continuous casting of thin ingot | |
KR100383273B1 (en) | Refractory Mold for Continuous Casting of Billet | |
JPS6174757A (en) | Continuous casting device | |
JPS61245949A (en) | Continuous casting method | |
JPH0137807Y2 (en) | ||
JPH0216839Y2 (en) | ||
JPS61199568A (en) | Production of cylinder liner | |
JPS60162556A (en) | Continuous casting device for thin plate | |
JPH0578349U (en) | Rear weir of thin sheet continuous casting machine | |
JPS61132244A (en) | Method and device for continuous casting | |
JPH1133684A (en) | Tundish device | |
JPH03294047A (en) | Ceramic mold for continuous casting | |
JP2000202585A (en) | Mold for continuous casting |