JPS61234372A - Insulation deterioration test for power cable - Google Patents

Insulation deterioration test for power cable

Info

Publication number
JPS61234372A
JPS61234372A JP7741585A JP7741585A JPS61234372A JP S61234372 A JPS61234372 A JP S61234372A JP 7741585 A JP7741585 A JP 7741585A JP 7741585 A JP7741585 A JP 7741585A JP S61234372 A JPS61234372 A JP S61234372A
Authority
JP
Japan
Prior art keywords
voltage
cable
core wire
grounded
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7741585A
Other languages
Japanese (ja)
Inventor
Yasumitsu Ebinuma
康光 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP7741585A priority Critical patent/JPS61234372A/en
Publication of JPS61234372A publication Critical patent/JPS61234372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To obtain highly reliable test results to match actual use, by using an AC voltage as such to be applied to the core. CONSTITUTION:An AC voltage is used as such as to be applied to a sample cable 1. When a deterioration test is carried out by the measuring circuit of this invension, a switch S1 is connected to the terminal (a) position to apply the AC voltage between the terminal and a shield layer 1b grounded to the core 1a of the cable 1. Subsequently, the switch S1 is connected to the terminal (b) position while the core 1a is grounded initially through a resistance R and then, after the switch S2 is closed, it is grounded through the resistance R. After a specified time, the switch S1 is connected to the terminal (c) position to release the grounding of the core 1a while the residual voltage of the cable 1 is measured with a voltometer 2. The deterioration in the cable 1 is decided from the residual voltage.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、電力ケーブルの残留電圧から該ケーブルの絶
縁劣化を判定する絶縁劣化試験法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an insulation deterioration testing method for determining the insulation deterioration of a power cable based on its residual voltage.

[発明の技術的背景] 電力ケーブルの芯線に直流電圧を印加したのち。[Technical background of the invention] After applying DC voltage to the core wire of the power cable.

該芯線を短時間接地して開放するという操作を行なった
場合、上記芯線に残留電圧(回復電圧)が現われる。
When the core wire is grounded for a short time and then opened, a residual voltage (recovery voltage) appears in the core wire.

この残留電圧は、上記直流電圧の印加によってケーブル
の絶縁体に蓄積された電荷が誘電緩和現象のために短時
間内に放電しきれないという理由で発生し、絶縁劣化ケ
ーブルの場合、健全ケーブルに比して残留電圧が大きく
なる。そこで、この残留電圧からケーブルの絶縁劣化を
判定する方法が従来から実施されている。
This residual voltage occurs because the charge accumulated in the cable insulation due to the application of the DC voltage cannot be discharged within a short period of time due to the dielectric relaxation phenomenon. In comparison, the residual voltage becomes larger. Therefore, a method of determining the insulation deterioration of a cable from this residual voltage has been conventionally implemented.

ところで、電力ケーブルに交流電圧を印加した場合と直
流電圧を印加した場合とでは、その絶縁体内における電
位分布が相違し、特に電極不整(欠陥部)が存在する場
合に、その相違が著しくなる。そして電力ケーブルは、
その実使用時において交流電圧が印加される。
By the way, when an AC voltage is applied to a power cable and when a DC voltage is applied, the potential distribution in the insulator is different, and the difference becomes particularly noticeable when electrode irregularities (defects) are present. And the power cable
An alternating current voltage is applied during actual use.

以上の理由からして、直流電圧をケーブルに印加する上
記従来の試験法では、実使用に即した試験結果を得るこ
とができず、そのため絶縁劣化の判定を誤まる虞れがあ
った。
For the above reasons, the conventional test method described above in which a DC voltage is applied to the cable cannot obtain test results suitable for actual use, and therefore there is a risk of erroneously determining insulation deterioration.

[発明の目的] 本発明はかかる従来の問題点に鑑み、実使用に即した信
頼性の高い試験結果を得ることができる電力ケーブルの
絶縁劣化試験法を提供しようとするものである。
[Object of the Invention] In view of these conventional problems, the present invention seeks to provide a method for testing insulation deterioration of power cables that can obtain highly reliable test results suitable for actual use.

[発明の概要] 本発明では、ケーブルの芯線に印加する電圧として交流
電圧を適用し、もって上記目的を達成している。
[Summary of the Invention] In the present invention, the above object is achieved by applying an alternating current voltage as the voltage applied to the core wire of the cable.

[実施例] 以下1図面を参照しながら本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to one drawing.

まず、残留電圧の発生原理について簡単に説明する。い
ま、供試ケーブルの芯線と遮蔽層(シース)を各々第2
図のxwfl側電極とx=0側(接地側)とみなし、そ
れらの電極間への電圧印加後に、該電極間の絶縁体中に
同図に示すような空間電荷が発生している場合を考える
First, the principle of generating residual voltage will be briefly explained. Now, the core wire and shielding layer (sheath) of the test cable are
The xwfl side electrode in the figure is considered to be the x=0 side (ground side), and after a voltage is applied between these electrodes, a space charge as shown in the figure is generated in the insulator between the electrodes. think.

同図において、x=Q側の電極が開放されている場合に
は、両電極間に第3図に示すような電位分布Vf(x 
)が形成され、xzQ側電極においてVf(Q )なる
電圧が観測される。
In the figure, when the electrode on the x=Q side is open, the potential distribution Vf(x
) is formed, and a voltage Vf(Q ) is observed at the xzQ side electrode.

一方、このx=fl側電極を接地した場合には、絶縁体
内部の電位分布は同図に示すVs(x)になる。
On the other hand, when this x=fl side electrode is grounded, the potential distribution inside the insulator becomes Vs(x) shown in the figure.

このVs(x)は、Vf(X)と、x=0側電極の電圧
を零にするために必要な電位分布−Vb(x)とが合成
されたもので。
This Vs(x) is a combination of Vf(X) and the potential distribution -Vb(x) necessary to make the voltage of the x=0 side electrode zero.

Vs(x)=Vf(x)  Vb(x)   ・・・・
(1)Vs(fi)=Vf((+)  Vb(fl)=
 0[Vf(fi)=Vb(fl)]   ・−・・(
2)と表わされる。
Vs(x)=Vf(x) Vb(x)...
(1) Vs(fi)=Vf((+) Vb(fl)=
0[Vf(fi)=Vb(fl)] ・−・・(
2).

いま、第2図に示した電位分布が形成されている状態に
おいて、x=Q側の電極を一度接地し、その後開放した
場合を考える。
Now, consider the case where the electrode on the x=Q side is once grounded and then opened in a state where the potential distribution shown in FIG. 2 is formed.

開放期間中−Vb(x)が保持され、空間電荷分布も全
く変化しなければ(2)式の条件がそのまま保持される
ので、x=−Q側電極の電圧は常に零となる。
If -Vb(x) is maintained during the open period and the space charge distribution does not change at all, the condition of equation (2) is maintained as is, so the voltage at x=-Q side electrode is always zero.

しかし実際には、空間電荷が開放期間中に時間の経過と
ともに、自己の形成する内部電界および熱的な拡散など
により移動、消滅していくので。
However, in reality, the space charge moves and disappears over time during the open period due to the internal electric field it forms and thermal diffusion.

Vf(Q)の値はVf(Q ) = Vb(Q )カら
Vf(fl)=0へと減少していくことになる。この時
−vbB)の値が接地時のまま保持されていれば、(1
)式から明らかなようにX=Ω側電極の電位は、接地開
放直後の零の値から時間経過とともに−vb(Q)なる
値に漸近していくような変化を示し、これが残留電圧と
して観測される。第4図は1時刻t=0においてx=Q
側電極の接地を開放した場合における残留電圧対時間特
性を例示しており、残留電圧は健全ケーブルの場合より
も劣化ケーブルの場合が大きくなる。
The value of Vf(Q) decreases from Vf(Q)=Vb(Q) to Vf(fl)=0. At this time, if the value of -vbB) is maintained as it was at the time of grounding, then (1
) As is clear from the equation, the potential of the electrode on the X=Ω side changes asymptotically from the zero value immediately after the ground is opened to the value -vb(Q) over time, and this is observed as the residual voltage. be done. Figure 4 shows x=Q at time t=0.
This shows an example of the residual voltage vs. time characteristic when the side electrode is disconnected from ground, and the residual voltage is larger for a deteriorated cable than for a healthy cable.

上記残留電圧は、ケーブルの絶縁体中における誘電緩和
現象(分極)のみによって発生するのではなく、ケーブ
ルの欠陥部から注入されて絶縁体中にトラップされた正
又は負の電荷が電極(芯線又は遮蔽層)に呪われた場合
にも発生し、とくに絶縁体中に尿トリー劣化が生じたさ
いに後者に基因した残留電圧の発生が顕著となる。そし
て後者に基づく残留電圧は、直流電圧をケーブルに印加
する従来法では十分に検出できない。
The residual voltage mentioned above is not only caused by the dielectric relaxation phenomenon (polarization) in the cable insulator, but also by positive or negative charges injected from the defective part of the cable and trapped in the insulator. It also occurs when the shielding layer (shielding layer) is cursed, and the generation of residual voltage due to the latter becomes particularly noticeable when urine-tree deterioration occurs in the insulator. The residual voltage caused by the latter cannot be detected sufficiently by the conventional method of applying a DC voltage to the cable.

第1図は、本発明に係る試検法を実施するための測定回
路の一例を示し、同図に示す如く本発明では供試ケーブ
ル1に印加する電圧として交流電圧を用いている。
FIG. 1 shows an example of a measuring circuit for carrying out the test method according to the present invention, and as shown in the figure, in the present invention, an alternating current voltage is used as the voltage applied to the test cable 1.

この測定回路によって劣化試験を行なう場合には、スイ
ッチS、を端子a側に接続して交流電圧をケーブルlの
芯線1aと接地された遮蔽層lb間に所定時間印加し、
しかるのちスイッチS1を端子す側に接続して芯線1a
を当初抵抗Rを介して接地し、その後F2を閉じて接地
する抵抗Rを介して接地する。そして、所定時間後にス
イッチSlを端子C側に接続して芯線1aの接地を解放
するとともに、ケーブル1の残流電圧を電圧計2によっ
て計測する。
When performing a deterioration test using this measurement circuit, connect the switch S to the terminal a side and apply an alternating current voltage between the core wire 1a of the cable l and the grounded shielding layer lb for a predetermined time,
After that, connect the switch S1 to the terminal side and connect the core wire 1a.
is initially grounded via a resistor R, and then grounded via a resistor R that closes F2 and is grounded. Then, after a predetermined period of time, the switch Sl is connected to the terminal C side to release the grounding of the core wire 1a, and the residual voltage of the cable 1 is measured by the voltmeter 2.

ケーブル1の劣化は、上記残流電圧から判定され、下記
表には測定条件と判定基準の一例が示されている。
The deterioration of the cable 1 is determined from the residual voltage, and the table below shows an example of the measurement conditions and criteria.

以下余白 [発明の効果] 本発明においては、試験時にケーブルに印加する電圧と
して交流電圧を適用しているので、ケーブル実使用状態
に即した劣化判定を行なうことができる。すなわち、従
来の試験法に比して水トリー劣化等の絶縁劣化をより適
確に検出して、信頼性の高い判定効果を得ることができ
る。
Margins below [Effects of the Invention] In the present invention, since an alternating current voltage is applied as the voltage applied to the cable during testing, deterioration can be determined in accordance with the actual usage state of the cable. That is, compared to conventional testing methods, insulation deterioration such as water tree deterioration can be detected more accurately and a highly reliable determination effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る試験法に適用される残留電圧計測
回路の一例を示した回路図、第2図は供試ケーブルおよ
びその絶縁体中における電荷の分布態様を操式化して示
した概念図、第3図はケーブルの芯線が開放されている
場合と接地されている場合における絶縁体中の電位分布
の態様を各々例示したグラフ、第4図は残留電圧の発生
態様を例示したグラフである。 1 ・・・・・・・・供試ケーブル 1a・・・・・・・・芯線 1b・・・・・・・・遮蔽層(シース)2・・・・・・
・・電圧計
Fig. 1 is a circuit diagram showing an example of a residual voltage measuring circuit applied to the test method according to the present invention, and Fig. 2 is a schematic diagram showing the electric charge distribution in the test cable and its insulator. Conceptual diagram, Figure 3 is a graph illustrating the potential distribution in the insulator when the core wire of the cable is open and grounded, and Figure 4 is a graph illustrating the generation of residual voltage. It is. 1 ...... Test cable 1a ... Core wire 1b ...... Shielding layer (sheath) 2 ...
··voltmeter

Claims (1)

【特許請求の範囲】[Claims] 電力ケーブルの芯線に電圧を印加したのち、該芯線を所
定時間接地し、ついで接地状態から開放された上記芯線
の残留電圧を計測することによって上記電力ケーブルの
絶縁劣化を判定する試験法において、上記芯線に印加す
る電圧として交流電圧を使用することを特徴とする電力
ケーブルの絶縁劣化試験法。
In the test method for determining the insulation deterioration of the power cable by applying a voltage to the core wire of the power cable, then grounding the core wire for a predetermined period of time, and then measuring the residual voltage of the core wire after the core wire is released from the grounded state, the above-mentioned A power cable insulation deterioration testing method characterized by using an alternating current voltage as the voltage applied to the core wire.
JP7741585A 1985-04-10 1985-04-10 Insulation deterioration test for power cable Pending JPS61234372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7741585A JPS61234372A (en) 1985-04-10 1985-04-10 Insulation deterioration test for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7741585A JPS61234372A (en) 1985-04-10 1985-04-10 Insulation deterioration test for power cable

Publications (1)

Publication Number Publication Date
JPS61234372A true JPS61234372A (en) 1986-10-18

Family

ID=13633308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7741585A Pending JPS61234372A (en) 1985-04-10 1985-04-10 Insulation deterioration test for power cable

Country Status (1)

Country Link
JP (1) JPS61234372A (en)

Similar Documents

Publication Publication Date Title
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
JPS61234372A (en) Insulation deterioration test for power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JPH0429982B2 (en)
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP3050613B2 (en) Cable insulation deterioration detection method
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JPH07306241A (en) Insulation deterioration judging method for power cable
JP2750888B2 (en) Power cable insulation resistance measurement method
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JPS6214072A (en) Analysis of deterioration in insulation of crosslinked polyethylene power cable
JP2003084028A (en) Hot line diagnostic method for power cable
JPH11166955A (en) Method for diagnosing deterioration of cable
Zhang et al. Study on Transient Electric Field of Cable-Joint System under the Influence of Switch Operation
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPH08304487A (en) Method for insulation diagnosis of cable sheath in active condition
JPH0378588B2 (en)
JP2612648B2 (en) Deterioration judgment method for insulation of three-phase power cable
JPH04264273A (en) Method for diagnosing deterioration of power cable
JPS6229749B2 (en)
Johnson Segregation of conduction and absorption current components in the determination of resistance voltage characteristics of machine insulation
JPH11211783A (en) Method for diagnosing deterioration of power cable joint
JPS63281074A (en) Detecting method for water tree current of cv cable