JPS6214072A - Analysis of deterioration in insulation of crosslinked polyethylene power cable - Google Patents

Analysis of deterioration in insulation of crosslinked polyethylene power cable

Info

Publication number
JPS6214072A
JPS6214072A JP60151329A JP15132985A JPS6214072A JP S6214072 A JPS6214072 A JP S6214072A JP 60151329 A JP60151329 A JP 60151329A JP 15132985 A JP15132985 A JP 15132985A JP S6214072 A JPS6214072 A JP S6214072A
Authority
JP
Japan
Prior art keywords
voltage
transformer
deterioration
cable
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60151329A
Other languages
Japanese (ja)
Other versions
JPH0528350B2 (en
Inventor
Yasuyuki Ikeda
池田 易行
Matsutoshi Tanaka
田中 ▲*▼捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP60151329A priority Critical patent/JPS6214072A/en
Publication of JPS6214072A publication Critical patent/JPS6214072A/en
Publication of JPH0528350B2 publication Critical patent/JPH0528350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To enable diagnosis of a highly accurate analysis of deterioration in the insulation, by applying an AC voltage as external energy in the release of the residual charge to ensure the release thereof sufficiently and in a short time. CONSTITUTION:After a switch 2 is set to the DC power source position to apply a DC voltage of 10-20kV to a sample cable 1 for about 10 minute and then, set to the ground position to discharge the residual charge for one minute. Then, the switch 2 is changed over to the test transformer 5 position to adjust a slide transformer 6 so that the voltage will boost to the maximum from zero at a fixed speed. Then, a fine direct current flowing through a cable 1 is detected with a detection resistance 7 and after the removal of AC components with a reduction filter 8, it is inputted into a Y terminal of an X-Y recorder 9 while a tertiary voltage of the transformer 5 is inputted into the X terminal of the recorder 9 through an AC transducer 10. Then, the output voltage of the transformer 5 is raised to the maximum from zero by adjusting the slide transformer 6 and then, lowered to zero to measure the released current value of an AC electric field. This enables simple diagnosis of the deterioration in the water tree at a high accuracy and in a short time.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は6KV〜30Kv級の配電用架橋ポリエチレン
(XLPE)ケーブルの絶縁劣化診断方法に関するのも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field to which the Invention Pertains) The present invention relates to a method for diagnosing insulation deterioration of 6KV to 30Kv class power distribution cross-linked polyethylene (XLPE) cables.

〔従来技術およびその問題点〕[Prior art and its problems]

XLPEケーブルは従来の油浸紙ケーブルに比較して誘
電特性がすぐれ、布設および保守管理が容易なことから
、現在では6KV級から275KV級までのケーブル線
路で実用されている。しかしXLPEケーブルは浸水環
境下(管路浸水、海底ケーブルなど)で長年月使用した
場合、絶縁体中に水が浸透し、これによって水トリーと
称する絶縁劣化が生じる。
XLPE cables have superior dielectric properties compared to conventional oil-impregnated paper cables, and are easier to install and maintain, so they are currently used in cable lines from 6KV class to 275KV class. However, when XLPE cables are used for many years in a flooded environment (flooded pipes, submarine cables, etc.), water penetrates into the insulation, which causes insulation deterioration called water tree.

この水トリーは使用と共に成長、進展してケーブルの絶
縁耐力を低下させ、最終的にはケーブルを絶縁破壊に至
らしめる。このため現在、水トリー劣化の抑止あるいは
水トリー劣化診断の問題は絶縁研究分野の重要課題とな
っている。
This water tree grows and develops with use, reducing the dielectric strength of the cable and eventually leading to dielectric breakdown of the cable. For this reason, the problem of preventing water tree deterioration or diagnosing water tree deterioration is currently an important issue in the field of insulation research.

水トリーは絶縁体中の局所的急峻電界と水分の相互作用
により発生するもので、絶縁体界面の突起や絶縁層に含
有した微小ボイド(空隙)および異物を核として電界方
向に樹枝状あるいは蝶ネクタイ状に進展していく劣化形
態である。これは微視的には水ボイドの集合として観察
される。しかしてこの水トリーによる絶縁劣化を把握し
てケーブルの絶縁破壊を未然に防止するために、従来よ
り絶縁抵抗、直流漏れ電流、誘電損失角(tanδ)な
どの特性項目による水トリー劣化診断試験が行われてお
り、また最近では水トリーの進展に伴う残留電界の増大
に着目して開発された逆吸収電流法や残留電圧法あるい
は水トリー劣化に伴う絶縁抵抗の低下に着目して開発さ
れた電位減衰法や直流過渡電流法などの新しい水トリー
診断法が次々に提案されている。しかしこれらの新旧診
断試験法は精度、現場適用性の面でそれぞれ一長一短が
あり、まだ充分な信鯨性を得るに至っていない。
Water trees are generated due to the interaction between water and a localized steep electric field in an insulator, and are formed in a dendritic or butterfly-like manner in the direction of the electric field, with protrusions on the interface of the insulator, minute voids, and foreign matter contained in the insulating layer as the nucleus. This is a form of deterioration that progresses in a tie-like manner. Microscopically, this is observed as a collection of water voids. However, in order to understand insulation deterioration caused by water trees on levers and prevent insulation breakdown of cables, water tree deterioration diagnostic tests have been conducted using characteristic items such as insulation resistance, DC leakage current, and dielectric loss angle (tanδ). Recently, the reverse absorption current method and residual voltage method have been developed to focus on the increase in residual electric field due to the development of water trees, or the decrease in insulation resistance due to water tree deterioration. New water tree diagnostic methods such as the potential decay method and the DC transient current method are being proposed one after another. However, these new and old diagnostic test methods each have advantages and disadvantages in terms of accuracy and field applicability, and have not yet achieved sufficient reliability.

合繊縁体中の残留電荷に基づく直流放出電流あるいは放
出電荷量を劣化判定の指標とする従来の診断方法につい
て説明する。水トリーが発生したケーブルと水トリーが
ない健全なケーブルに直流電圧を印加した後、ケーブル
の電極間を短絡して放電電流の時間特性を測定すると、
第1図に示すように水トリーのある劣化ケーブルは健全
なケーブルに比べ減衰時間の長い電流が観測される。こ
れは直流電圧印加時に電気分極現象によって生じた電荷
が水トリー劣化部に蓄積(残留)し、これが放電時の減
衰時間(緩和時間)の長い電流として観測されるものと
考えられる。前述の逆吸収電流法はこの放電電流を放電
開始後3秒から30秒間測定し、その間の電流の積分量
Qをケーブルの静電容量Cで除した値Q/Cを劣化判定
量としたものである。しかしながらポリエチレンの固有
抵抗は非常に太きく1OI6Ω−1以上であるため、こ
の方法で測定される残留電荷IQは水トリー劣化部の蓄
積電荷量の一部と考えられ、測定後もその多くは絶縁体
に残留しているものと予想される。従って水トリー劣化
部の蓄積電荷をすべて放出して測定できれば、水トリー
劣化の度合を高い測定確度で診断出来る可能性がある。
A conventional diagnostic method using the DC emission current or the amount of emission charge based on the residual charge in the synthetic fiber edge as an index for determining deterioration will be described. After applying a DC voltage to a cable with water trees and a healthy cable without water trees, short-circuit the cable electrodes and measure the time characteristics of the discharge current.
As shown in Figure 1, a deteriorated cable with a water tree produces a current that takes a longer time to decay than a healthy cable. This is thought to be because charges generated by an electric polarization phenomenon when DC voltage is applied accumulate (remain) in the water tree degraded area, and this is observed as a current with a long decay time (relaxation time) during discharge. In the above-mentioned reverse absorption current method, this discharge current is measured for 3 to 30 seconds after the start of discharge, and the value Q/C obtained by dividing the integral amount Q of the current by the capacitance C of the cable during that time is used as the deterioration judgment amount. It is. However, since the specific resistance of polyethylene is very large, 1OI6Ω-1 or more, the residual charge IQ measured by this method is considered to be a part of the accumulated charge in the water tree deteriorated area, and even after measurement, most of the residual charge IQ remains in the insulation. It is expected that it remains in the body. Therefore, if all the accumulated charges in the water tree deteriorated portion can be released and measured, there is a possibility that the degree of water tree deterioration can be diagnosed with high measurement accuracy.

しかしこのためには蓄積電荷を短時間に外部に放出させ
る必要があり、一般には電気、光2機械的衝撃などの外
部エネルギーを絶縁体に加えて電荷を放出あるいは消滅
させる方法が知られているが、未だこの問題を解決する
に至っていない。
However, in order to do this, it is necessary to release the accumulated charge to the outside in a short time, and a commonly known method is to apply external energy such as electricity, light, or mechanical shock to the insulator to release or annihilate the charge. However, this problem has not yet been resolved.

〔発明の目的と特徴〕[Purpose and characteristics of the invention]

本発明は上記のようなケーブルの絶縁体中の残留電荷に
基づく直流放出電流あるいは放出電荷量を劣化判定の指
標とする従来方法を改良して、その判定確度の向上を図
ったもので、残留電荷の放出に当って外部エネルギーと
して交流電圧を印加することによって、残留電荷の放出
を充分にかつ短時間に簡単に行いうるようにして、高確
度の絶縁劣化診断法を実現することを特徴とするもので
ある。次に図面を用いてその実施例を詳細に説明する。
The present invention aims to improve the accuracy of the determination by improving the conventional method that uses the DC discharge current or the amount of discharged charge based on the residual charge in the cable insulation as an index for determining deterioration. The present invention is characterized in that by applying an alternating current voltage as external energy when releasing the charge, the residual charge can be easily released sufficiently and in a short time, thereby realizing a highly accurate method for diagnosing insulation deterioration. It is something to do. Next, the embodiment will be described in detail using the drawings.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明を実施する診断測定回路側図で、これに
よってその測定法を次に説明する。先づスイッチ(3)
を接地し、続いてスイッチ(2)を直流電源側に入れ、
供試ケーブル(1)に直流電圧を印加する。
FIG. 2 is a side view of a diagnostic measurement circuit implementing the present invention, with reference to which the measurement method will now be explained. First switch (3)
ground, then turn on switch (2) to the DC power supply side,
Apply DC voltage to the test cable (1).

直流電圧は6KV級のケーブルの場合には10〜20K
V、印加時間は10分が適当である。次にスイッチ(2
)を接地側に入れ緩和時間の短い残留電荷(外部エネル
ギーなしで流出する電荷)を予め放電する。放電時間は
1分が適当である。次いでスイッチ(2)を交流電源側
すなわち試験変圧器(5)側に切換えると共にスイッチ
(3)を開き、続いてスライド変圧器(6)を調整して
零電圧から最高印加電圧(6KV級の場合5.6KV)
まで電圧を一定速度で昇圧する。電圧の上昇速度は0.
5KV/秒程度が適当である。交流電圧の上昇に伴い供
試ケーブルに充電電流が流れ始め、これに重畳して直流
微小電流が流れる。これを検出抵抗(7)で検出し、低
域p波器(8)でその交流骨を除去してX−Yレコーダ
(9)のY端子に導入する。
DC voltage is 10-20K for 6KV class cable.
V and an appropriate application time of 10 minutes. Next, switch (2
) to the ground side to pre-discharge residual charges with short relaxation times (charges that flow out without external energy). A suitable discharge time is 1 minute. Next, switch the switch (2) to the AC power supply side, that is, the test transformer (5) side, open the switch (3), and then adjust the slide transformer (6) from zero voltage to the maximum applied voltage (for 6KV class). 5.6KV)
The voltage is increased at a constant rate until The rate of increase in voltage is 0.
Approximately 5KV/sec is appropriate. As the AC voltage rises, a charging current begins to flow through the test cable, and superimposed on this, a small DC current flows. This is detected by a detection resistor (7), and the AC bone is removed by a low-frequency p-wave device (8) and introduced into the Y terminal of an X-Y recorder (9).

一方試験用変圧器(5)の3次電圧を交流トランスジュ
ーサQ(11を通してX−YレコーダのX軸端子に印加
する。変圧器(5)の出力電圧をスライド変圧器(6)
の調整によって零電圧から最高電圧まで上昇させ、さら
にそれを零電圧まで降下させると、記録紙上には例えば
第3図に示すような関係曲線が画かれる。また第1表は
4種類の6KV級XLPEケーブルについて測定した本
発明による交流電界放出電流(最大値を示す)と、従来
の水トリー劣化診断法による結果を比較して示したもの
で、第3図における供試ケーブル11h3.11h4は
第1表のそれと同一のものである。第3図の試験例が示
す結果から明らかなように、絶縁体中の残留電荷は交流
電界によって短時間内に容易にかつ確実に放出されるこ
とがわかる。また第1表から従来の診断法と本発明方法
との対比がよく示されている。
On the other hand, the tertiary voltage of the test transformer (5) is applied to the X-axis terminal of the X-Y recorder through the AC transducer Q (11).The output voltage of the transformer (5) is applied to the slide transformer (6).
When the voltage is increased from zero voltage to the maximum voltage by adjusting the voltage and then lowered to zero voltage, a relationship curve as shown in FIG. 3, for example, is drawn on the recording paper. In addition, Table 1 compares the AC field emission current (indicates the maximum value) according to the present invention measured for four types of 6KV class XLPE cables with the results obtained using the conventional water tree deterioration diagnosis method. The test cables 11h3 and 11h4 in the figure are the same as those in Table 1. As is clear from the results shown in the test example of FIG. 3, it can be seen that the residual charge in the insulator is easily and reliably released within a short time by the alternating current electric field. Table 1 also clearly shows the comparison between the conventional diagnostic method and the method of the present invention.

第  1  表 〔発明の効果〕 以上の説明から明らかなように本発明方法によるときは
、(11水トリー劣化が高精度で短時間に簡単に診断で
きる。(2) tanδ特性のようなケーブルの長さ効
果(ケーブル長による特性値の低減)がない。(3)絶
縁体中間層に微小ボイドなどを核として発生進展するボ
ウタイ状水トリー劣化が診断できるもので、水トリー劣
化診断の信頼性が向上し、これよによってXLPEケー
ブルの絶縁破壊の未然防止に寄与するところ大なるもの
がある。
Table 1 [Effects of the Invention] As is clear from the above explanation, when the method of the present invention is used, (11) water tree deterioration can be easily diagnosed in a short time with high accuracy. There is no length effect (reduction in characteristic values due to cable length).(3) It can diagnose bowtie-like water tree deterioration, which occurs and progresses with microvoids in the intermediate layer of the insulator as a core, increasing the reliability of water tree deterioration diagnosis. This greatly contributes to the prevention of dielectric breakdown of XLPE cables.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は健全ケーブルの心線と表被間に直流電圧を印加
した後ケーブルの両極間を短絡した場合の放電電流の時
間特性例図、第2図は本発明を実施する診断測定回路例
図、第3図は本発明方法によって測定された放出電流と
交流電圧の関係特性別図である。 (1)・・・供試ケーブル、+2)、 (3)・・・ス
イッチ、(4)・・・直流電源、(5)・・・試験用変
圧器、(6)・・・スライド変圧器、(7)・・・検出
抵抗、(8)・・・低域p波器、(9)・・・X−Yレ
コーダ、Ql・・・交流電圧トランスジューサ。
Fig. 1 is an example of the time characteristic of discharge current when the cable is short-circuited after applying a DC voltage between the core wire and the outer sheath of a sound cable, and Fig. 2 is an example of a diagnostic measurement circuit implementing the present invention. 3 are graphs showing the relationship between emission current and AC voltage measured by the method of the present invention. (1)...Test cable, +2), (3)...Switch, (4)...DC power supply, (5)...Test transformer, (6)...Slide transformer , (7)...Detection resistor, (8)...Low frequency p wave device, (9)...XY recorder, Ql...AC voltage transducer.

Claims (1)

【特許請求の範囲】[Claims] (1)供試ケーブルの心線と外被との間に直流電圧を印
加し、所定時間(10分程度)後接地放電を1分間行い
、次に交流電圧を印加し、その充電電流の直流分の最大
値あるいは時間積分量(放出電荷)を測定することによ
って、水トリーによる絶縁劣化程度を判定することを特
徴とする架橋ポリエチレン(XLPE)電力ケーブルの
絶縁劣化診断方法。
(1) Apply a DC voltage between the core wire and the jacket of the test cable, perform a ground discharge for 1 minute after a predetermined time (about 10 minutes), then apply an AC voltage, and apply the DC voltage of the charging current. A method for diagnosing insulation deterioration of a cross-linked polyethylene (XLPE) power cable, the method comprising determining the degree of insulation deterioration due to water trees by measuring the maximum value of minutes or the time-integrated amount (emitted charge).
JP60151329A 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable Granted JPS6214072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151329A JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151329A JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Publications (2)

Publication Number Publication Date
JPS6214072A true JPS6214072A (en) 1987-01-22
JPH0528350B2 JPH0528350B2 (en) 1993-04-26

Family

ID=15516217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151329A Granted JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Country Status (1)

Country Link
JP (1) JPS6214072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373238A (en) * 1989-08-11 1991-03-28 Seiko Instr Inc Automatic assembling system
JP2010151576A (en) * 2008-12-25 2010-07-08 Chugoku Electric Power Co Inc:The Insulation diagnostic system
CN105425127A (en) * 2015-12-16 2016-03-23 国家电网公司 Analytical calculation method for creepage trace on surface of organic material insulator
CN114089108A (en) * 2021-11-17 2022-02-25 广东电网有限责任公司广州供电局 Cable sheath defect identification method, device, equipment and readable storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373238A (en) * 1989-08-11 1991-03-28 Seiko Instr Inc Automatic assembling system
JP2010151576A (en) * 2008-12-25 2010-07-08 Chugoku Electric Power Co Inc:The Insulation diagnostic system
CN105425127A (en) * 2015-12-16 2016-03-23 国家电网公司 Analytical calculation method for creepage trace on surface of organic material insulator
CN114089108A (en) * 2021-11-17 2022-02-25 广东电网有限责任公司广州供电局 Cable sheath defect identification method, device, equipment and readable storage medium
CN114089108B (en) * 2021-11-17 2022-08-02 广东电网有限责任公司广州供电局 Cable sheath defect identification method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JPH0528350B2 (en) 1993-04-26

Similar Documents

Publication Publication Date Title
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
Ildstad et al. Relation between return voltage and other methods for measurements of dielectric response
Nyamupangedengu et al. Partial discharge spectral response to variations in the supply voltage frequency
JPS6214072A (en) Analysis of deterioration in insulation of crosslinked polyethylene power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
Grzybowski et al. Electrical breakdown characteristics of the XLPE cables under AC, DC and pulsating voltages
JPS6331747B2 (en)
He et al. Dynamic Behavior and Residence Characteristics of Space Charge in Oil-Paper Insulation Under Polarity–Reversal Electric Field
Morsalin et al. Influence of cavity geometry on partial discharge measurement at very low frequency
Tanaka et al. Charge trapping in interfaces of laminated PE/EVA dielectrics
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
JP3050613B2 (en) Cable insulation deterioration detection method
JP2612366B2 (en) Diagnosis method for insulation deterioration of power cable
JP3629424B2 (en) CV cable insulation diagnosis method
US7057393B2 (en) System and method for measuring the dielectric strength of a fluid
JPH1048284A (en) Method for diagnosing insulation deterioration of cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP2562490B2 (en) Insulation performance test method for plastic insulated cables
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JP2000074980A (en) Method for diagnosing insulation deterioration of power cable
Johansson et al. Wire-plane electrode system for electrical tree initiation exposed to AC and DC voltage stress
Grzybowski et al. Electrical breakdown strength of 5 kV imperfect XLPE cable after combined AC-DC excitation
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JPH11166955A (en) Method for diagnosing deterioration of cable

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term