JPH0528350B2 - - Google Patents

Info

Publication number
JPH0528350B2
JPH0528350B2 JP60151329A JP15132985A JPH0528350B2 JP H0528350 B2 JPH0528350 B2 JP H0528350B2 JP 60151329 A JP60151329 A JP 60151329A JP 15132985 A JP15132985 A JP 15132985A JP H0528350 B2 JPH0528350 B2 JP H0528350B2
Authority
JP
Japan
Prior art keywords
voltage
cable
deterioration
water tree
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60151329A
Other languages
Japanese (ja)
Other versions
JPS6214072A (en
Inventor
Yasuyuki Ikeda
Toshikatsu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP60151329A priority Critical patent/JPS6214072A/en
Publication of JPS6214072A publication Critical patent/JPS6214072A/en
Publication of JPH0528350B2 publication Critical patent/JPH0528350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の属する技術分野) 本発明は6KV〜30KV級の配電用架橋ポリエチ
レン(XLPE)ケーブルの絶縁劣化診断方法に関
するのものである。 〔従来技術およびその問題点〕 XLPEケーブルは従来の油浸紙ケーブルに比較
して誘電特性がすぐれ、布設および保守管理が容
易なことから、現在では6KV級から275KV級ま
でのケーブル線路で実用されている。しかし
XLPEケーブルは浸水環境下(管路浸水、海底ケ
ーブルなど)で長年月使用した場合、絶縁体中に
水が浸透し、これによつて水トリーと称する絶縁
劣化が生じる。この水トリーは使用と共に成長、
進展してケーブルの絶縁耐力を低下させ、最終的
にはケーブルを絶縁破壊に至らしめる。このため
現在、水トリー劣化の抑止あるいは水トリー劣化
診断の問題は絶縁研究分野の重要課題となつてい
る。 水トリーは絶縁体中の局所的急峻電界と水分の
相互作用により発生するもので、絶縁体界面の突
起や絶縁層に含有した微小ボイド(空隙)および
異物を核として電界方向に樹枝状あるいは蝶ネク
タイ状に進展していく劣化形態である。これは微
視的には水ボイドの集合として観察される。しか
してこの水トリーによる絶縁劣化を把握してケー
ブルの絶縁破壊を未然に防止するために、従来よ
り絶縁抵抗、直流漏れ電流、誘電損失角(tanδ)
などの特性項目による水トリー劣化診断試験が行
われており、また最近では水トリーの進展に伴う
残留電荷の増大に着目して開発された逆吸収電流
法や残留電圧法あるいは水トリー劣化に伴う絶縁
抵抗の低下に着目して開発された電位減衰法や直
流過度電流法などの新しい水トリー診断法が次々
に提案されている。しかしこれらの新旧診断試験
法は精度、現場適用性の面でそれぞれ一長一短が
あり、まだ充分な信頼性を得るに至つていない。 今絶縁体中の残留電荷に基づく直流放出電流あ
るいは放出電荷量を劣化判定の指標とする従来の
診断方法について説明する。水トリーが発生した
ケーブルと水トリーがない健全なケーブルに直流
電圧を印加した後、ケーブルの電極間を短絡して
放電電流の時間特性を測定すると、第1図に示す
ように水トリーのある劣化ケーブルは健全なケー
ブルに比べ減衰時間の長い電流が観測される。こ
れは直流電圧印加時に電気分極現象によつて生じ
た電荷が水トリー劣化部に蓄積(残留)し、これ
が放電時の減衰時間(緩和時間)の長い電流とし
て観測されるものと考えられる。前述の逆吸収電
流法はこの放電電流を放電開始後3秒から30秒間
測定し、その間の電流 の積分量Qをケーブルの静電容量Cで除した値
Q/Cを劣化判定量としたものである。しかしな
がらポリエチレンの固有抵抗は非常に大きく
1016Ω−cm以上であるため、この方法で測定され
る残留電荷量Qは水トリー劣化部の蓄積電荷量の
一部と考えられ、測定後もその多くは絶縁体に残
留しているものと予想される。従つて水トリー劣
化部の蓄積電荷をすべて放出して測定できれば、
水トリー劣化の度合を高い判定確度で診断出来る
可能性がある。しかしこのためには蓄積電荷を短
時間に外部に放出させる必要があり、一般には電
気、光、機械的衝撃などの外部エネルギーを絶縁
体に加えて電荷を放出あるいは消滅させる方法が
知られているが、未だこの問題を解決するに至つ
ていない。 〔発明の目的と特徴〕 本発明は上記のようなケーブルの絶縁体中の残
留電荷に基づく直流放出電流あるいは放出電荷量
を劣化判定の指標とする従来方法を改良して、そ
の判定確度の向上を図つたもので、残留電荷の放
出に当つて外部エネルギーとして交流電圧を印加
することによつて、残留電荷の放出を充分にかつ
短時間に簡単に行いうるようにして、高確度の絶
縁劣化診断法を実現することを特徴とするもので
ある。次に図面を用いてその実施例を詳細に説明
する。 〔発明の実施例〕 第2図は本発明を実施する診断測定回路例図
で、これによつてその測定法を次に説明する。先
づスイツチ3を接地し、続いてスイツチ2を直流
電源側に入れ、供試ケーブル1に直流電圧を印加
する。直流電圧は6KV級のケーブルの場合には
10〜20KV、印加時間は10分が適当である。次に
スイツチ2を接地側に入れ緩和時間の短い残留電
荷(外部エネルギーなしで流出する電荷)を予め
放電する。放電時間は1分が適当である。次いで
スイツチ2を交流電源側すなわち試験変圧器5側
に切換えると共にスイツチ3を開き、続いてスラ
イド変圧器6を調整して零電圧から最高印加電圧
(6KV級の場合6.6KV)まで電圧を一定速度で昇
圧する。電圧の上昇速度は0.5KV/秒程度が適当
である。交流電圧の上昇に伴い供試ケーブルに充
電電流が流れ始め、これに重畳して直流微小電流
が流れる。これを検出抵抗7で検出し、低域波
器8でその交流分を除去してX−Yレコーダ9の
Y端子に導入する。一方試験用変圧器5の3次電
圧を交流トランスジユーサ10を通してX−Yレ
コーダのX軸端子に印加する変圧器5の出力電圧
をスライド変圧器6の調整によつて零電圧から最
高電圧まで上昇させ、さらにそれを零電圧まで降
下させると、記録紙上には例えば第3図に示すよ
うな関係曲線が画かれる。また第1表は4種類の
6KV級XLPEケーブルについて測定した本発明に
よる交流電界放出電流(最大値を示す)と、従来
の水トリー劣化診断法による結果を比較して示し
たもので、第3図における供試ケーブルNo.3、No.
4は第1表のそれと同一のものである。第3図の
試験例が示す結果から明らかなように、絶縁体中
の残留電荷は交流電界によつて短時間内に容易に
かつ確実に放出されることがわかる。また第1表
から従来の診断法と本発明方法との対比がよく示
されている。
(Technical field to which the invention pertains) The present invention relates to a method for diagnosing insulation deterioration of 6KV to 30KV class cross-linked polyethylene (XLPE) cables for power distribution. [Prior art and its problems] XLPE cables have superior dielectric properties compared to conventional oil-impregnated paper cables, and are easier to install and maintain, so they are currently used in cable lines from 6KV class to 275KV class. ing. but
When XLPE cables are used for many years in a flooded environment (flooded pipes, submarine cables, etc.), water penetrates into the insulation, which causes insulation deterioration called water treeing. This water tree grows with use,
This progresses and reduces the dielectric strength of the cable, eventually leading to dielectric breakdown of the cable. For this reason, the problem of preventing water tree deterioration or diagnosing water tree deterioration is currently an important issue in the field of insulation research. Water trees are generated due to the interaction between water and a localized steep electric field in an insulator, and are formed in a dendritic or butterfly-like manner in the direction of the electric field, with protrusions on the interface of the insulator, minute voids, and foreign matter contained in the insulating layer as the nucleus. This is a form of deterioration that progresses in a tie-like manner. Microscopically, this is observed as a collection of water voids. However, in order to understand the insulation deterioration caused by the water tree of the lever and prevent insulation breakdown of the cable, we have traditionally measured insulation resistance, DC leakage current, and dielectric loss angle (tanδ).
Water tree deterioration diagnostic tests have been carried out using characteristic items such as water tree deterioration. New water tree diagnostic methods such as the potential attenuation method and the DC transient current method, which were developed with a focus on decreasing insulation resistance, are being proposed one after another. However, these new and old diagnostic test methods each have advantages and disadvantages in terms of accuracy and field applicability, and have not yet achieved sufficient reliability. A conventional diagnostic method that uses the DC emission current or the amount of emission charge based on the residual charge in the insulator as an index for determining deterioration will now be described. After applying a DC voltage to a cable with water trees and a healthy cable with no water trees, we shorted the cable electrodes and measured the time characteristics of the discharge current. As shown in Figure 1, water trees were present. A current with a longer decay time is observed in a deteriorated cable than in a healthy cable. This is thought to be due to the fact that charges generated by the electric polarization phenomenon when DC voltage is applied accumulate (remain) in the water tree degraded area, and this is observed as a current with a long decay time (relaxation time) during discharge. In the reverse absorption current method described above, this discharge current is measured for 3 to 30 seconds after the start of discharge, and the value Q/C obtained by dividing the integral amount Q of the current by the capacitance C of the cable during that time is used as the deterioration judgment amount. It is. However, the specific resistance of polyethylene is very high.
Since it is more than 10 16 Ω-cm, the residual charge Q measured by this method is considered to be part of the accumulated charge in the water tree deteriorated part, and most of it remains in the insulator even after measurement. It is expected to be. Therefore, if all the accumulated charge in the water tree deteriorated part can be released and measured,
There is a possibility that the degree of water tree deterioration can be diagnosed with high judgment accuracy. However, in order to do this, it is necessary to release the accumulated charge to the outside in a short time, and a commonly known method is to apply external energy such as electricity, light, or mechanical shock to the insulator to release or annihilate the charge. However, this problem has not yet been resolved. [Objects and Features of the Invention] The present invention improves the conventional method in which the DC emission current or the amount of discharged charge based on the residual charge in the cable insulator is used as an indicator for deterioration judgment as described above, and improves the judgment accuracy. By applying an alternating current voltage as external energy to release the residual charge, the residual charge can be easily released sufficiently and in a short time, thereby preventing insulation deterioration with high accuracy. It is characterized by realizing a diagnostic method. Next, the embodiment will be described in detail using the drawings. [Embodiment of the Invention] FIG. 2 is a diagram showing an example of a diagnostic measurement circuit implementing the present invention, and the measurement method thereof will be explained below. First, switch 3 is grounded, then switch 2 is turned on to the DC power supply side, and DC voltage is applied to the cable 1 under test. For 6KV class cable, the DC voltage is
Appropriate voltage is 10-20KV and application time is 10 minutes. Next, switch 2 is set to the ground side to preliminarily discharge residual charges with short relaxation times (charges that flow out without external energy). A suitable discharge time is 1 minute. Next, switch 2 is switched to the AC power supply side, that is, the test transformer 5 side, and switch 3 is opened. Then, slide transformer 6 is adjusted to increase the voltage at a constant speed from zero voltage to the maximum applied voltage (6.6KV for 6KV class). boost the pressure. Appropriate rate of increase in voltage is about 0.5 KV/sec. As the AC voltage increases, a charging current begins to flow through the test cable, and superimposed on this, a small DC current flows. This is detected by a detection resistor 7, and its alternating current component is removed by a low frequency converter 8 and introduced into the Y terminal of an XY recorder 9. On the other hand, the tertiary voltage of the test transformer 5 is applied to the X-axis terminal of the X-Y recorder through the AC transducer 10.The output voltage of the transformer 5 is adjusted from zero voltage to the maximum voltage by adjusting the slide transformer 6. When the voltage is increased and then further lowered to zero voltage, a relationship curve as shown in FIG. 3, for example, is drawn on the recording paper. Table 1 also shows four types of
This is a comparison of the AC field emission current (indicating the maximum value) according to the present invention measured on a 6KV class XLPE cable and the results obtained by the conventional water tree deterioration diagnosis method. Test cable No. 3 in Figure 3 , No.
4 is the same as that in Table 1. As is clear from the results shown in the test example of FIG. 3, it can be seen that the residual charge in the insulator is easily and reliably released within a short time by the alternating current electric field. Table 1 also clearly shows the comparison between the conventional diagnostic method and the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明方法によ
るときは、(1)水トリー劣化が高精度で短時間に簡
単に診断できる。(2)tanδ特性のようなケーブルの
長さ効果(ケーブル長による特性値の低減)がな
い。(3)絶縁体中間層に微小ボイドなどを核として
発生進展するボウタイ状水トリー劣化が診断でき
るもので、水トリー劣化診断の信頼性が向上し、
これよによつてXLPEケーブルの絶縁破壊の未然
防止に寄与するところ大なるものがある。
As is clear from the above explanation, when using the method of the present invention, (1) water tree deterioration can be easily diagnosed with high accuracy and in a short time; (2) There is no cable length effect (reduction in characteristic values due to cable length) like in tanδ characteristics. (3) It is capable of diagnosing bowtie-like water tree deterioration that occurs and progresses with microvoids etc. as nuclei in the insulator intermediate layer, improving the reliability of water tree deterioration diagnosis.
This greatly contributes to the prevention of insulation breakdown of XLPE cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は健全ケーブルの心線と外被間に直流電
圧を印加した後ケーブルの両極間を短絡した場合
の放電電流の時間特性例図、第2図は本発明を実
施する診断測定回路例図、第3図は本発明方法に
よつて測定された放出電流と交流電圧の関係特性
例図である。 1……供試ケーブル、2,3……スイツチ、4
……直流電源、5……試験用変圧器、6……スラ
イド変圧器、7……検出抵抗、8……低域波
器、9……X−Yレコーダ、10……交流電圧ト
ランスジユーサ。
Figure 1 is an example of the time characteristic of the discharge current when the cable is short-circuited after applying a DC voltage between the core wire and the jacket of a sound cable, and Figure 2 is an example of a diagnostic measurement circuit implementing the present invention. FIG. 3 is an example of the relationship between emission current and AC voltage measured by the method of the present invention. 1... Test cable, 2, 3... Switch, 4
...DC power supply, 5...Test transformer, 6...Slide transformer, 7...Detection resistor, 8...Low frequency device, 9...X-Y recorder, 10...AC voltage transducer .

Claims (1)

【特許請求の範囲】[Claims] 1 供試ケーブルの心線と外被との間に直流電圧
を印加し、所定時間後接地放電を1分間行い、次
に交流電圧を印加し、その充電電流の直流分の最
大値あるいは時間積分値を測定することによつ
て、水トリーによる絶縁劣化程度を判定すること
を特徴とする架橋ポリエチレン電力ケーブルの絶
縁劣化診断方法。
1 Apply a DC voltage between the core wire and the jacket of the test cable, perform a ground discharge for 1 minute after a predetermined period of time, then apply an AC voltage, and calculate the maximum value or time integral of the DC component of the charging current. A method for diagnosing insulation deterioration of a cross-linked polyethylene power cable, the method comprising determining the degree of insulation deterioration due to water tree by measuring a value.
JP60151329A 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable Granted JPS6214072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151329A JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151329A JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Publications (2)

Publication Number Publication Date
JPS6214072A JPS6214072A (en) 1987-01-22
JPH0528350B2 true JPH0528350B2 (en) 1993-04-26

Family

ID=15516217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151329A Granted JPS6214072A (en) 1985-07-11 1985-07-11 Analysis of deterioration in insulation of crosslinked polyethylene power cable

Country Status (1)

Country Link
JP (1) JPS6214072A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373238A (en) * 1989-08-11 1991-03-28 Seiko Instr Inc Automatic assembling system
JP5349036B2 (en) * 2008-12-25 2013-11-20 中国電力株式会社 Insulation diagnostic system
CN105425127B (en) * 2015-12-16 2017-12-15 国家电网公司 A kind of organic material insulating part surface leakage plays the analysis calculation method of trace
CN114089108B (en) * 2021-11-17 2022-08-02 广东电网有限责任公司广州供电局 Cable sheath defect identification method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JPS6214072A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
CN112881806B (en) Medium-voltage cable insulation online monitoring method based on impulse impedance spectroscopy
Ildstad et al. Relation between return voltage and other methods for measurements of dielectric response
US5276401A (en) Method for diagnosing an insulation deterioration of an electric apparatus
JPH0528350B2 (en)
Morshuis et al. Partial discharge detection using oscillating voltage at different frequencies
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
Tanaka et al. Charge trapping in interfaces of laminated PE/EVA dielectrics
JPS6331747B2 (en)
Grzybowski et al. Electrical breakdown characteristics of the XLPE cables under AC, DC and pulsating voltages
JP3256441B2 (en) Diagnosis method for cable insulation deterioration
JP3629424B2 (en) CV cable insulation diagnosis method
JP2612366B2 (en) Diagnosis method for insulation deterioration of power cable
JP3050613B2 (en) Cable insulation deterioration detection method
Linde et al. Partial discharge behavior of epoxy-mica insulation system under superimposed AC and DC voltage stress
JP2562490B2 (en) Insulation performance test method for plastic insulated cables
Katakai Design of XLPE cables and soundness confirmation methods to extra high voltage XLPE cables
Starr Detection of corona discharges in lumped circuit specimens
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPH11166955A (en) Method for diagnosing deterioration of cable
WO1985001581A1 (en) Method and device for detecting and evaluating the clamping of the bars into the stator notches of a large alternating current rotating machine under load
JP2612648B2 (en) Deterioration judgment method for insulation of three-phase power cable
JPS63139261A (en) Method for judging insulation deterioration of power cable present under live wire
JPH0565112B2 (en)
Grzybowski et al. Electrical breakdown strength of 5 kV imperfect XLPE cable after combined AC-DC excitation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term