JP2010151576A - Insulation diagnostic system - Google Patents

Insulation diagnostic system Download PDF

Info

Publication number
JP2010151576A
JP2010151576A JP2008329211A JP2008329211A JP2010151576A JP 2010151576 A JP2010151576 A JP 2010151576A JP 2008329211 A JP2008329211 A JP 2008329211A JP 2008329211 A JP2008329211 A JP 2008329211A JP 2010151576 A JP2010151576 A JP 2010151576A
Authority
JP
Japan
Prior art keywords
power
insulation
diagnostic
diagnosis
insulation diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329211A
Other languages
Japanese (ja)
Other versions
JP5349036B2 (en
Inventor
Satoshi Kimura
智 木村
Hisaji Kameda
久司 亀田
Kunitaka Fujiwara
邦高 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008329211A priority Critical patent/JP5349036B2/en
Publication of JP2010151576A publication Critical patent/JP2010151576A/en
Application granted granted Critical
Publication of JP5349036B2 publication Critical patent/JP5349036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation diagnostic system for performing insulation diagnosis of power equipment without separately preparing a direct current power supply or an alternate current power supply for the insulation diagnosis. <P>SOLUTION: The insulation diagnostic system is a system for performing insulation diagnosis of a lightning arrester 3 and a power cable 4 by stopping a power system, uses a capacitor device for power factor improvement installed in the power system as a diagnosing direct current power supply 10, and supplies direct current power to the lightning arrester 3 and the power cable 4 from the direct current power supply 10. An insulation diagnostic device 30 performs insulation diagnosis of the lightning arrester 3 and the power cable 4, based on a first direct current voltage value V<SB>1</SB>and a first direct current value I<SB>1</SB>measured at the direct current power supply 10, and a second and third direct current voltage values V<SB>2</SB>and V<SB>3</SB>and a second and third direct current values I<SB>2</SB>and I<SB>3</SB>measured at the lightning arrester 3 and the power cable 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁診断システムに関し、特に、電力系統を停電させて電力用機器の絶縁診断を行うのに好適な絶縁診断システムに関する。   The present invention relates to an insulation diagnosis system, and more particularly, to an insulation diagnosis system suitable for performing an insulation diagnosis of a power device by causing a power failure in a power system.

従来、電力系統を停電させて電力ケーブルの絶縁診断(絶縁劣化判定)を行う方法としては、直流電源から直流電圧を電力ケーブルに印加して電荷を充電したのちに直流電源を開放したときの放電時間を測定することにより電力ケーブルの絶縁劣化を診断する電位減衰法がある。
たとえば、下記の特許文献1に開示された絶縁劣化判定装置では、被測定ケーブルの導体および遮蔽間に直流高圧発生装置によって高圧直流電圧を充電し、この充電電圧が所定の電圧値に達したときに高圧スイッチによって充電回路を開放したのちに、被測定ケーブルの残留電荷を静電電圧計で測定して、高圧スイッチを開放した時点から被測定ケーブルの自己放電により残留電荷が所定値に達した時点までの時間をコンピュータによって測定するとともに、この時間を予め設定した時間と比較することにより被測定ケーブルの絶縁の良否を判定している。
Conventionally, as a method of performing power cable insulation diagnosis (insulation deterioration judgment) by interrupting the power system, the DC power supply is charged by applying a DC voltage from the DC power supply to the power cable and then discharging the DC power supply. There is a potential decay method that diagnoses power cable insulation degradation by measuring time.
For example, in the insulation degradation determination device disclosed in Patent Document 1 below, when a high-voltage DC voltage is charged by a DC high-voltage generator between the conductor and shield of the cable to be measured, and this charging voltage reaches a predetermined voltage value After the charging circuit is opened by the high-voltage switch, the residual charge of the cable under measurement is measured with an electrostatic voltmeter, and when the residual charge reaches the specified value due to self-discharge of the cable under test after the high-voltage switch is opened. Is measured by a computer, and the quality of insulation of the cable under test is determined by comparing this time with a preset time.

また、CVケーブル(架橋ポリエチレン絶縁電力ケーブル)の水トリー劣化に対する診断法として、直流課電によって水トリー内部に蓄積された電荷を交流課電によって回復させる過程で流れる直流成分をCVケーブルの劣化を示す信号として検出する残留電荷法がある。
たとえば、下記の特許文献2に開示された電力ケーブルの絶縁劣化診断方法では、絶縁劣化診断の信頼性を向上させるために、診断対象となるCVケーブルと接地とを含む閉回路内で生じる直流信号を測定器により測定し、CVケーブルと実質的に同一の条件で敷設されている他のCVケーブルと接地とを含む閉回路内で生じる直流信号を別の測定器により測定し、これら両測定器により測定した直流信号同士の差動演算を差動演算器により行うことにより前者の測定器が測定した直流信号に含まれる直流ノイズ成分を除去し、この結果得られた直流信号を評価することにより絶縁劣化診断を行うようにしている。
In addition, as a diagnostic method for water tree deterioration of CV cable (cross-linked polyethylene insulated power cable), the DC component flowing in the process of recovering the electric charge accumulated in the water tree by DC charging by AC charging is applied to the deterioration of CV cable. There is a residual charge method to detect as a signal to indicate.
For example, in the insulation degradation diagnosis method for power cables disclosed in Patent Document 2 below, in order to improve the reliability of insulation degradation diagnosis, a DC signal generated in a closed circuit including a CV cable to be diagnosed and grounding A DC signal generated in a closed circuit including another CV cable laid on substantially the same conditions as the CV cable and the ground is measured by another measuring instrument. By performing a differential operation between the DC signals measured by the above-mentioned differential arithmetic unit, the DC noise component contained in the DC signal measured by the former measuring device is removed, and the resulting DC signal is evaluated. Insulation deterioration diagnosis is performed.

なお、電力系統を停電させずに活線状態のままで電力用機器(電力ケーブル、避雷器、コンデンサおよび変圧器など)の絶縁劣化を診断する方法もある。
たとえば、下記の特許文献3に開示された絶縁劣化診断装置では、電力用機器のアース線にクリップオン式の電流プローブを取り付けて検出した電流位相と高圧線に分圧機などを接続して検出した供給電源の電圧位相とから静電正接(tanδ)を求めて、求めた静電正接から電力用機器の絶縁劣化を診断している。
特公平6−54342号公報 特開2003−329723号公報 特開平1−110267号公報
There is also a method of diagnosing insulation deterioration of power equipment (power cables, lightning arresters, capacitors, transformers, etc.) while keeping the power system in a live state without causing a power failure.
For example, in the insulation deterioration diagnosis device disclosed in Patent Document 3 below, the current phase detected by attaching a clip-on type current probe to the ground wire of the power device and the voltage divider connected to the high voltage wire are detected. The electrostatic tangent (tan δ) is obtained from the voltage phase of the power supply, and the insulation deterioration of the power equipment is diagnosed from the obtained electrostatic tangent.
Japanese Examined Patent Publication No. 6-54342 JP 2003-329723 A Japanese Patent Laid-Open No. 1-110267

しかしながら、電位減衰法による絶縁診断では、電力ケーブルの導体および遮蔽間に直流電圧を充電するための直流電源を別途用意する必要があるという問題がある。
また、残留電荷法による絶縁診断では、電力ケーブルを交流課電するための交流電源を別途用意する必要があるという問題がある。
However, in the insulation diagnosis by the potential attenuation method, there is a problem that it is necessary to separately prepare a DC power source for charging a DC voltage between the conductor and shield of the power cable.
In addition, in the insulation diagnosis by the residual charge method, there is a problem that it is necessary to separately prepare an AC power source for AC power application of the power cable.

本発明の目的は、絶縁診断用に直流電源や交流電源を別途用意することなく電力用機器の絶縁診断を行うことができる絶縁診断システムを提供することにある。   An object of the present invention is to provide an insulation diagnosis system capable of performing insulation diagnosis of a power device without separately preparing a DC power supply or an AC power supply for insulation diagnosis.

本発明の絶縁診断システムは、電力系統を停電させて電力用機器(3,4)の絶縁診断を行うための絶縁診断システムであって、前記電力系統に設置された電力用蓄電設備を診断用直流電源(10)として利用して該診断用直流電源から前記電力用機器に直流課電して該電力用機器の絶縁診断を行う絶縁診断手段を具備することを特徴とする。
ここで、前記絶縁診断手段が、前記診断用直流電源において測定された直流電圧値(V1)および直流電流値(I1)と、前記電力用機器において測定された他の直流電圧値(V2,V3)および他の直流電流値(I2,I3)とに基づいて、該電力用機器の絶縁診断を行う絶縁診断装置(30)を備えてもよい。
前記絶縁診断装置が、前記他の直流電圧値(V2)および前記他の直流電流値(I2)に基づいて、該他の直流電圧値が安定したときの電圧−電流特性を求め、該求めた電圧−電流特性に基づいて前記電力用機器の絶縁診断を行ってもよい。
前記絶縁診断装置が、前記診断用直流電源を前記電力系統から切り離したときの前記直流電圧値(V1)に基づいて該診断用直流電源の初期電荷量(Qa0)を測定し、該診断用直流電源から前記電力用機器に直流課電したのち前記直流電圧値(V1)が安定したときの該診断用直流電源の電荷量(Qa)および該電力用機器の電荷量(Qb)を求め、該求めた2つの電荷量の総和と前記測定した初期電荷量との差に基づいて、または、前記電力用機器への移動電荷量(Q3)を求め、該求めた移動電荷量の減衰量に基づいて、前記電力用機器の絶縁診断を行ってもよい。
また、本発明の絶縁診断システムは、電力系統を停電させて電力ケーブル(4)の絶縁診断を行うための絶縁診断システムであって、前記電力系統に設置された電力用蓄電設備を診断用直流電源(10)として利用して該診断用直流電源から前記電力ケーブルに直流課電し、該電力ケーブルを接地したのちに、該電力系統の実系統交流電源(1)を診断用交流電源として利用して該診断用交流電源から該電力ケーブルに交流課電して、該電力ケーブルの絶縁診断を行う絶縁診断手段を具備することを特徴とする。
ここで、前記絶縁診断手段が、前記交流課電の間に前記診断用交流電源から出力される交流電流の直流成分を抽出するための直流フィルタ(41)と、該直流フィルタによって抽出された前記直流成分の電流値(I4)を測定するための直流電流計(224)と、該直流電流計によって測定された前記直流成分の電流値に基づいて前記電力ケーブルの絶縁診断を行う絶縁診断装置(50)とを備えてもよい。
前記絶縁診断装置が、前記診断用直流電源から前記電力ケーブルに直流課電し、該電力ケーブルを該診断用直流電源から切り離し、該電力ケーブルを接地したのちに、前記診断用交流電源から該電力ケーブルに交流課電し、該交流課電の間に前記直流電流計によって測定された前記直流成分の電流値に基づいて該電力ケーブルの水トリー部残留電荷量(Q)を測定し、該測定された水トリー部残留電荷量に基づいて最低ライン回帰式を用いて推定交流破壊電界(E)を算出し、該算出した推定交流破壊電界に基づいて該電力ケーブルの余寿命を評価して絶縁診断を行ってもよい。
The insulation diagnosis system of the present invention is an insulation diagnosis system for performing an insulation diagnosis of a power device (3, 4) by causing a power failure of the power system, and for diagnosing a power storage facility installed in the power system. Insulation diagnostic means for performing an insulation diagnosis of the power device by applying a direct current to the power device from the diagnostic DC power source is used as a DC power source (10).
Here, the insulation diagnosis means is configured such that the DC voltage value (V 1 ) and DC current value (I 1 ) measured in the diagnostic DC power source and other DC voltage values (V) measured in the power device. 2 , V 3 ) and other DC current values (I 2 , I 3 ), an insulation diagnosis device (30) for performing insulation diagnosis of the power equipment may be provided.
The insulation diagnostic device obtains a voltage-current characteristic when the other DC voltage value is stabilized based on the other DC voltage value (V 2 ) and the other DC current value (I 2 ), You may perform the insulation diagnosis of the said apparatus for electric power based on the calculated | required voltage-current characteristic.
The insulation diagnostic device measures an initial charge amount (Q a0 ) of the diagnostic DC power supply based on the DC voltage value (V 1 ) when the diagnostic DC power supply is disconnected from the power system, and the diagnosis use the DC power supply the DC voltage value After DC Division collector to a device for the power from (V 1) is stable the charge amount of the diagnostic DC power supply when (Q a) and the charge amount of the power equipment (Q b ) Based on the difference between the sum of the two obtained charge amounts and the measured initial charge amount, or the amount of mobile charge (Q 3 ) to the power device. An insulation diagnosis of the power device may be performed based on the amount of attenuation.
The insulation diagnosis system according to the present invention is an insulation diagnosis system for performing an insulation diagnosis of a power cable (4) by causing a power failure of the power system, and for connecting a power storage facility installed in the power system to a diagnostic DC The power cable (10) is used to apply a direct current to the power cable from the diagnostic DC power supply, and after the power cable is grounded, the actual AC power supply (1) of the power system is used as the diagnostic AC power supply. Then, an insulation diagnosis means for performing an AC diagnosis on the power cable from the diagnostic AC power source and performing an insulation diagnosis on the power cable is provided.
Here, the insulation diagnosis means includes a DC filter (41) for extracting a DC component of an AC current output from the AC power supply for diagnosis during the AC voltage application, and the DC filter extracted by the DC filter. A DC ammeter (22 4 ) for measuring the current value (I 4 ) of the DC component, and an insulation diagnosis for performing an insulation diagnosis of the power cable based on the current value of the DC component measured by the DC ammeter And a device (50).
The insulation diagnostic device applies DC power to the power cable from the diagnostic DC power supply, disconnects the power cable from the diagnostic DC power supply, and grounds the power cable. AC power is applied to the cable, and the water tree residual charge amount (Q) of the power cable is measured based on the current value of the DC component measured by the DC ammeter during the AC power application. The estimated AC breakdown electric field (E) is calculated using the minimum line regression equation based on the water tree residual charge amount, and the remaining life of the power cable is evaluated based on the calculated estimated AC breakdown electric field for insulation. A diagnosis may be made.

本発明の絶縁診断システムは、以下に示す効果を奏する。
(1)電力系統に設置された電力用蓄電設備を診断用直流電源として利用するとともに、実系統交流電源を診断用交流電源として利用するので、絶縁診断用の直流電源や交流電源を別途用意することなく電力用機器の絶縁診断を行うことができ、また、試験容量に制限がないため、電力ケーブルの恒長が長くても試験をすることができる。
(2)停電操作に併せて電力用機器の絶縁診断を行えるので、電力用機器の絶縁診断の信頼度を向上させることができる。
(3)電力系統に直流電圧計および直流電流計を設置するだけで自動的に電力用機器の絶縁診断を行うことができる。
(4)実際の実効値電圧を電力用機器に印加することができるので、正確な漏洩電流を測定することができる。
The insulation diagnosis system of the present invention has the following effects.
(1) Since the power storage equipment installed in the power system is used as a diagnostic DC power supply, and the actual AC power supply is used as a diagnostic AC power supply, a DC power supply and an AC power supply for insulation diagnosis are prepared separately. Insulation diagnosis of the power equipment can be performed without any limitation, and since there is no limit on the test capacity, the test can be performed even if the constant length of the power cable is long.
(2) Since the insulation diagnosis of the power device can be performed together with the power failure operation, the reliability of the insulation diagnosis of the power device can be improved.
(3) It is possible to automatically perform insulation diagnosis of power equipment simply by installing a DC voltmeter and a DC ammeter in the power system.
(4) Since the actual effective value voltage can be applied to the power equipment, an accurate leakage current can be measured.

上記の目的を、電力系統に設置された電力用蓄電設備を診断用直流電源として利用してこの診断用直流電源から電力用機器に直流課電して電力用機器の絶縁診断を行うことにより、また、電力系統に設置された電力用蓄電設備を診断用直流電源として利用してこの診断用直流電源から電力ケーブルに直流課電し、電力ケーブルを接地したのちに、電力系統の実系統交流電源を診断用交流電源として利用してこの診断用交流電源から電力ケーブルに交流課電して電力ケーブルの絶縁診断を行うことにより実現した。   By using the power storage equipment installed in the power system as a diagnostic DC power supply for the above purpose, the DC power is applied to the power equipment from this diagnostic DC power supply, and the insulation diagnosis of the power equipment is performed. In addition, the power storage equipment installed in the power system is used as a diagnostic DC power supply, the DC power is applied to the power cable from this diagnostic DC power supply, and after the power cable is grounded, the actual AC power supply of the power system Was used as an AC power supply for diagnosis, and AC power was applied to the power cable from the AC power supply for diagnosis, and the insulation diagnosis of the power cable was performed.

以下、本発明の絶縁診断システムの実施例について図面を参照して説明する。
まず、本発明の第1の実施例による絶縁診断システムについて、図1乃至図4を参照して説明する。
本実施例による絶縁診断システムは、電力系統に設置された電力用蓄電設備の一つである力率改善用コンデンサ装置(スタコン)を診断用直流電源として利用して、力率改善用コンデンサ装置に蓄積された大容量電荷による残留電圧を直流電圧とすることにより電力用機器の絶縁診断を行うことを特徴とする。
Embodiments of the insulation diagnosis system of the present invention will be described below with reference to the drawings.
First, an insulation diagnostic system according to a first embodiment of the present invention will be described with reference to FIGS.
The insulation diagnosis system according to the present embodiment uses a power factor correction capacitor device (stacon), which is one of the power storage facilities installed in the power system, as a DC power supply for diagnosis, so that the power factor improvement capacitor device Insulation diagnosis of power equipment is performed by using a DC voltage as a residual voltage due to accumulated large-capacity charges.

以下では、図1に示すように22kV母線から分岐された第1の送電線に診断用直流電源10(力率改善用コンデンサ装置)が設置され、22kV母線から分岐された第2の送電線に避雷器3が設置され、22kV母線から分岐された第3の送電線に電力ケーブル4(CVケーブル)が接続されている場合を例として、本実施例による絶縁診断システムについて詳細に説明する。
なお、3相電力系統では、診断用直流電源10、避雷器3および電力ケーブル4は相ごとに設けられている。
In the following, as shown in FIG. 1, a diagnostic DC power supply 10 (power factor improving capacitor device) is installed in the first power transmission line branched from the 22 kV bus, and the second power transmission line branched from the 22 kV bus is connected. The insulation diagnosis system according to the present embodiment will be described in detail by taking as an example the case where the lightning arrester 3 is installed and the power cable 4 (CV cable) is connected to the third transmission line branched from the 22 kV bus.
In the three-phase power system, the diagnostic DC power supply 10, the lightning arrester 3, and the power cable 4 are provided for each phase.

絶縁診断システムは、診断用直流電源10に内蔵された第1の直流電圧計211および第1の直流電流計221によって測定された第1の送電線の直流電圧値および直流電流値(以下、「第1の直流電圧値V1」および「第1の直流電流値I1」と称する。)と、第2の直流電圧計212および第2の電流計222によって測定された第2の送電線の直流電圧値および直流電流値(以下、「第2の直流電圧値V2」および「第2の直流電流値I2」と称する。)と、第3の電圧計213および第3の電流計223によって測定された第3の送電線(電力ケーブル4)の直流電圧値および直流電流値(以下、「第3の直流電圧値V3」および「第3の直流電流値I3」と称する。)とに基づいて、避雷器3および電力ケーブル4の絶縁診断(絶縁劣化判定)を行う絶縁診断装置30を具備する。 The insulation diagnostic system includes a DC voltage value and a DC current value (hereinafter, referred to as the first transmission line) measured by the first DC voltmeter 21 1 and the first DC ammeter 22 1 incorporated in the diagnostic DC power supply 10. (Referred to as “first DC voltage value V 1 ” and “first DC current value I 1 ”), and second transmission voltage measured by second DC voltmeter 21 2 and second ammeter 22 2 . The DC voltage value and DC current value of the electric wire (hereinafter referred to as “second DC voltage value V 2 ” and “second DC current value I 2 ”), the third voltmeter 21 3 and the third voltage The DC voltage value and DC current value (hereinafter referred to as “third DC voltage value V 3 ” and “third DC current value I 3 ”) of the third transmission line (power cable 4) measured by the ammeter 22 3 . Insulation diagnosis (insulation inferiority) of the lightning arrester 3 and the power cable 4 Comprising an insulating diagnostic apparatus 30 for determining).

なお、診断用直流電源10は、電力用コンデンサ11と並列に接続された、かつ、第1の送電線に設置された第2の遮断器22が遮断(開放)されたときに電力用コンデンサ11に蓄積されている電荷を放電するための放電回路12(直列接続されたスイッチおよび放電抵抗を含む。)を備える。そのため、放電回路12のスイッチは、常時はオンされているが、絶縁診断を行う際にはオフされる。 The diagnostic DC power supply 10 is connected to the power capacitor 11 in parallel, and when the second circuit breaker 2 2 installed in the first transmission line is cut off (opened), 11 is provided with a discharge circuit 12 (including a switch and a discharge resistor connected in series) for discharging the electric charge accumulated in 11. For this reason, the switch of the discharge circuit 12 is always turned on, but is turned off when performing insulation diagnosis.

次に、本実施例による絶縁診断システムを用いて避雷器3の絶縁診断を行ったのちに電力ケーブル4の絶縁診断を行う方法について、図2および図3に示すフローチャートを参照して説明する。   Next, a method of performing insulation diagnosis of the power cable 4 after performing insulation diagnosis of the lightning arrester 3 using the insulation diagnosis system according to the present embodiment will be described with reference to the flowcharts shown in FIGS.

診断用直流電源10の放電回路12のスイッチがオフされたのちに、第1の送電線に設置された第2の遮断器22がゼロ点近傍で遮断(以下、「ゼロ点遮断」と称する。)され、ほぼ正弦波の最大値の電圧が電力用コンデンサ11に保持される。(ステップS11)。
このとき、絶縁診断装置30は、第1の直流電圧値V1に基づいて電力用コンデンサ11の電荷量Qa(以下、「初期電荷量Qa0」と称する。)を測定する(ステップS11)。たとえば、第2の遮断器22を遮断後の第1の直流電圧値V1を17.9kVとするとともに電力用コンデンサ11の容量値Caを10μFとすると、初期電荷量Qa0は179×10-3C(=10μF×17.9kV)となる。
In after the switch of the discharge circuit 12 of the diagnostic DC power supply 10 is turned off, the second circuit breaker 2 2 blocked near the zero point (hereinafter, referred to as "zero point cutoff" installed in the first transmission line ) And the voltage of the maximum value of the sine wave is held in the power capacitor 11. (Step S11).
At this time, the insulation diagnostic device 30 measures the charge amount Q a of the power capacitor 11 (hereinafter referred to as “initial charge amount Q a0 ”) based on the first DC voltage value V 1 (step S11). . For example, if the first DC voltage value V 1 after breaking the second circuit breaker 2 2 is 17.9 kV and the capacitance value C a of the power capacitor 11 is 10 μF, the initial charge amount Q a0 is 179 × 10 −3 C (= 10 μF × 17.9 kV).

なお、遮断タイミングのずれなどで第1の直流電圧計211によって測定される第2の遮断器22の遮断後の第1の直流電圧値V1が17kV未満である場合には、放電回路12のスイッチをオンして電力用コンデンサ11を放電したのち、第2の遮断器22を投入して電力用コンデンサ11を充電したのちに放電回路12のスイッチをオフし第2の遮断器22をゼロ点遮断する動作が繰り返される(ステップS12)。 When the first DC voltage value V 1 after the interruption of the second circuit breaker 2 2 measured by the first DC voltmeter 21 1 due to the interruption of the interruption timing or the like is less than 17 kV, the discharge circuit 12 of After discharge by turning on the power capacitor 11 switches, the second circuit breaker 2 2 was put off the switch of the discharge circuit 12 to thereafter charging the power capacitor 11 second breaker 2 2 The operation of shutting off the zero point is repeated (step S12).

第1の直流電圧値V1が17kV以上であると、第2および第3の送電線にそれぞれ設置された第3および第4の遮断器23,24が遮断されて、試験対象機器である避雷器3および電力ケーブル4が停電される(ステップS13)。 When the first DC voltage value V 1 is 17 kV or more, the third and fourth circuit breakers 2 3 and 2 4 installed in the second and third transmission lines are cut off, and the test target device A certain lightning arrester 3 and the power cable 4 are blacked out (step S13).

その後、実系統交流電源1と22kV母線との間の送電線に設置された第1の遮断器21が遮断されて、22kV母線が上位系統から分離される(ステップS14)。 Thereafter, the first circuit breaker 2 1 installed in the transmission line between the actual grid AC power source 1 and 22kV bus is interrupted, 22kV bus is separated from the upper line (step S14).

その後、第2の遮断器22が投入されて診断用直流電源10が空母線に投入されたのち、第3の遮断器23が投入される(ステップS15)。 Thereafter, a second circuit breaker 2 2 DC power supply 10 for diagnosis is turned is then put into the carrier line, a third circuit breaker 2 3 is turned on (step S15).

絶縁診断装置30は、第2の直流電圧計212から入力される第2の直流電圧値V2および第2の直流電流計222から入力される第2の直流電流値I2に基づいて、第2の直流電圧値V2が安定したときの電圧−電流特性(すなわち、避雷器3の内部抵抗)を求める。絶縁診断装置30は、求めた電圧−電流特性が図4(a)に示す「正常」の範囲内に入っていれば、「避雷器3は正常である」と判定し、一方、求めた電圧−電流特性が図4(a)に示す「不良」の範囲内に入っていれば、「避雷器3は不良である」と判定する(ステップS16)。
ここでの避雷器3の静電容量は極めて小さいため無視する。
The insulation diagnostic apparatus 30 is based on the second DC voltage value V 2 input from the second DC voltmeter 21 2 and the second DC current value I 2 input from the second DC ammeter 22 2 . A voltage-current characteristic (that is, the internal resistance of the lightning arrester 3) when the second DC voltage value V2 is stabilized is obtained. The insulation diagnostic apparatus 30 determines that “the lightning arrester 3 is normal” if the obtained voltage-current characteristic is within the range of “normal” shown in FIG. If the current characteristics are within the range of “defective” shown in FIG. 4A, it is determined that “the arrester 3 is defective” (step S16).
Here, since the electrostatic capacity of the lightning arrester 3 is extremely small, it is ignored.

このようにして避雷器3の絶縁診断が終了すると、第3の遮断器23が遮断される(ステップS17)。
このとき、第1の直流電圧計211によって測定される第3の遮断器23の遮断後の第1の直流電圧値V1が17kV未満である場合には、放電回路12のスイッチをオンして電力用コンデンサ11を放電したのち、第1および第2の遮断器21,22を投入して電力用コンデンサ11を充電したのちに放電回路12のスイッチをオフし第2の遮断器22をゼロ点遮断する動作が繰り返される(ステップS18,S19)。
In this manner, when the insulation diagnosis of arrester 3 is completed, the third circuit breakers 2 3 is interrupted (step S17).
At this time, if the third shut-off unit 2 3 first DC voltage V 1 of the following blocking of which is measured by the first DC voltmeter 21 1 is less than 17kV turns on the switch of the discharge circuit 12 After discharging the power capacitor 11, the first and second circuit breakers 2 1 and 2 2 are turned on to charge the power capacitor 11, and then the switch of the discharge circuit 12 is turned off to turn on the second circuit breaker 2. The operation of shutting off the zero point 2 is repeated (steps S18 and S19).

その後、絶縁診断装置30は、第1の直流電圧値V1に基づいて初期電荷量Qa0を測定する(図3のステップS20)。たとえば、第3の遮断器23を遮断後の第1の直流電圧値V1が17.9kVのままであったとすると、初期電荷量Qa0は179×10-3C(=10μF×17.9kV)のままとなる。 Thereafter, the insulation diagnostic apparatus 30 measures the initial charge amount Q a0 based on the first DC voltage value V 1 (step S20 in FIG. 3). For example, when the first DC voltage value V 1 of the following block the third breaker 2 3 of the remained 17.9KV, initial charge amount Q a0 is 179 × 10 -3 C (= 10μF × 17. 9 kV).

その後、第4の遮断器24が投入される(ステップS21)。 Thereafter, a fourth breaker 2 4 is turned on (step S21).

絶縁診断装置30は、第4の遮断器24の投入後に第1の直流電圧計211および第1の直流電流計221からそれぞれ入力される第1の直流電圧値V1および第1の直流電流値I1に基づいて、一定時間後の電力用コンデンサ11の電荷量Qaおよび電力ケーブル4の電荷量Qbを求める。絶縁診断装置30は、求めた電力用コンデンサ11の電荷量Qaおよび電力ケーブル4の電荷量Qbの総和Qa+Qbと初期電荷量Qa0との差(Qa+Qb)−Qa0が所定の基準値P(たとえば、初期電荷量Qa0の5%)未満であれば、「電力ケーブル4は正常である」と判定し、一方、差(Qa+Qb)−Qa0が基準値P以上であれば、「電力ケーブル4は不良である」と判定する。
また、第1の直流電流値I1により移動電荷量Qcを測定し,電力ケーブル4の電荷量Qbを引くことで損失電荷を算出してもよい。なお、判定については、第4の遮断器24を遮断し電力用コンデンサ11を切り離して、電力ケーブル4単体だけで移動電荷量Qcの減衰量(減衰判断)により電力ケーブル4の良否を判定してもよい(以上、ステップS22)。
Insulation diagnosis apparatus 30, the first DC voltmeter 21 1 and the first of the first DC voltage value V 1 and the first direct current are input from the DC ammeter 22 1 after turning the fourth breaker 2 4 based on the current value I 1, we obtain the charge amount Q b of the charge amount Q a and power cables 4 of the power capacitor 11 after a predetermined time. Insulation diagnosis apparatus 30, the difference between the sum Q a + Q b and the initial charge amount Q a0 charge amount Q b of the charge amount Q a and power cables 4 of the power capacitor 11 determined (Q a + Q b) -Q a0 Is less than a predetermined reference value P (for example, 5% of the initial charge amount Q a0 ), it is determined that “the power cable 4 is normal”, while the difference (Q a + Q b ) −Q a0 is the reference. If it is greater than or equal to the value P, it is determined that “the power cable 4 is defective”.
Further, the loss charge may be calculated by measuring the moving charge amount Q c from the first DC current value I 1 and subtracting the charge amount Q b of the power cable 4. As for determination, disconnect the power capacitor 11 blocks the fourth breaker 2 4, determine the quality of the power cable 4 by attenuation of only mobile charge amount Q c power cable 4 itself (attenuation determined) (Step S22).

たとえば、電力ケーブル4の容量値Cbを1μFとすると、図4(b)に示すように第4の遮断器24を投入してから1時間後に第1の直流電圧値V1が安定して16.2kV(1.7kV低下)になったときには、電力用コンデンサ11の電荷量Qaは162×10-3C(=10μF×16.2kV)となり、電力ケーブル4の電荷量Qbまたは移動電荷量Qcは第3の直流電圧計213からの第3の直流電圧値V3より16.2×10-3C(=1μF×16.2kV)となる。その結果、総和Qa+Qbは178.2×10-3C(=162×10-3C+16.2×10-3C)となって、総和Qa+Qbと初期電荷量Qa0との差は0.8×10-3C(=179×10-3C−178.2×10-3C)となり基準値P(=179×10-3C×0.05≒9×10-3C)未満となるため、絶縁診断装置30は、「電力ケーブル4は正常である」と判定する。
一方、図4(b)に示すように第4の遮断器24を投入してから1時間後に第1の直流電圧値V1が安定して15kV(2.9kV低下)になったときには、電力用コンデンサ11の電荷量Qaは150×10-3C(=10μF×15kV)となり、電力ケーブル4の電荷量Qbまたは移動電荷量Qcは第3の直流電圧計213からの第3の直流電圧値V3より15×10-3C(=1μF×15kV)となる。その結果、総和Qa+Qbは165×10-3C(=150×10-3C+15×10-3C)となって、総和Qa+Qbと初期電荷量Qa0との差は14×10-3C(=179×10-3C−165×10-3C)となり基準値P(≒9×10-3C)以上となるため、絶縁診断装置30は、「電力ケーブル4は不良である」と判定する。
上記以外に、電力ケーブル4を電力用コンデンサ11から切り離し、電力ケーブル4単体で減衰する電荷量(16.2×10-3C→15×10-3C(基準値P=0.8×10-3C))により電力ケーブル4の良否判定をしてもよい。
また、測定した移動電荷量Q3と(電力ケーブル4の容量Cb×第3の直流電圧値V3)とが同じでない場合は、電力ケーブル4に何らかの異常があると判断する。
さらに、電力ケーブル4の恒長が長く充電のための電荷量が多く必要な場合は、上記のステップS11〜S21を繰り返して電力ケーブル4を充電する(電圧を上げる)。
For example, if the 1μF capacitance value C b of the power cable 4, the first DC voltage value V 1 is stabilized to 1 hour after introducing fourth breaker 2 4 As shown in FIG. 4 (b) Thus, the charge amount Q a of the power capacitor 11 becomes 162 × 10 −3 C (= 10 μF × 16.2 kV), and the charge amount Q b of the power cable 4 or The mobile charge amount Q c is 16.2 × 10 −3 C (= 1 μF × 16.2 kV) from the third DC voltage value V 3 from the third DC voltmeter 21 3 . As a result, the sum Q a + Q b becomes 178.2 × 10 −3 C (= 162 × 10 −3 C + 16.2 × 10 −3 C), and the sum Q a + Q b and the initial charge amount Q a0 The difference is 0.8 × 10 −3 C (= 179 × 10 −3 C-178.2 × 10 −3 C), and the reference value P (= 179 × 10 −3 C × 0.05≈9 × 10 −3 C), the insulation diagnosis apparatus 30 determines that “the power cable 4 is normal”.
On the other hand, when the first DC voltage V 1 is now stably 15kV (2.9 kV decrease) the fourth breaker 2 4 since charged as shown in after one hour FIG. 4 (b), The charge amount Q a of the power capacitor 11 is 150 × 10 −3 C (= 10 μF × 15 kV), and the charge amount Q b or the moving charge amount Q c of the power cable 4 is the third amount from the third DC voltmeter 21 3 . From the direct current voltage value V 3, it becomes 15 × 10 −3 C (= 1 μF × 15 kV). As a result, the sum Q a + Q b is 165 × 10 −3 C (= 150 × 10 −3 C + 15 × 10 −3 C), and the difference between the sum Q a + Q b and the initial charge amount Q a0 is 14 ×. 10 −3 C (= 179 × 10 −3 C−165 × 10 −3 C), which is greater than the reference value P (≈9 × 10 −3 C). Is determined.
In addition to the above, the power cable 4 is disconnected from the power capacitor 11, and the amount of charge attenuated by the power cable 4 alone (16.2 × 10 −3 C → 15 × 10 −3 C (reference value P = 0.8 × 10 -3 C)), the quality of the power cable 4 may be determined.
If the measured mobile charge amount Q 3 and (capacity C b of power cable 4 × third DC voltage value V 3 ) are not the same, it is determined that there is some abnormality in power cable 4.
Further, when the power cable 4 is long and needs a large amount of charge for charging, the power cable 4 is charged (the voltage is increased) by repeating the above steps S11 to S21.

なお、絶縁診断装置30は、第3の直流電圧計213から入力される第3の直流電圧値V3および第3の直流電流計223から入力される第3の直流電流値I3に基づいて、第3の直流電圧値V3が安定したときの電圧−電流特性(すなわち、電力ケーブル4の絶縁抵抗)を求めて、求めた電圧−電流特性が「正常」の範囲内に入っていれば「電力ケーブル4は正常である」と判定し、一方、求めた電圧−電流特性が「不良」の範囲内に入っていれば「電力ケーブル4は不良である」と判定する動作を並行して行ってもよい。 The insulating diagnostic apparatus 30, based on the third DC current value I 3 inputted from the third direct-current voltage value V 3 and the third DC ammeter 22 3 inputted from the third direct current voltmeter 21 3 Thus, the voltage-current characteristic when the third DC voltage value V 3 is stabilized (that is, the insulation resistance of the power cable 4) is obtained, and the obtained voltage-current characteristic is within the range of “normal”. If “the power cable 4 is normal” is determined, and if the obtained voltage-current characteristic is within the range of “defective”, the operation of determining “the power cable 4 is defective” is performed in parallel. You may go.

以上のようにして避雷器3および電力ケーブル4の絶縁診断が終了すると、放電回路12のスイッチがオンされるとともに第1乃至第4の遮断器21〜24が投入される(ステップS23)。 When the insulation diagnosis of the lightning arrester 3 and the power cable 4 is completed as described above, the switch of the discharge circuit 12 is turned on and the first to fourth circuit breakers 2 1 to 2 4 are turned on (step S23).

次に、本発明の第2の実施例による絶縁診断システムについて、図5および図6を参照して説明する。
本実施例による絶縁診断システムは、上述した第1の実施例による絶縁診断システムと同様にして力率改善用コンデンサ装置を診断用直流電源として利用するとともに、実系統交流電源を診断用交流電源として利用して、残留電荷法により電力ケーブル(CVケーブル)の絶縁診断を行うことを特徴とする。
Next, an insulation diagnosis system according to a second embodiment of the present invention will be described with reference to FIGS.
The insulation diagnosis system according to this embodiment uses the power factor improving capacitor device as a diagnosis DC power supply in the same manner as the insulation diagnosis system according to the first embodiment described above, and uses an actual AC power supply as a diagnosis AC power supply. The insulation diagnosis of the power cable (CV cable) is performed by using the residual charge method.

以下では、上述した第1の実施例による絶縁診断システムと同様に、図5に示すように22kV母線から分岐された第1の送電線に診断用直流電源10(力率改善用コンデンサ装置)が設置され、22kV母線から分岐された第2の送電線に避雷器3が設置され、22kV母線から分岐された第3の送電線に電力ケーブル4(CVケーブル)が接続されている場合を例として、本実施例による絶縁診断システムについて詳細に説明する。   In the following, as in the insulation diagnosis system according to the first embodiment described above, the diagnostic DC power supply 10 (capacitor for power factor improvement) is connected to the first power transmission line branched from the 22 kV bus as shown in FIG. As an example, the lightning arrester 3 is installed in the second transmission line that is installed and branched from the 22 kV bus, and the power cable 4 (CV cable) is connected to the third transmission line that is branched from the 22 kV bus. The insulation diagnostic system according to the present embodiment will be described in detail.

本実施例による絶縁診断システムは、以下に示す点で、上述した第1の実施例による絶縁診断システムと異なる。
(1)実系統交流電源1と第1の遮断器21とを接続する送電線に流れる交流電流の直流成分を抽出するための直流フィルタ41(3相電力系統では相ごとに設けられる。)と、直流フィルタ41によって抽出された直流成分の電流値を測定するための第4の直流電流計224とを具備する。
(2)図1に示した絶縁診断装置30の代わりに、第1乃至第3の直流電圧値V1〜V3、第1乃至第3の直流電流値I1〜I3および第4の直流電流計224によって測定された直流成分の電流値(以下、「第4の直流電流値I4」と称する。)に基づいて、電力ケーブル4の絶縁診断(絶縁劣化判定)を行う絶縁診断装置50を具備する。
The insulation diagnosis system according to this embodiment is different from the insulation diagnosis system according to the first embodiment described above in the following points.
(1) actual system AC power supply 1 and the DC filter 41 for extracting a DC component of the AC current flowing in the first circuit breaker 2 1 and transmission lines connecting the (provided for each phase in the three phase power system.) When comprises a fourth DC current meter 22 4 for measuring the current value of the DC component extracted by the DC filter 41.
(2) Instead of the insulation diagnostic apparatus 30 shown in FIG. 1, the first to third DC voltage values V 1 to V 3 , the first to third DC current values I 1 to I 3, and the fourth DC Insulation diagnostic device that performs insulation diagnosis (insulation deterioration determination) of the power cable 4 based on the current value of the DC component measured by the ammeter 22 4 (hereinafter referred to as “fourth DC current value I 4 ”). 50.

次に、本実施例による絶縁診断システムを用いて残留電荷法により電力ケーブル4の絶縁診断を行う方法について、図6に示すフローチャートを参照して説明する。   Next, a method for performing insulation diagnosis of the power cable 4 by the residual charge method using the insulation diagnosis system according to the present embodiment will be described with reference to the flowchart shown in FIG.

診断用直流電源10の放電回路12のスイッチがオフされたのちに、第1の送電線に設置された第2の遮断器22がゼロ点近傍で遮断され、ほぼ正弦波の最大値の電圧が電力用コンデンサ11に保持される(ステップS31)。
このとき、絶縁診断装置50は、第1の直流電圧値V1に基づいて電力用コンデンサ11の初期電荷量Qa0を測定する(ステップS31)。
In after the switch of the discharge circuit 12 of the diagnostic DC power supply 10 is turned off, the second circuit breaker 2 2 is installed in the first transmission line is cut off in the vicinity of the zero point, the maximum value of the voltage of approximately sinusoidal Is held in the power capacitor 11 (step S31).
At this time, the insulation diagnostic apparatus 50 measures the initial charge amount Q a0 of the power capacitor 11 based on the first DC voltage value V 1 (step S31).

なお、第1の直流電圧計211によって測定される第2の遮断器22の遮断後の第1の直流電圧値V1が17kV未満である場合には、放電回路12のスイッチをオンして電力用コンデンサ11を放電したのち、第1および第2の遮断器21,22を投入して電力用コンデンサ11を充電したのちに放電回路12のスイッチをオフし第2の遮断器22をゼロ点遮断する動作が繰り返される(ステップS32)。 When the first DC voltage value V 1 after breaking the second circuit breaker 2 2 measured by the first DC voltmeter 21 1 is less than 17 kV, the switch of the discharge circuit 12 is turned on. After discharging the power capacitor 11, the first and second circuit breakers 2 1 and 2 2 are turned on to charge the power capacitor 11, and then the switch of the discharge circuit 12 is turned off to turn on the second circuit breaker 2 2. The operation of shutting off the zero point is repeated (step S32).

第1の直流電圧値V1が17kV以上であると、第3および第4の遮断器23,24が遮断されて避雷器3および電力ケーブル4が停電されたのち、第1の遮断器21が遮断されて22kV母線が上位系統から分離される(ステップS33)。 When the first DC voltage value V 1 is located at least 17 kV, after the third and fourth breaker 2 3, 2 4 are blocked arrester 3 and power cable 4 is a power failure, the first circuit breaker 2 1 is cut off and the 22 kV bus is separated from the host system (step S33).

その後、第2の遮断器22が投入されて診断用直流電源10が空母線に投入されたのち、第4の遮断器24が投入される(ステップS34)。 Then, after the second breaker 2 2 DC power supply 10 for diagnosis is turned is turned on aircraft carrier line, a fourth breaker 2 4 is turned on (step S34).

絶縁診断装置50は、第4の遮断器24の投入後の第1の直流電圧値V1を監視し、第1の直流電圧値V1が安定したか否かをチェックする(ステップS35,S36)。 The insulation diagnosis device 50 monitors the first DC voltage value V 1 after the fourth circuit breaker 24 is turned on, and checks whether or not the first DC voltage value V 1 is stable (Step S35, S35). S36).

第1の直流電圧値V1が安定すると、第2および第4の遮断器22,24が遮断されて電力ケーブル4が診断用直流電源10から切り離されたのち、第3の送電線に甲アース60が取り付けられて電力ケーブル4が接地される(ステップS37)。 When the first DC voltage value V 1 is stabilized, the second and fourth circuit breakers 2 2 and 2 4 are disconnected and the power cable 4 is disconnected from the diagnostic DC power supply 10 and then connected to the third transmission line. Instep ground 60 is attached and power cable 4 is grounded (step S37).

その後、第1の遮断器21が短時間(たとえば、数秒間)だけ1〜2分間隔で3回ほど投入されたのち数分間投入されることにより、電力ケーブル4が実系統交流電源1によって交流課電される(ステップS38)。 Thereafter, the first circuit breaker 2 1 a short time (e.g., several seconds) by being turned by 1-2 minutes several minutes after being about three times turned at intervals, the power cable 4 by the real line AC power source 1 AC power is applied (step S38).

絶縁診断装置50は、電力ケーブル4が実系統交流電源1によって交流課電されている間に直流フィルタ41を通った第4の直流電流計224から入力される第4の直流電流値I4に基づいて電力ケーブル4の水トリー部残留電荷量Q(単位はnC/10m)を測定する。
絶縁診断装置50は、測定された水トリー部残留電荷量Qに基づいて、(1)式に一例を荷と交流破壊電圧との関係の最低ライン回帰式を用いて推定交流破壊電界Eを算出し、算出した推定交流破壊電界Eに基づいて電力ケーブル4の余寿命を評価して絶縁診断を行う(ステップS39)。
E={63.005×Q-0.2879}/T (1)
ここで、T=電力ケーブル4の絶縁体厚(単位はmm)
The insulation diagnostic apparatus 50 includes the fourth DC current value I 4 input from the fourth DC ammeter 22 4 that has passed through the DC filter 41 while the power cable 4 is AC-applied by the real system AC power supply 1. Based on the above, the water tree residual charge amount Q (unit: nC / 10 m) of the power cable 4 is measured.
The insulation diagnostic apparatus 50 calculates the estimated AC breakdown electric field E using the minimum line regression equation of the relationship between the load and the AC breakdown voltage in the formula (1) based on the measured water tree residual charge amount Q. Then, based on the calculated estimated AC breakdown electric field E, the remaining life of the power cable 4 is evaluated to perform insulation diagnosis (step S39).
E = {63.005 × Q −0.2879 } / T (1)
Here, T = insulator thickness of the power cable 4 (unit: mm)

以上のようにして電力ケーブル4の絶縁診断が終了すると、放電回路12のスイッチがオンされるとともに第1乃至第4の遮断器21〜24が投入される(ステップS40)。 When the insulation diagnosis of the power cable 4 is completed as described above, the switch of the discharge circuit 12 is turned on and the first to fourth circuit breakers 2 1 to 2 4 are turned on (step S40).

なお、本実施例による絶縁診断システムにおいても、図1に示した絶縁診断システムと同様にして診断用直流電源10を用いて避雷器3および電力ケーブル4の絶縁診断を行うこともできる。
また、絶縁診断装置50として給電用オシロ装置を用いることができる。
In the insulation diagnosis system according to this embodiment, the insulation diagnosis of the lightning arrester 3 and the power cable 4 can also be performed using the diagnostic DC power supply 10 in the same manner as the insulation diagnosis system shown in FIG.
In addition, a power feeding oscilloscope device can be used as the insulation diagnostic device 50.

以上の説明では、診断用直流電源10として力率改善用コンデンサ装置を利用したが、電力系統に設置されているその他の電力用蓄電設備(たとえば、コンデンサ型計器用変圧器や電力ケーブルなど)を利用してもよい。   In the above description, the power factor improving capacitor device is used as the diagnostic DC power supply 10, but other power storage facilities (for example, capacitor-type instrument transformers and power cables) installed in the power system are used. May be used.

本発明の第1の実施例による絶縁診断システムの構成について説明するための図である。It is a figure for demonstrating the structure of the insulation diagnostic system by 1st Example of this invention. 図1に示した絶縁診断システムを用いて避雷器3の絶縁診断を行ったのちに電力ケーブル4の絶縁診断を行う方法について説明するためのフローチャートである。It is a flowchart for demonstrating the method of performing the insulation diagnosis of the power cable 4 after performing the insulation diagnosis of the lightning arrester 3 using the insulation diagnostic system shown in FIG. 図1に示した絶縁診断システムを用いて避雷器3の絶縁診断を行ったのちに電力ケーブル4の絶縁診断を行う方法について説明するためのフローチャートである。It is a flowchart for demonstrating the method of performing the insulation diagnosis of the power cable 4 after performing the insulation diagnosis of the lightning arrester 3 using the insulation diagnostic system shown in FIG. 図1に示した絶縁診断装置30における絶縁診断方法について説明するためのグラフであり、(a)は避雷器3の絶縁診断方法について説明するためのグラフであり、(b)は電力ケーブル4の絶縁診断方法について説明するためのグラフである。2 is a graph for explaining an insulation diagnosis method in the insulation diagnosis apparatus 30 shown in FIG. 1, (a) is a graph for explaining an insulation diagnosis method of the lightning arrester 3, and (b) is an insulation of the power cable 4. It is a graph for demonstrating a diagnostic method. 本発明の第2の実施例による絶縁診断システムの構成について説明するための図である。It is a figure for demonstrating the structure of the insulation diagnostic system by the 2nd Example of this invention. 図5に示した絶縁診断システムを用いて残留電荷法により電力ケーブル4の絶縁診断を行う方法について説明するためのフローチャートである。It is a flowchart for demonstrating the method of performing the insulation diagnosis of the power cable 4 by the residual charge method using the insulation diagnostic system shown in FIG.

符号の説明Explanation of symbols

1 実系統交流電源
1〜24 第1乃至第4の遮断器
3 避雷器
4 電力ケーブル
10 診断用直流電源
11 電力用コンデンサ
12 放電回路
211〜213 第1乃至第3の直流電圧計
221〜224 第1乃至第4の直流電流計
30,50 絶縁診断装置
41 直流フィルタ
60 甲アース
1〜V3 第1乃至第3の直流電圧値
1〜I4 第1乃至第4の直流電流値
a,Cb 容量値
E 推定交流破壊電界
P 基準値
a,Qb 電荷量
a0 初期電荷量
3 移動電荷量
Q 水トリー部残留電荷量
S11〜S23,S31〜S40 ステップ
T 絶縁体厚
DESCRIPTION OF SYMBOLS 1 Actual system | strain AC power supply 2 1-2 4 1st thru | or 4th circuit breaker 3 Lightning arrester 4 Power cable 10 DC power supply for diagnosis 11 Power capacitor 12 Discharge circuit 21 1-21 3 1st thru | or 3rd DC voltmeter 22 1 -22 4 1st to 4th DC ammeters 30 and 50 Insulation diagnostic device 41 DC filter 60 First ground V 1 to V 3 First to third DC voltage values I 1 to I 4 First to fourth DC Current value C a , C b Capacity value E Estimated AC breakdown electric field P Reference value Q a , Q b Charge amount Q a0 Initial charge amount Q 3 Mobile charge amount Q Water tree portion residual charge amounts S11 to S23, S31 to S40 Step T Insulator thickness

Claims (7)

電力系統を停電させて電力用機器(3,4)の絶縁診断を行うための絶縁診断システムであって、前記電力系統に設置された電力用蓄電設備を診断用直流電源(10)として利用して該診断用直流電源から前記電力用機器に直流課電して該電力用機器の絶縁診断を行う絶縁診断手段を具備することを特徴とする、絶縁診断システム。   An insulation diagnosis system for performing an insulation diagnosis of a power device (3, 4) by making a power failure in a power system, wherein a power storage facility installed in the power system is used as a diagnostic DC power supply (10) An insulation diagnosis system comprising insulation diagnosis means for performing an insulation diagnosis of the power device by applying a direct current to the power device from the diagnostic DC power supply. 前記絶縁診断手段が、前記診断用直流電源において測定された直流電圧値(V1)および直流電流値(I1)と、前記電力用機器において測定された他の直流電圧値(V2,V3)および他の直流電流値(I2,I3)とに基づいて、該電力用機器の絶縁診断を行う絶縁診断装置(30)を備えることを特徴とする、請求項1記載の絶縁診断システム。 The insulation diagnosis means determines that the DC voltage value (V 1 ) and DC current value (I 1 ) measured at the diagnostic DC power source and other DC voltage values (V 2 , V measured at the power device). The insulation diagnosis device according to claim 1, further comprising an insulation diagnosis device (30) for performing insulation diagnosis of the power equipment based on 3 ) and other DC current values (I 2 , I 3 ). system. 前記絶縁診断装置が、前記他の直流電圧値(V2)および前記他の直流電流値(I2)に基づいて、該他の直流電圧値が安定したときの電圧−電流特性を求め、該求めた電圧−電流特性に基づいて前記電力用機器の絶縁診断を行うことを特徴とする、請求項2記載の絶縁診断システム。 The insulation diagnostic device obtains a voltage-current characteristic when the other DC voltage value is stabilized based on the other DC voltage value (V 2 ) and the other DC current value (I 2 ), The insulation diagnosis system according to claim 2, wherein an insulation diagnosis of the power device is performed based on the obtained voltage-current characteristics. 前記絶縁診断装置が、前記診断用直流電源を前記電力系統から切り離したときの前記直流電圧値(V1)に基づいて該診断用直流電源の初期電荷量(Qa0)を測定し、該診断用直流電源から前記電力用機器に直流課電したのち前記直流電圧値(V1)が安定したときの該診断用直流電源の電荷量(Qa)および該電力用機器の電荷量(Qb)を求め、該求めた2つの電荷量の総和と前記測定した初期電荷量との差に基づいて、または、該求めた移動電荷量の減衰量に基づいて、前記電力用機器の絶縁診断を行うことを特徴とする、請求項2または3記載の絶縁診断システム。 The insulation diagnostic device measures an initial charge amount (Q a0 ) of the diagnostic DC power supply based on the DC voltage value (V 1 ) when the diagnostic DC power supply is disconnected from the power system, and the diagnosis use the DC power supply the DC voltage value After DC Division collector to a device for the power from (V 1) is stable the charge amount of the diagnostic DC power supply when (Q a) and the charge amount of the power equipment (Q b ), And based on the difference between the obtained total amount of charges and the measured initial charge amount, or based on the determined amount of mobile charge attenuation, insulation diagnosis of the power device is performed. The insulation diagnosis system according to claim 2, wherein the insulation diagnosis system is performed. 電力系統を停電させて電力ケーブル(4)の絶縁診断を行うための絶縁診断システムであって、前記電力系統に設置された電力用蓄電設備を診断用直流電源(10)として利用して該診断用直流電源から前記電力ケーブルに直流課電し、該電力ケーブルを接地したのちに、該電力系統の実系統交流電源(1)を診断用交流電源として利用して該診断用交流電源から該電力ケーブルに交流課電して、該電力ケーブルの絶縁診断を行う絶縁診断手段を具備することを特徴とする、絶縁診断システム。   An insulation diagnosis system for performing an insulation diagnosis of a power cable (4) by power failure of the power system, wherein the diagnosis is performed using a power storage facility installed in the power system as a diagnostic DC power supply (10) DC power is applied from the DC power supply to the power cable, and the power cable is grounded, and then the actual AC power supply (1) of the power system is used as the diagnostic AC power supply from the diagnostic AC power supply. An insulation diagnosis system comprising insulation diagnosis means for performing AC diagnosis on a cable and performing insulation diagnosis on the power cable. 前記絶縁診断手段が、
前記交流課電の間に前記診断用交流電源から出力される交流電流の直流成分を抽出するための直流フィルタ(41)と、
該直流フィルタによって抽出された前記直流成分の電流値(I4)を測定するための直流電流計(224)と、
該直流電流計によって測定された前記直流成分の電流値に基づいて前記電力ケーブルの絶縁診断を行う絶縁診断装置(50)と、
を備えることを特徴とする、請求項5記載の絶縁診断システム。
The insulation diagnostic means comprises:
A DC filter (41) for extracting a DC component of an AC current output from the diagnostic AC power source during the AC power application;
A DC ammeter (22 4 ) for measuring a current value (I 4 ) of the DC component extracted by the DC filter;
An insulation diagnosis device (50) for performing insulation diagnosis of the power cable based on a current value of the DC component measured by the DC ammeter;
The insulation diagnostic system according to claim 5, further comprising:
前記絶縁診断装置が、前記診断用直流電源から前記電力ケーブルに直流課電し、該電力ケーブルを該診断用直流電源から切り離し、該電力ケーブルを接地したのちに、前記診断用交流電源から該電力ケーブルに交流課電し、該交流課電の間に前記直流電流計によって測定された前記直流成分の電流値に基づいて該電力ケーブルの水トリー部残留電荷量(Q)を測定し、該測定された水トリー部残留電荷量に基づいて最低ライン回帰式を用いて推定交流破壊電界(E)を算出し、該算出した推定交流破壊電界に基づいて該電力ケーブルの余寿命を評価して絶縁診断を行うことを特徴とする、請求項6記載の絶縁診断システム。   The insulation diagnostic device applies DC power to the power cable from the diagnostic DC power supply, disconnects the power cable from the diagnostic DC power supply, and grounds the power cable. AC power is applied to the cable, and the water tree residual charge amount (Q) of the power cable is measured based on the current value of the DC component measured by the DC ammeter during the AC power application. The estimated AC breakdown electric field (E) is calculated using the minimum line regression equation based on the water tree residual charge amount, and the remaining life of the power cable is evaluated based on the calculated estimated AC breakdown electric field for insulation. The insulation diagnosis system according to claim 6, wherein diagnosis is performed.
JP2008329211A 2008-12-25 2008-12-25 Insulation diagnostic system Expired - Fee Related JP5349036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329211A JP5349036B2 (en) 2008-12-25 2008-12-25 Insulation diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329211A JP5349036B2 (en) 2008-12-25 2008-12-25 Insulation diagnostic system

Publications (2)

Publication Number Publication Date
JP2010151576A true JP2010151576A (en) 2010-07-08
JP5349036B2 JP5349036B2 (en) 2013-11-20

Family

ID=42570850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329211A Expired - Fee Related JP5349036B2 (en) 2008-12-25 2008-12-25 Insulation diagnostic system

Country Status (1)

Country Link
JP (1) JP5349036B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200463088Y1 (en) 2011-07-07 2012-10-18 한전케이피에스 주식회사 Portable multi clearance meter for live line
CN103048630A (en) * 2012-12-11 2013-04-17 上海市电力公司 Analysis model for mixing condition of doubling direct-current power supplies and judging method
CN103135032A (en) * 2013-01-30 2013-06-05 福建省电力有限公司 External force factor diagnostic method causing single phase ground connection breakdown of electric transmission line
CN103884972A (en) * 2014-03-31 2014-06-25 刘勇 Method for hydrophobicity detection and aging evaluation of composite insulator
CN103941120A (en) * 2014-03-31 2014-07-23 张奇 Device for hydrophobicity detection and aging evaluation of composite insulator
CN104267308A (en) * 2014-10-30 2015-01-07 黄月华 Fast detector for access circuit and open circuit
CN104459438A (en) * 2014-12-05 2015-03-25 国网浙江奉化市供电公司 Insulation performance detecting system for metal sheath of power cable
WO2015040656A1 (en) 2013-09-20 2015-03-26 東芝三菱電機産業システム株式会社 Water-tree resistance evaluation method, insulation design method, and rotary electric machine
CN105158661A (en) * 2015-09-01 2015-12-16 国网吉林省电力有限公司延边供电公司 Insulation fault positioning monitoring device of direct-current power supply system
CN105223477A (en) * 2015-09-25 2016-01-06 酒泉钢铁(集团)有限责任公司 A kind of machine winding coil insulation fault location method
CN105301465A (en) * 2015-12-01 2016-02-03 武汉大学 Direct current gas insulation electrical equipment partial discharge decomposition simulation experiment apparatus
CN107356824A (en) * 2017-07-21 2017-11-17 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of submarine cable DC break down voltage test charge cumulative measurement system and measuring method
JP2023508118A (en) * 2019-11-28 2023-02-28 エルエス、エレクトリック、カンパニー、リミテッド Insulation monitoring device and control method for the insulation monitoring device
JP7443181B2 (en) 2020-07-21 2024-03-05 株式会社東芝 Withstanding voltage test equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330596A (en) * 2014-10-15 2015-02-04 国网青海省电力公司电力科学研究院 Mobile direct-current contamination test power supply system
CN109541409B (en) * 2018-11-30 2020-05-26 国家电网有限公司 Distribution line flashover rate improvement algorithm based on electrical geometric model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173773A (en) * 1983-03-24 1984-10-01 Fuji Electric Co Ltd Automatic measuring device of leaked current of electric car line
JPS6214072A (en) * 1985-07-11 1987-01-22 Central Res Inst Of Electric Power Ind Analysis of deterioration in insulation of crosslinked polyethylene power cable
JPH05133996A (en) * 1991-11-13 1993-05-28 Central Japan Railway Co Method for diagnosing insulation of power cable line
JPH07270473A (en) * 1994-03-29 1995-10-20 Kansai Electric Power Co Inc:The Diagnostic method and device for bus bar accident
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173773A (en) * 1983-03-24 1984-10-01 Fuji Electric Co Ltd Automatic measuring device of leaked current of electric car line
JPS6214072A (en) * 1985-07-11 1987-01-22 Central Res Inst Of Electric Power Ind Analysis of deterioration in insulation of crosslinked polyethylene power cable
JPH05133996A (en) * 1991-11-13 1993-05-28 Central Japan Railway Co Method for diagnosing insulation of power cable line
JPH07270473A (en) * 1994-03-29 1995-10-20 Kansai Electric Power Co Inc:The Diagnostic method and device for bus bar accident
JP2001349924A (en) * 2000-06-12 2001-12-21 Fujikura Ltd Remaining life estimating method of cv cable

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200463088Y1 (en) 2011-07-07 2012-10-18 한전케이피에스 주식회사 Portable multi clearance meter for live line
CN103048630A (en) * 2012-12-11 2013-04-17 上海市电力公司 Analysis model for mixing condition of doubling direct-current power supplies and judging method
CN103135032A (en) * 2013-01-30 2013-06-05 福建省电力有限公司 External force factor diagnostic method causing single phase ground connection breakdown of electric transmission line
WO2015040656A1 (en) 2013-09-20 2015-03-26 東芝三菱電機産業システム株式会社 Water-tree resistance evaluation method, insulation design method, and rotary electric machine
US10175289B2 (en) 2013-09-20 2019-01-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Water-tree resistance evaluation method, insulation design method, and rotary electric machine
CN103884972B (en) * 2014-03-31 2016-08-17 天津大学 A kind of Hydrophobicity of Composite Insulator detection method
CN103884972A (en) * 2014-03-31 2014-06-25 刘勇 Method for hydrophobicity detection and aging evaluation of composite insulator
CN103941120A (en) * 2014-03-31 2014-07-23 张奇 Device for hydrophobicity detection and aging evaluation of composite insulator
CN104267308A (en) * 2014-10-30 2015-01-07 黄月华 Fast detector for access circuit and open circuit
CN104459438A (en) * 2014-12-05 2015-03-25 国网浙江奉化市供电公司 Insulation performance detecting system for metal sheath of power cable
CN105158661A (en) * 2015-09-01 2015-12-16 国网吉林省电力有限公司延边供电公司 Insulation fault positioning monitoring device of direct-current power supply system
CN105223477A (en) * 2015-09-25 2016-01-06 酒泉钢铁(集团)有限责任公司 A kind of machine winding coil insulation fault location method
CN105301465A (en) * 2015-12-01 2016-02-03 武汉大学 Direct current gas insulation electrical equipment partial discharge decomposition simulation experiment apparatus
CN107356824A (en) * 2017-07-21 2017-11-17 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of submarine cable DC break down voltage test charge cumulative measurement system and measuring method
CN107356824B (en) * 2017-07-21 2023-05-16 中国南方电网有限责任公司超高压输电公司检修试验中心 Submarine cable direct-current withstand voltage test charge accumulation measurement system and measurement method
JP2023508118A (en) * 2019-11-28 2023-02-28 エルエス、エレクトリック、カンパニー、リミテッド Insulation monitoring device and control method for the insulation monitoring device
JP7389944B2 (en) 2019-11-28 2023-12-01 エルエス、エレクトリック、カンパニー、リミテッド Insulation monitoring device and control method for the insulation monitoring device
US11892495B2 (en) 2019-11-28 2024-02-06 Ls Electric Co., Ltd. Insulation monitoring device and control method therefor
JP7443181B2 (en) 2020-07-21 2024-03-05 株式会社東芝 Withstanding voltage test equipment

Also Published As

Publication number Publication date
JP5349036B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5349036B2 (en) Insulation diagnostic system
CN103080757B (en) Device and method for detecting a ground fault
EP2680017A1 (en) A method of early detection of feeder lines with a high-ohm ground fault in compensated power networks
US8487635B1 (en) System and method for determining system charging current
WO2012171694A1 (en) A method for detecting earth faults
KR101367891B1 (en) Apparatus for deterioration diagnosis of power cable and a method thereof
KR20160124111A (en) Method for detecting an open-phase condition of a transformer
KR101269131B1 (en) Leakage current detect apparatus and method using smart multi channel watt-hour meter
RU2719278C1 (en) Method of determining the point and distance to single-phase ground fault in 6-35 kv electric networks with isolated or compensated neutral line
KR101179062B1 (en) On-line cable monitoring system
JP2011242206A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
CN1737594A (en) Crosslinking polyethylene cable insulation diagnosis circuit based on positive/negative polarity DC superposition method
JPH03206976A (en) Diagnosis of insulation
Jahromi Review of field acceptance hipot & PD testing of medium voltage underground cables
CN108548982A (en) A kind of test method of capacitance current, apparatus and system
AU3555201A (en) Method and device for controlling a telecommunication cable
James et al. Interpretation of partial discharge quantities as measured at the terminals of HV power transformers
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
Dan et al. Towards a more reliable operation of compensated networks in case of single phase to ground faults
Eaton et al. Advanced cable diagnostics-evaluation, selection, application and experience on medium voltage shielded power cables at a petrochemical facility
JP2020173242A (en) Device and program
Caprara et al. Partial Discharge measurements during AC voltage test: a fast and effective method for the site commissioning of long EHV XLPE cable systems
JP4469763B2 (en) High voltage power cable insulation diagnosis and monitoring device
Wu et al. Partial discharge measurement for condition assessment of high voltage cables in power system
Jaya et al. Adapting frequency domain spectroscopy as an online monitoring tool for the insulation of power transformers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees