JPS61234054A - Integrated semiconductor device - Google Patents

Integrated semiconductor device

Info

Publication number
JPS61234054A
JPS61234054A JP9453786A JP9453786A JPS61234054A JP S61234054 A JPS61234054 A JP S61234054A JP 9453786 A JP9453786 A JP 9453786A JP 9453786 A JP9453786 A JP 9453786A JP S61234054 A JPS61234054 A JP S61234054A
Authority
JP
Japan
Prior art keywords
crystal silicon
island
wirings
silicon island
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9453786A
Other languages
Japanese (ja)
Other versions
JPS6227543B2 (en
Inventor
Shigeru Kawamata
川又 繁
Kiyoshi Tsukuda
佃 清
Yoshikazu Hosokawa
細川 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9453786A priority Critical patent/JPS61234054A/en
Publication of JPS61234054A publication Critical patent/JPS61234054A/en
Publication of JPS6227543B2 publication Critical patent/JPS6227543B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent wirings from being stepwisely disconnected by leading aluminum wirings from the contact of a function element so as not to cross an etched groove (e.g., in parallel), and externally leading it at the position without etched groove from a single crystal silicon island. CONSTITUTION:The conventional manufacturing process can be used up to the steps before forming aluminum wirings 11. The wirings 11 led from a function element are led laterally along the insular wall of a single crystal silicon island 2, and externally led from the island 2 at the position not extended out of the islands of diffused patterns 7-9. Since the wirings 11 do not cross the etched groove, the wirings 11 are not stepwisely disconnected.

Description

【発明の詳細な説明】 本発明は、複数の単結晶シリコン島領域を相互に絶縁分
離し、多結晶シリコンで支持固定した誘電体分離基板に
、複数の機能素子を高集積化した半導体装置に係り、特
に広敷パターンが単結晶シリコン島領域からはみ出して
形成された構造の半導体装置において1機能素子からの
引出し配線の段切れを防止するようにした集積半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor device in which a plurality of functional elements are highly integrated on a dielectric isolation substrate in which a plurality of single-crystal silicon island regions are isolated from each other and supported and fixed with polycrystalline silicon. In particular, the present invention relates to an integrated semiconductor device in which disconnection of lead wiring from a single functional element is prevented in a semiconductor device having a structure in which a wide pattern extends beyond a single-crystal silicon island region.

誘電体分離法は、SiOx膜等の誘電体膜で機能素子間
を絶縁分離する方法で、一般に広く用いられているpn
接合分離に比べ、製造プロセスの煩雑さや高集積化の困
難さがあり、製造コストが高い欠点もあるが、寄生容量
や絶縁耐圧の点で理想的な分離特性が得られる。このた
め、特に高耐圧、交流回路のIC等に適用するには最も
優れた分離方法である。
The dielectric isolation method is a method of insulating and isolating functional elements using a dielectric film such as a SiOx film.
Compared to junction isolation, it has the drawbacks of a complicated manufacturing process, difficulty in achieving high integration, and high manufacturing costs, but it provides ideal isolation characteristics in terms of parasitic capacitance and dielectric strength. For this reason, it is the most excellent separation method especially when applied to high-voltage, AC circuit ICs, etc.

従来の誘電体分離基板を用いた集積半導体装置について
、第1図およびその拡大断面図である第2図によって説
明し、従来技術の問題点を述べる。
An integrated semiconductor device using a conventional dielectric isolation substrate will be explained with reference to FIG. 1 and FIG. 2, which is an enlarged sectional view thereof, and problems with the conventional technology will be described.

誘電体分離基板1には、互に5iOa膜3で分離された
複数の単結晶シリコン島2が構成されており、全体は多
結晶シリコン5で支持固定されている。これらの単結晶
シリコン島2には、所定のパターンをもって、所定の不
純物を拡散することにより望むところの機能素子が形成
される。
A dielectric isolation substrate 1 includes a plurality of single crystal silicon islands 2 separated from each other by 5iOa films 3, and the entire island is supported and fixed by polycrystalline silicon 5. Desired functional elements are formed in these single crystal silicon islands 2 by diffusing predetermined impurities in a predetermined pattern.

誘電体分離法を採用した場合は、その構造上あまり集積
度を高くできないが、安価な半導体装置を得るには小さ
い単結晶シリコン島2内に機能素子を構成することが望
まれる。
If the dielectric isolation method is adopted, the degree of integration cannot be increased very much due to its structure, but it is desirable to configure functional elements within the small single crystal silicon island 2 in order to obtain an inexpensive semiconductor device.

誘電体分離基板1の分離溝4は1百方位100のn形シ
リコンウェハを異方性エツチングして形成されるが、高
い寸法精度を得るのは困難である。
The isolation grooves 4 of the dielectric isolation substrate 1 are formed by anisotropically etching an n-type silicon wafer in 100 directions, but it is difficult to obtain high dimensional accuracy.

特に縦方向に厚い単結晶シリコン島2を得るには分離溝
4を深く形成しなければならないので、寸法精度は悪く
なる。
In particular, in order to obtain a thick monocrystalline silicon island 2 in the vertical direction, the separation trenches 4 must be formed deeply, resulting in poor dimensional accuracy.

また、誘電体分離基板1は、単結晶シリコンの主表面側
を研磨あるいはエツチングで、個々の単結晶シリコン島
2に分離して形成するが、ウェハの彎曲や研磨精度の不
安定性から寸法精度が著しく悪く、ウェハ内の均一性や
再現性も低い、そのうえ、誘電体分離基板1と拡散パタ
ーン(n十拡散パターン8やp拡散パターン9など)の
位置合せは5分離溝4と同時に形成され、かつ研磨機主
表面に現われる合わせマーク(図示せず)を用いて行わ
れるので、5〜10μmの合わせずれが生じることが多
い。
Further, the dielectric isolation substrate 1 is formed by polishing or etching the main surface side of single crystal silicon to separate it into individual single crystal silicon islands 2, but dimensional accuracy may be affected due to wafer curvature and instability of polishing accuracy. The uniformity and reproducibility within the wafer are extremely poor. Furthermore, the alignment of the dielectric isolation substrate 1 and the diffusion patterns (N+ diffusion pattern 8, P diffusion pattern 9, etc.) is formed at the same time as the 5-separation groove 4. In addition, since alignment marks (not shown) appearing on the main surface of the polishing machine are used, alignment deviations of 5 to 10 μm often occur.

一方、高い集積度を得るには機能素子を単結晶シリコン
島2の島壁に接近して形成することが必要になる。従っ
て、拡散パターンが島壁に接近する設計になる。このた
め、誘電体分離基板1に寸法精度がないと、単結晶シリ
コン島2から拡散パターンがはみ出すことがある。拡散
パターンが単結晶シリコン島領域2からはみ出ると、素
子表面のパッシベーション用5iOi膜6に拡散窓をエ
ツチングで開孔するとき、同時に分離用の5iOz膜3
がエツチングされ、エッチ溝12を生ずる。
On the other hand, in order to obtain a high degree of integration, it is necessary to form functional elements close to the island wall of the single crystal silicon island 2. Therefore, the design is such that the diffusion pattern approaches the island wall. Therefore, if the dielectric isolation substrate 1 lacks dimensional accuracy, the diffusion pattern may protrude from the single crystal silicon island 2. When the diffusion pattern protrudes from the single-crystal silicon island region 2, when a diffusion window is etched in the 5iOi film 6 for passivation on the element surface, the 5iOz film 3 for isolation is simultaneously etched.
is etched, creating an etch groove 12.

分離用5iOa膜3はウェハの主表面から内部に向って
約53度の傾斜で縦方向に構成されており、一度エッチ
ングされるとその後の酸化でも縦方向にほとんど成長し
ない。従って、この部分はエツチングされたままの状態
で残り、逆に拡散窓部には5ins膜が成長する。この
ため、エッチ溝12は一層深くなる。また、エッチ溝1
2の深さはエツチング時のオーバエツチングやパターン
のはみ出しが繰返されるとさらに増大する。
The isolation 5iOa film 3 is formed vertically with an inclination of about 53 degrees inward from the main surface of the wafer, and once etched, it hardly grows in the vertical direction even during subsequent oxidation. Therefore, this portion remains etched and, conversely, a 5-ins film grows in the diffusion window. Therefore, the etched groove 12 becomes deeper. Also, etch groove 1
The depth of 2 increases as overetching and pattern protrusion during etching are repeated.

近年、逆耐圧の高い素子が要求され、パッシベーション
膜の膜厚がより厚くなる傾向にあり、これに伴ってエッ
チ溝12よりも深くなる傾向にある。この結果、機能素
子のコンタクト窓10からの取出し用Afi配線11(
平面図ではハツチングを付けて示している。)がこのエ
ッチ溝部上で断線するいわゆる段切れ事故が生ずるよう
になった。
In recent years, elements with high reverse breakdown voltage have been required, and the passivation film tends to be thicker, and accordingly, the passivation film tends to be deeper than the etched groove 12. As a result, the Afi wiring 11 for taking out from the contact window 10 of the functional element (
It is shown with hatching in the plan view. ) has started to break on this etched groove, a so-called breakage accident.

一般に段差部における平坦化技術には、PSG膜のガラ
スフローやスピンオンガラス等が適用されている。第1
.2図の7は段差緩和用パターンである。この平坦化技
術は、IC等の浅い段差であれば効果はきわめて大きい
が、深くて幅の狭いエッチ溝部12は、上記した平坦化
技術の適用では容易に改善できない。
Generally, glass flow of a PSG film, spin-on glass, etc. are applied to flattening the stepped portion. 1st
.. 7 in FIG. 2 is a pattern for alleviating the step difference. This planarization technique is extremely effective for shallow steps such as ICs, but deep and narrow etch grooves 12 cannot be easily improved by applying the above-described planarization technique.

段差部の発生を避けるために、単結晶シリコン島外には
み出さないように機能素子を配置しようとすれば、かな
り大きい寸法の余裕度を見込んで設計しなければならず
、集積度が著しく悪くなる。
If you try to arrange functional elements so that they do not protrude outside the single-crystal silicon island in order to avoid the occurrence of stepped portions, you will have to design with a fairly large dimensional margin in mind, which will significantly degrade the degree of integration. Become.

本発明の目的は、上記した欠点を改善し、配線の段切れ
を防止した集積半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated semiconductor device that improves the above-mentioned drawbacks and prevents disconnection of wiring.

本発明は、機能素子からの取り出し配線の断線が拡散パ
ターンのはみ出しで生じるエッチ溝における段切れに起
因することを確認し、この段切れを解消する手段を提供
するものである。
The present invention confirms that the disconnection of the lead-out wiring from the functional element is caused by a break in the etch groove caused by the protrusion of the diffusion pattern, and provides means for eliminating this break.

段切れ解消の本発明手段は、機能素子のコンタクト部か
らのAΩ配線がエッチ溝を横切らないように(例えば、
これと平行に)引出し、エッチ溝のない位置で単結晶シ
リコン島から外部に引出すことである。
The means of the present invention for eliminating step breakage is to prevent the AΩ wiring from the contact portion of the functional element from crossing the etched groove (for example,
(parallel to this), and is drawn out from the single-crystal silicon island at a position where there are no etched grooves.

以下、本発明を、図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

次に本発明の一実施例について第3図によって説明する
。AI2配線11を形成する前の工程までは従来の製造
プロセスと同じである0機能素子からの取出しAQ配線
11は、単結晶シリコン島2の島壁に沿って横方向に引
出され、拡散パターン?、8.9の高昇へのはみ出しの
ない位置で単結晶シリコン島2から外部に引出される。
Next, one embodiment of the present invention will be described with reference to FIG. The steps before forming the AI2 wiring 11 are the same as the conventional manufacturing process.The AQ wiring 11 taken out from the 0 functional element is drawn out laterally along the island wall of the single crystal silicon island 2, and is formed into a diffusion pattern. , 8.9, and is pulled out from the single crystal silicon island 2 at a position that does not protrude to a height of 8.9.

この実施例では、AQ配線11がエッチ溝を横断しない
ので配線11の段切れによる断線は起らない。しかし、
この実施例では取出し配線を最短距離で引出すことがで
きないため配線の余裕度は幾分者る。
In this embodiment, since the AQ wiring 11 does not cross the etch groove, disconnection due to a break in the wiring 11 does not occur. but,
In this embodiment, the lead-out wiring cannot be drawn out at the shortest distance, so there is some margin for wiring.

以上のように本発明によれば、誘電体分離基板に高密度
に機能素子を配置し、単結晶シリコン島領域から拡散パ
ターンのはみ出しがある高集積半導体装置において、機
能素子からの取出し配線に段切れによる断線のない集積
半導体装置が得られる。
As described above, according to the present invention, in a highly integrated semiconductor device in which functional elements are arranged at high density on a dielectric isolation substrate and a diffusion pattern protrudes from a single crystal silicon island region, there is a step in the lead-out wiring from the functional elements. An integrated semiconductor device without disconnection due to cuts can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来の集積半導体装置の平面図。 同図(b)はその等価回路図、第2図は第1図の■−■
切断線に沿った部分拡大縦断面図、第3図は本発明の実
施例の平面図である。 1・・・誘電体分離基板、2・・・単結晶シリコン島領
域、3・・・分離用5ins膜、7・・・段差緩和用パ
ターン。 第 1囚
FIG. 1(a) is a plan view of a conventional integrated semiconductor device. The same figure (b) is the equivalent circuit diagram, and Figure 2 is the ■-■ of Figure 1.
FIG. 3 is a partially enlarged longitudinal sectional view taken along the cutting line, and is a plan view of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Dielectric isolation substrate, 2... Single crystal silicon island region, 3... 5ins film for isolation, 7... Pattern for level difference mitigation. 1st prisoner

Claims (1)

【特許請求の範囲】[Claims] 1、多結晶シリコン支持体に誘電体膜の島壁を介して設
けられた複数の単結晶シリコン島領域の主表面に、回路
を構成する機能素子の拡散パターンがその一部を単結晶
シリコン島領域からはみ出して形成されたものにおいて
、機能素子の取出し配線が拡散パターンの島壁を越えて
いる部分から離れた個所によつて単結晶シリコン島領域
からその外部に引出されたことを特徴とする集積半導体
装置。
1. On the main surface of a plurality of single-crystal silicon island regions provided on a polycrystalline silicon support through island walls of a dielectric film, a diffusion pattern of functional elements constituting a circuit forms a part of the single-crystal silicon island. In the case where the wiring is formed protruding from the single-crystal silicon island region, it is characterized in that the lead-out wiring of the functional element is led out from the single-crystal silicon island region at a location apart from the portion beyond the island wall of the diffusion pattern. Integrated semiconductor device.
JP9453786A 1986-04-25 1986-04-25 Integrated semiconductor device Granted JPS61234054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9453786A JPS61234054A (en) 1986-04-25 1986-04-25 Integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9453786A JPS61234054A (en) 1986-04-25 1986-04-25 Integrated semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13002679A Division JPS5655061A (en) 1979-10-11 1979-10-11 Integrated semiconductor device

Publications (2)

Publication Number Publication Date
JPS61234054A true JPS61234054A (en) 1986-10-18
JPS6227543B2 JPS6227543B2 (en) 1987-06-15

Family

ID=14113068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9453786A Granted JPS61234054A (en) 1986-04-25 1986-04-25 Integrated semiconductor device

Country Status (1)

Country Link
JP (1) JPS61234054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387817A (en) * 1991-12-02 1995-02-07 Oki Electric Industry Co., Ltd. Dielectric isolation substrate having single-crystal silicon islands surrounded by groove and lower conductive layer filling the groove therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387817A (en) * 1991-12-02 1995-02-07 Oki Electric Industry Co., Ltd. Dielectric isolation substrate having single-crystal silicon islands surrounded by groove and lower conductive layer filling the groove therewith

Also Published As

Publication number Publication date
JPS6227543B2 (en) 1987-06-15

Similar Documents

Publication Publication Date Title
US4857477A (en) Process for fabricating a semiconductor device
KR100470086B1 (en) Semiconductor device and manufacturing method thereof
US5232866A (en) Isolated films using an air dielectric
EP0223694A2 (en) Submerged wall isolation of silicon islands
JPH0350420B2 (en)
US5397731A (en) Method of manufacturing semiconductor integrated circuit device
EP0735580A1 (en) Process for realizing trench isolation structures
US4290831A (en) Method of fabricating surface contacts for buried layer into dielectric isolated islands
US5548154A (en) Isoplanar isolated active regions
US4579625A (en) Method of producing a complementary semiconductor device with a dielectric isolation structure
US3738883A (en) Dielectric isolation processes
US3876480A (en) Method of manufacturing high speed, isolated integrated circuit
JPS61234054A (en) Integrated semiconductor device
JPS6228582B2 (en)
JPS61172346A (en) Semiconductor integrated circuit device
JPS6148261B2 (en)
KR940001812B1 (en) Isolation method of semiconductor device
JPS60751A (en) Manufacture of substrate for semiconductor integrated circuit
JPS62130537A (en) Method of separating elements of integrated circuit
JP3146582B2 (en) Vertical bipolar transistor having SOI structure and method of manufacturing the same
JPS63199454A (en) Semiconductor device
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPH011233A (en) Method for manufacturing semiconductor devices and masks used in the method
KR100204418B1 (en) Method for forming an element isolation in a semiconductor device
JP3157595B2 (en) Dielectric separation substrate