JPS6123403A - Differential amplifier circuit - Google Patents

Differential amplifier circuit

Info

Publication number
JPS6123403A
JPS6123403A JP59142362A JP14236284A JPS6123403A JP S6123403 A JPS6123403 A JP S6123403A JP 59142362 A JP59142362 A JP 59142362A JP 14236284 A JP14236284 A JP 14236284A JP S6123403 A JPS6123403 A JP S6123403A
Authority
JP
Japan
Prior art keywords
load
voltage
terminal
amplifier circuit
offset adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59142362A
Other languages
Japanese (ja)
Other versions
JPH051646B2 (en
Inventor
Takashi Sase
隆志 佐瀬
Masahiro Ueno
雅弘 上野
Hideo Sato
秀夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59142362A priority Critical patent/JPS6123403A/en
Publication of JPS6123403A publication Critical patent/JPS6123403A/en
Publication of JPH051646B2 publication Critical patent/JPH051646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45624Indexing scheme relating to differential amplifiers the LC comprising balancing means, e.g. trimming means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45632Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors coupled to the LC by feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45664Indexing scheme relating to differential amplifiers the LC comprising one or more cascaded inverter stages as output stage at one output of the dif amp circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45681Indexing scheme relating to differential amplifiers the LC comprising offset compensating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45722Indexing scheme relating to differential amplifiers the LC comprising one or more source followers, as post buffer or driver stages, in cascade in the LC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To widen the input voltage range and to attain ease of offset adjustment by changing a control voltage of a sub load element connected in parallel with a load element of a differential amplifier pair. CONSTITUTION:Load MOS13, 14 are formed by connecting a load MOS13a and a sub load MOS13b, and a load MOS14a and a sub load MOS14b respectively in parallel. Then an inverting input terminal 1 and an output terminal 3 are connected, a level of a non-inverting input terminal 2 is brought into a ground potential to change a voltage impressed to an offset adjusting terminal 4b thereby adjusting a voltage at the terminal 3 to be zero. Thus, the control voltage of the MOS14b is changed and the current of the MOS14b corresponds to the increase/ decrease in the current of the amplifier circuit comprising drive MOS12, MOS 14a, 14b. On the other hand, the current of the other amplifier circuit changes reversely and the offset adjustment is attained.

Description

【発明の詳細な説明】 (発明の利用分野〕 本発明は差動増幅回路に係り、特にオフセット調整を良
好に行うのに好適な差動増幅回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a differential amplifier circuit, and particularly to a differential amplifier circuit suitable for performing offset adjustment well.

〔発明の背景〕[Background of the invention]

従来のオフセット調整付モノリシック差動増幅回路とし
ては、 CMO8増幅回路を例にとれば第1図に示す回
路構成のものがある。第1図において、1は反転入力端
子、2は非反転入力端子、3は出力端子、4a、4bは
オフセット調整端子、5は高電位電源電圧端子、6は低
電位電源電圧端子で、青電流源10、駆動MO8II、
12、負荷MOS13.14および抵抗15.16で第
1の増幅段を構成し、定電流20と駆動MO821とで
第2の増幅段を構成し、また、定電流源30と駆動MO
831とでソースフォロワ形の出力段を構成し、さらに
周波数補償用コンデンサ32を設けである。
As an example of a conventional monolithic differential amplifier circuit with offset adjustment, there is a CMO8 amplifier circuit having a circuit configuration as shown in FIG. In Figure 1, 1 is an inverting input terminal, 2 is a non-inverting input terminal, 3 is an output terminal, 4a and 4b are offset adjustment terminals, 5 is a high potential power supply voltage terminal, 6 is a low potential power supply voltage terminal, and blue current source 10, drive MO8II,
12, the load MOS 13.14 and the resistor 15.16 constitute a first amplification stage, the constant current 20 and drive MO821 constitute a second amplification stage, and the constant current source 30 and drive MO
831 constitutes a source follower type output stage, and a frequency compensation capacitor 32 is further provided.

オフセット調整は、第1図に示すように、負荷MO81
3,14にそれぞれ直列に抵抗15゜16を接続した回
路のそれぞれの接続点の電位が等しくなるようにオフセ
ット調整端子4a、4bの外部に可変抵抗を接続してバ
ランスをとって行うようにしてある。
Offset adjustment is performed using the load MO81 as shown in Figure 1.
A variable resistor is connected externally to the offset adjustment terminals 4a and 4b to maintain balance so that the potentials at the respective connection points of the circuit in which resistors 15 and 16 are connected in series with terminals 3 and 14 are equal. be.

しかし、オフセット調整のために負荷MO813.14
にそれぞれ抵抗15.16を直列に接続したことにより
負荷MO815,16が分担する電圧が増加し、駆動M
o511および12の動作範囲がせばめられ、その結果
、扱える入力電圧の範囲がせまくなるという欠点を有し
ている。すなわち、第1図の構成では、単一電源で動作
させる場合に零入力電圧が扱えないという問題がある。
However, for offset adjustment the load MO813.14
By connecting resistors 15 and 16 in series to each, the voltage shared by the loads MO815 and 16 increases, and the drive M
This has the disadvantage that the operating range of o511 and o512 is narrowed, and as a result, the range of input voltage that can be handled is narrowed. That is, the configuration shown in FIG. 1 has a problem in that it cannot handle quiescent voltage when operated with a single power supply.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、入力電圧範囲が広く、しがも、オフセット調
整を良好に行うことができる。差動増幅回路を提供する
ことにある。
The present invention has been made in view of the above, and its purpose is to provide a wide input voltage range, and also to be able to perform offset adjustment favorably. An object of the present invention is to provide a differential amplifier circuit.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、差動増幅回路の差動増幅対の一方また
は両方の負荷素子に副負荷素子を並列に接続し、上記各
副負荷素子の一方または両方の制御電圧を可変とする構
成とした点にある。
The present invention is characterized by a configuration in which a sub-load element is connected in parallel to one or both load elements of a differential amplifier pair of a differential amplifier circuit, and the control voltage of one or both of the sub-load elements is made variable. That's the point.

〔発明の実施例〕 以下本発明を第2図〜第4図、第6図、第7図に示した
実施例および第5図を用いて詳細に説明する。
[Embodiments of the Invention] The present invention will be described in detail below with reference to the embodiments shown in FIGS. 2 to 4, 6, and 7, and FIG. 5.

第2図は本発明の差動増幅回路の一実施例を示す回路図
で、第1図と同一部分は同じ符号で示し、ここでは説明
する。第2図においては、第1図の負荷MO813,1
4をそれぞれ負荷MO813aと耐負荷MO813b、
負荷MO814aと耐負荷MO814bとを並列接続し
たものに代えてあり、これらを図のように接続して抵抗
15.16をなくした構成としてある。なお、駆動MO
811,12はP−チャネル形、その他のものはN−チ
ャネル形で、また、駆動MO831のようにサブストレ
ー電極が図示してないものは、P−チャネル形のものは
低電位電源電圧端子5、N−チャネル形のものは低電位
電源電圧端子6に接続してある。そして、負荷MO81
3a、14aおよび耐負荷MO813b、14bの寸法
の設定に当っては、第1図の負荷MO813,14の寸
法となるようにそれぞれ分割したものを用いるようにし
てもよく、負荷MO813,14と同一寸法の負荷MO
813a、14aに耐負荷MO813b。
FIG. 2 is a circuit diagram showing an embodiment of the differential amplifier circuit of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals and will be explained here. In FIG. 2, the load MO813,1 in FIG.
4 as load MO813a and load-resistant MO813b, respectively.
The load MO 814a and the load-resistant MO 814b are connected in parallel instead, and these are connected as shown in the figure to eliminate the resistors 15 and 16. In addition, the drive MO
811 and 12 are of P-channel type, and the others are of N-channel type. Also, in the drive MO831 where the substrate electrode is not shown, the P-channel type is connected to the low potential power supply voltage terminal 5, The N-channel type is connected to the low potential power supply voltage terminal 6. And load MO81
When setting the dimensions of 3a, 14a and load-resistant MO813b, 14b, they may be divided so that they have the dimensions of load MO813, 14 in Fig. 1, and are the same as load MO813, 14. Dimensional load MO
813a and 14a have load-bearing MO813b.

14bを追加するようにしてもよい、ただし、この場合
、ゲート幅の寸法のみを可変にし、ゲート長は同寸法で
固定とすることが必要である。
14b may be added, however, in this case, it is necessary to make only the gate width dimension variable and to fix the gate length to the same dimension.

次に、オフセット調整方法について説明する。Next, an offset adjustment method will be explained.

反転入力端子1と出力端子3とを接続し、非反転入力端
子2を接地電位にしてからオフセット調整端子4bに印
加する電圧を変え、出力端子3の電圧が零になるように
調整する。
After connecting the inverting input terminal 1 and the output terminal 3 and setting the non-inverting input terminal 2 to the ground potential, the voltage applied to the offset adjustment terminal 4b is changed so that the voltage at the output terminal 3 becomes zero.

このようなオフセット調整動作により、負荷MO814
aに並列に耐負荷MO814bの制御電圧V、が変化す
るため、耐負荷MO814bに流れる電流1.□は、M
OSの飽和領域動作で考えると、次式の関係により変わ
ることになり、オフセット調整端子4bがある側の第1
の増幅段の増幅回路(駆動MO812、負荷MO8j4
a、耐負荷MO814bからなる部分)に流れる電流の
増減となる。
By such offset adjustment operation, the load MO814
Since the control voltage V of the load-resistant MO 814b changes in parallel to a, the current 1. □ is M
Considering the operation in the saturation region of the OS, it will change according to the relationship of the following equation, and the first
Amplification circuit of the amplification stage (drive MO812, load MO8j4
a, the portion consisting of the load-resistant MO 814b).

ここに、β;副負荷MO814bのプロセス定W/L;
耐負荷MO814bの寸法比 v? ;耐負荷MO814bのしきい電圧すなわち、■
、を大きくすると、オフセット調整端子4b側の増幅回
路の電流が増し、■、を小さくすると、電流I Rum
が減少する。一方、オフセット調整端子4bのある側と
反対側の増幅回路に流れる電流は、上記の場合と反対方
向に変化する。この結果、第1の増幅段の両側の対とな
る増幅口、路がバランスするようにすることができ、オ
フセットの調整が可能と、なる。
Here, β; process constant W/L of sub-load MO814b;
Dimensional ratio v of load-bearing MO814b? ;Threshold voltage of load-resistant MO814b, that is, ■
When , increases, the current of the amplifier circuit on the offset adjustment terminal 4b side increases, and when , decreases, the current I Rum
decreases. On the other hand, the current flowing through the amplifier circuit on the side opposite to the side where the offset adjustment terminal 4b is located changes in the opposite direction to that in the above case. As a result, the pair of amplification ports and paths on both sides of the first amplification stage can be balanced, and the offset can be adjusted.

また、反転入力端子1または非反転入力端子2に印加で
きる低電位側の入力電圧は、駆動MO811および12
のしきい電圧をそれぞれ■□。、負荷M O813aと
耐負荷MO813bおよび負荷MO814aと耐負荷M
O814bのしきい電圧をそれぞれvlとすると、MO
Sが飽和領域動作を行う範囲では、はぼIvy。1−v
oの値まで扱うことができる。したがって、入力電圧は
使用するMOSのしきい電圧のみ依存するため、オフセ
ット調整しているにもかかわらず、最小限の電圧振幅損
失にとどまり、広範囲な動作領域が得られる。そして、
Iv、、1.v□をほぼ等しいしきい電圧値に選んでお
けば、駆動MO8IIおよび12には基板バイアス効果
が加わるため、きらに1v01が大きくなルノテ、I 
vt、 l −V?L> 0の条件を十分に満足し、単
一電源動作において零入力電圧まで扱えることになり、
広い入力電圧範囲を得ることができる。
In addition, the input voltage on the low potential side that can be applied to the inverting input terminal 1 or the non-inverting input terminal 2 is
■□ threshold voltage respectively. , load MO813a and load-resistant MO813b, and load MO814a and load-resistant M
If the threshold voltage of O814b is vl, then MO
In the range where S operates in the saturation region, it is Ivy. 1-v
It can handle up to the value of o. Therefore, since the input voltage depends only on the threshold voltage of the MOS used, the voltage amplitude loss remains at a minimum despite offset adjustment, and a wide operating range can be obtained. and,
IV,,1. If v□ is selected to have approximately the same threshold voltage value, the substrate bias effect will be added to drive MO8II and 12, so that 1v01 will be large.
vt, l −V? It fully satisfies the condition of L > 0 and can handle up to 0 input voltage in single power supply operation,
A wide input voltage range can be obtained.

上記した本発明の実施例によれば、差動増幅回路の第1
の増幅段の対となる増幅回路の負荷MO813a、14
aにそれぞれ耐負荷MO813b。
According to the embodiment of the present invention described above, the first
Load MO813a, 14 of the amplifier circuit that is a pair of amplifier stages of
a and a load-resistant MO813b, respectively.

14bを並列に設け、その耐負荷MO813b。14b is provided in parallel, and its load-resistant MO813b.

14bを制御することにより上記各増幅回路の電流を互
いに反対方向に可変できるので、オフセット調整が可能
である。
By controlling 14b, the currents of the respective amplifier circuits can be varied in opposite directions, so that offset adjustment is possible.

また、オフセット調整のために付加した耐負荷MO81
3b、14bは上記各増幅回路の負荷MO813a、1
4aにそれぞれ並列に設けであるので、電圧損失がなく
、しかも、入力電圧範囲を広くとることができる。
In addition, load-resistant MO81 added for offset adjustment.
3b and 14b are the loads MO813a and 1 of each of the above amplifier circuits.
4a, so there is no voltage loss and the input voltage range can be widened.

なお、第2図に示す実施例では、耐負荷MO814bの
制御によりオフセット調整をしているが、第3図に示す
ように、他方の耐負荷MO813bにもオフセット調整
端子4aを設けて、?1lii者でオフセット調整を行
うようにしてもよく、同様の効果を得ることができる。
In the embodiment shown in FIG. 2, the offset is adjusted by controlling the load-resistant MO 814b, but as shown in FIG. 3, the other load-resistant MO 813b is also provided with an offset adjustment terminal 4a. The offset adjustment may be performed by a second person, and the same effect can be obtained.

また、第4図は本発明の他の実施例を示す第2図に相当
する回路図で、第2図と同一部は同じ符号で示してある
。第2図と異なる点は、耐負荷MO814bはMO81
4cとカレントミラーを構成し、オフセット調整端子4
bに電流を注入して制御するようにしたことにある。こ
れによる効果は、カレントミラーにより第1の増幅段の
電流を微小にできることであり、第2図と第4図の回路
を比較したとき、オフセット調整端子4bから見た電圧
V−tt  (第4図ではV、1.は電流の換算値)と
出力端子3に得られる電圧■。どの関係は     )
第5図に示すようになる。第5図において、a曲線は第
2図の回路の場合、5曲線は第、4図の回路の場合であ
り、オフセット調整としては傾斜■。
Moreover, FIG. 4 is a circuit diagram corresponding to FIG. 2 showing another embodiment of the present invention, and the same parts as in FIG. 2 are indicated by the same symbols. The difference from Fig. 2 is that the load capacity MO814b is MO81
4c constitutes a current mirror, and offset adjustment terminal 4
The reason is that it is controlled by injecting a current into b. The effect of this is that the current in the first amplification stage can be made very small by the current mirror, and when comparing the circuits of FIG. 2 and FIG. In the figure, V, 1. is the converted value of current) and the voltage obtained at output terminal 3. Which relationship is )
The result is as shown in FIG. In FIG. 5, curve a is for the circuit shown in FIG. 2, curve 5 is for the circuit shown in FIGS.

/ V −g * が小さい方が好ましく、5曲線の場
合の方がよい。このことは、V a t tの範囲が広
くとれるため、■、5.を大きく変えても、voの変化
を小さくできることを示している。したがって、第2図
の回路に比べ、オフセット調整時の微調整が容易になり
、さらに安定にオフセット調整をすることができる。し
かも、この場合も第2図の回路の場合と同様、第1の増
幅段にオフセット調整による電圧振幅損失が生じないの
で、広範囲の入力電圧を扱うことができる。
/V-g* is preferably smaller, and the case of 5 curves is better. This means that the range of V a t t can be widened; This shows that even if vo is changed significantly, the change in vo can be made small. Therefore, compared to the circuit shown in FIG. 2, fine adjustment during offset adjustment is easier, and offset adjustment can be performed more stably. Moreover, in this case, as in the case of the circuit shown in FIG. 2, no voltage amplitude loss occurs in the first amplification stage due to offset adjustment, so that a wide range of input voltages can be handled.

また、第6図は本発明のさらに他の実施例を示す第2@
に相当する回路図で、第2図、第4図と同一部分は同じ
符号で示してある。第6図の第4図と異なるところは、
MO814cとオフセット調整端子4bとの間に抵抗4
1を接続した点にある。第6図によれば、第4図のオフ
セット調整は電流であったのに対して電圧で行うように
なるだけで、効果は同一である。
Moreover, FIG. 6 shows a second @ showing still another embodiment of the present invention.
In this circuit diagram, the same parts as in FIGS. 2 and 4 are designated by the same reference numerals. The differences between Figure 6 and Figure 4 are as follows:
A resistor 4 is connected between the MO814c and the offset adjustment terminal 4b.
It is at the point where 1 is connected. According to FIG. 6, the offset adjustment in FIG. 4 was performed using a current, but is now performed using a voltage, and the effect is the same.

また、以上述べた実施例においては、すべてP−チャネ
ル形MO8を第1の増幅段の駆動MO811,12とし
て用いているが、これをN−チャネル形MO8としても
よく、そのときの実施例を第7図に示す。第7図におい
て、100,200゜30は定電流源、101,102
は第1の増幅段の駆動MO8,103,104は負荷M
O8,105,108はそれぞれ負荷MO8103゜1
04に並列に設けた耐負荷MO8,201は第2の増幅
段の駆動MO8,31は出力段の駆動MO8,32はコ
ンデンサである。オフセット調整端子4aはセルフバイ
アス側の負荷M OS 103に並列に接続した耐負荷
MO8105から取り出してある。この場合、これまで
の実施例の場合と同様、耐負荷MO8106を制御する
ようにしてもよく、いずれも同様の効果が得られる。な
お、この場合、単一電源動作においては、定電流源10
0が低電位電源電圧端子6側に付いているので、零入力
電圧は扱えないが、高電位電圧側の範囲が拡大するので
、入力電圧範囲を広くとれるという効果が得られる。ま
た、第7図の回路は、第4図、第6図の場合と同様の効
果もある。
In addition, in all the embodiments described above, P-channel type MO8 is used as the drive MO8 811, 12 of the first amplification stage, but it is also possible to use N-channel type MO8. It is shown in FIG. In Fig. 7, 100, 200°30 are constant current sources, 101, 102
is the drive MO8, 103, 104 of the first amplification stage is the load M
O8, 105, 108 are each load MO8103゜1
The load-resistant MO8, 201 provided in parallel with 04 is the drive MO8, 31 of the second amplification stage, and the drive MO8, 32 of the output stage is a capacitor. The offset adjustment terminal 4a is taken out from a load-resistant MO 8105 connected in parallel to the load MOS 103 on the self-bias side. In this case, as in the previous embodiments, the load-resistant MO 8106 may be controlled, and the same effect can be obtained in either case. In this case, in single power supply operation, the constant current source 10
0 is attached to the low-potential power supply voltage terminal 6 side, it cannot handle a 0-input voltage, but since the range on the high-potential voltage side is expanded, the effect of widening the input voltage range can be obtained. Further, the circuit shown in FIG. 7 has the same effects as those shown in FIGS. 4 and 6.

また、これまで述べてきた差動増幅回路は、CMO8を
用いであるが、単チャネルMO8、バイポーラトランジ
スタ等を用いて構成してもよく、同様の効果を得ること
ができる。
Further, although the differential amplifier circuit described so far uses the CMO8, it may be configured using a single channel MO8, bipolar transistors, etc., and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、入力電圧範囲を
広くすることができ、しかも、オフセット調整を良好に
行うことができるという効果がある。
As described above, according to the present invention, the input voltage range can be widened, and offset adjustment can be performed satisfactorily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のオフセット調整付モノリシック差動増幅
回路の回路図、第2図は本発明の差動増幅回路の一実施
例を示す回路図、第3図、第4図。 第6図、第7図はそれぞれ本発明の他の実施例を示す第
2図に相当する回路図、第5図は第2図と第4図の場合
のオフセット調整端子から見た電圧V0..と出力端子
に得られる電圧V、との関係の比較を示す線図である。 1・・・反転入力端子、2・・・非反転入力端子、3・
・・出力端子、4a、4b・・・オフセット調整端子、
5・・・高電位電源電圧端子、6・・・低電位電源電圧
端子、10.20,30.j−00,200・・・定電
流源、11.12,21,81,101,102,20
1・・・駆動MO5,13g、14a、103,104
・・・負荷MO8,13b、14b、105,106’
fy5fl。
FIG. 1 is a circuit diagram of a conventional monolithic differential amplifier circuit with offset adjustment, FIG. 2 is a circuit diagram showing an embodiment of the differential amplifier circuit of the present invention, and FIGS. 3 and 4. 6 and 7 are circuit diagrams corresponding to FIG. 2 showing other embodiments of the present invention, and FIG. 5 shows the voltage V0. .. FIG. 3 is a diagram showing a comparison of the relationship between the voltage V obtained at the output terminal and the voltage V obtained at the output terminal. 1... Inverting input terminal, 2... Non-inverting input terminal, 3...
...output terminal, 4a, 4b...offset adjustment terminal,
5... High potential power supply voltage terminal, 6... Low potential power supply voltage terminal, 10.20, 30. j-00,200...constant current source, 11.12,21,81,101,102,20
1... Drive MO5, 13g, 14a, 103, 104
...Load MO8, 13b, 14b, 105, 106'
fy5fl.

Claims (1)

【特許請求の範囲】 1、差動増幅対を有する差動増幅回路において、該差動
増幅回路のオフセット調整を行うために、前記差動増幅
対の一方または両方の負荷素子に副負荷素子を並列に接
続し、前記各副負荷素子の一方または両方の制御電圧を
可変とする構成としてあることを特徴とする差動増幅回
路。 2、前記副負荷素子は、カレントミラーを構成するよう
に同属の素子が接続してあり、該同属の素子に流れる電
流を可変にしてオフセット調整を行うように構成してあ
る特許請求の範囲第1項記載の差動増幅回路。
[Claims] 1. In a differential amplifier circuit having a differential amplifier pair, in order to perform offset adjustment of the differential amplifier circuit, an auxiliary load element is provided as one or both load elements of the differential amplifier pair. What is claimed is: 1. A differential amplifier circuit, characterized in that the sub-load elements are connected in parallel and have a configuration in which the control voltage of one or both of the sub-load elements is variable. 2. The auxiliary load element is configured to have elements of the same type connected to form a current mirror, and to perform offset adjustment by varying the current flowing through the elements of the same type. The differential amplifier circuit according to item 1.
JP59142362A 1984-07-11 1984-07-11 Differential amplifier circuit Granted JPS6123403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142362A JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142362A JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPS6123403A true JPS6123403A (en) 1986-01-31
JPH051646B2 JPH051646B2 (en) 1993-01-08

Family

ID=15313614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142362A Granted JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JPS6123403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338314A (en) * 1986-08-01 1988-02-18 Nec Corp Differential input circuit
US4777451A (en) * 1986-09-13 1988-10-11 Fujitsu Limited Differential circuit
JP2005217722A (en) * 2004-01-29 2005-08-11 Matsushita Electric Ind Co Ltd Amplifier circuit for optical disk device
JP2005223627A (en) * 2004-02-05 2005-08-18 Asahi Kasei Microsystems Kk Operational amplifier circuit
US9667209B2 (en) 2014-11-14 2017-05-30 Fuji Electric Co., Ltd. Amplifying device and offset voltage correction method
KR102560967B1 (en) * 2023-03-27 2023-07-27 사공근 Steam boiler system with an improved catch steam separate structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097705A (en) * 1974-01-09 1975-08-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097705A (en) * 1974-01-09 1975-08-04

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338314A (en) * 1986-08-01 1988-02-18 Nec Corp Differential input circuit
JPH0572126B2 (en) * 1986-08-01 1993-10-08 Nippon Electric Co
US4777451A (en) * 1986-09-13 1988-10-11 Fujitsu Limited Differential circuit
JP2005217722A (en) * 2004-01-29 2005-08-11 Matsushita Electric Ind Co Ltd Amplifier circuit for optical disk device
JP4702921B2 (en) * 2004-01-29 2011-06-15 パナソニック株式会社 Amplifier circuit for optical disk device
JP2005223627A (en) * 2004-02-05 2005-08-18 Asahi Kasei Microsystems Kk Operational amplifier circuit
US9667209B2 (en) 2014-11-14 2017-05-30 Fuji Electric Co., Ltd. Amplifying device and offset voltage correction method
KR102560967B1 (en) * 2023-03-27 2023-07-27 사공근 Steam boiler system with an improved catch steam separate structure

Also Published As

Publication number Publication date
JPH051646B2 (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US3914702A (en) Complementary field-effect transistor amplifier
US5933056A (en) Single pole current mode common-mode feedback circuit
US5045806A (en) Offset compensated amplifier
JPH0629761A (en) Differential amplifier provided with reinforced in-phase mode stability
JPH0786850A (en) Perfect differential operational amplifier and same phase reconstruction in differential operational amplifier
US4918399A (en) Common mode sensing and control in balanced amplifier chains
US4523105A (en) Full wave rectifier circuit for small signals
US4045747A (en) Complementary field effect transistor amplifier
JPH077340A (en) Fully differential amplifier
US6529077B1 (en) Gain compensation circuit for CMOS amplifiers
US4933643A (en) Operational amplifier having improved digitally adjusted null offset
JPS6123403A (en) Differential amplifier circuit
JP2591981B2 (en) Analog voltage comparator
US4446444A (en) CMOS Amplifier
JPH11340753A (en) Arithmetic amplifier
JP3081210B2 (en) Linear gain amplifier
US4603267A (en) Low offset single ended MOS comparator
JPH01126811A (en) Common mode feedback circuit for full differential amplifier
JP3286826B2 (en) Variable gain amplifier circuit
JP2002057534A (en) Amplifier circuit
JPH03154508A (en) Amplifier circuit and bias circuit thereof
JP2560134B2 (en) Adjustable gain differential amplifier
JPS58220508A (en) Operational amplifier
JPH09139642A (en) Amplifier
JPS63117503A (en) Differential amplifier circuit