JPS58220508A - Operational amplifier - Google Patents
Operational amplifierInfo
- Publication number
- JPS58220508A JPS58220508A JP57102191A JP10219182A JPS58220508A JP S58220508 A JPS58220508 A JP S58220508A JP 57102191 A JP57102191 A JP 57102191A JP 10219182 A JP10219182 A JP 10219182A JP S58220508 A JPS58220508 A JP S58220508A
- Authority
- JP
- Japan
- Prior art keywords
- transistors
- output stage
- voltage
- channel type
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Amplifiers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は差動増幅回路と出力回路の一体化を図ることに
よって位相遅れを小さくし、高周波領域においても安定
に動作するMOS トランジスタ形演算増幅器に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MOS transistor operational amplifier that reduces phase delay by integrating a differential amplifier circuit and an output circuit, and operates stably even in a high frequency range.
第1図は従来の広帯域増幅に適した演算増幅器の回路図
の一例を示すもので、 MOS )ランジスタ(以下単
にトランジスタという。)1乃至5よりなる差動増幅回
路と、トランジスタ6及び7よりなる位相補償用バッフ
ァのソース・ホロワ回路と、トランジスタ8,9及び1
0よりなる出力段のカスコード回路及び位相補償容量1
1により構成されている。なお、12は反転入力端子、
13は非反転入力端子、14は出力端子、15及び16
は電源端子を示し、VBよ及びVB□は各増幅段の動作
点を定めるバイアス電圧でアル。Figure 1 shows an example of a circuit diagram of a conventional operational amplifier suitable for wideband amplification. Source follower circuit of phase compensation buffer and transistors 8, 9 and 1
Output stage cascode circuit consisting of 0 and phase compensation capacitor 1
1. Note that 12 is an inverting input terminal;
13 is a non-inverting input terminal, 14 is an output terminal, 15 and 16
indicates a power supply terminal, and VB and VB□ are bias voltages that determine the operating point of each amplification stage.
このように構成された演算増幅器においては、電圧利得
はトランジスタ1乃至5よりなる差動増幅回路とトラン
ジスタ8,9及び10よりなる出力段とで得ており、こ
の2段の増幅段でそれぞれ位相遅れを生じ、高い周波数
に対する位相遅れは各段で90°に達し、全体では18
C以上になるだめ、この回路を負帰還回路に応用すると
き、高周波領域で発振する等の不安定な動作を引き起す
。高周波領域での安定化のため位相補償回路が必要にな
るが、ここでは差動増幅回路の周波数帯域を制限するこ
とによってそれを実現している。従って、出力段にカス
コード回路を採用し、入力容量低減によって差動増幅回
路の周波数帯域を広げようとしても、位相補償容量11
の付加により効果が少くなり、広帯域で安定に動作する
演算増幅器を実現することが難しいという欠点があった
。In the operational amplifier configured in this way, the voltage gain is obtained by the differential amplifier circuit made up of transistors 1 to 5 and the output stage made up of transistors 8, 9, and 10. The phase delay for high frequencies reaches 90 degrees at each stage, and the total is 18 degrees.
If it exceeds C, when this circuit is applied to a negative feedback circuit, it will cause unstable operation such as oscillation in a high frequency region. A phase compensation circuit is required for stability in the high frequency range, which is achieved here by limiting the frequency band of the differential amplifier circuit. Therefore, even if an attempt is made to widen the frequency band of the differential amplifier circuit by adopting a cascode circuit in the output stage and reducing the input capacitance, the phase compensation capacitor 11
The disadvantage is that the effect decreases due to the addition of , making it difficult to realize an operational amplifier that operates stably over a wide band.
また、位相補償回路のソース・ホロワ回路には広帯域で
あるものが必要であるため消費電力が増加する欠点もあ
り、さらに容量素子を必要とするだめ、集積回路に内蔵
する場合に製造プロセスが複雑になり、経済的でないと
いう欠点もあった。In addition, the source follower circuit of the phase compensation circuit needs to have a wide band, which has the disadvantage of increasing power consumption.Furthermore, it requires a capacitive element, which complicates the manufacturing process when it is built into an integrated circuit. It also had the disadvantage of being uneconomical.
本発明はこれらの欠点を解決するために、位相補償回路
を付加しなくても、高周波域において位相遅れが少く安
定に動作することのできる演算増幅器を提供しようとす
るものである。In order to solve these drawbacks, the present invention aims to provide an operational amplifier that can stably operate with little phase delay in a high frequency range without adding a phase compensation circuit.
第2図は本発明の一実施例の回路構成を示すもので、1
2は反転入力端子、13は非反転入力端子、14は出力
端子、15及び16は電源端子を示すことは第1図の場
合と同じであり、21乃至28は入力段を構成するトラ
ンジスタ、29乃至32は出力段を構成するトランジス
タであり、’811 VB2 ”B3及びVB4は各部
の動作点を決めるバイアス電圧である。FIG. 2 shows the circuit configuration of one embodiment of the present invention.
2 is an inverting input terminal, 13 is a non-inverting input terminal, 14 is an output terminal, 15 and 16 are power supply terminals as in the case of FIG. 1, 21 to 28 are transistors constituting the input stage, and 29 32 are transistors constituting the output stage, and '811 VB2' B3 and VB4 are bias voltages that determine the operating points of each part.
ここで、Pチャネル形及びNチャネル形のトランジスタ
25及び、26は第1及び第2の定電流源の機能を持ち
、Nチャネル形のペアトランジスタ22と27及びPチ
ャネル形のペアトランジスタ23と28はそれぞれ同一
特性のトランジスタで差動対を形成しているが、トラン
ジスタ27及び28は負荷素子を持たず直接電源端子1
5及び16へ接続される。Here, P-channel type and N-channel type transistors 25 and 26 have the functions of first and second constant current sources, and N-channel type transistor pair 22 and 27 and P-channel type transistor pair 23 and 28 transistors 27 and 28 form a differential pair with transistors having the same characteristics, but transistors 27 and 28 do not have a load element and are directly connected to the power supply terminal 1.
5 and 16.
反転入力端子12と非反転入力端子13の入力電位差に
応じて、差動対を形成しているペアトランジスタ22と
27笈び23と28に流れる電流は変化する。Depending on the input potential difference between the inverting input terminal 12 and the non-inverting input terminal 13, the current flowing through the pair of transistors 22 and 27 and 23 and 28 forming the differential pair changes.
トランジスタ22及び23の電流変化はPチャネル形及
び−Nチャネル形のトランジスタ21及び24に伝達さ
れる。Current changes in transistors 22 and 23 are transmitted to P-channel type and -N-channel type transistors 21 and 24.
Pチャネル形のトランジスタ21と29及びNチャネル
形のトランジスタ24と32はそれぞれカレントミラー
回路を構成しているので、トランジスタ21(又は24
)の電流とトランジスタ29(又は32)の電流との比
はトランジスタ寸法比によって決まる一定の比をとり、
従って、トランジスタ22(又は23)の電流とトラン
ジスタ29(又は32)の電流との比は常に一定である
。P-channel type transistors 21 and 29 and N-channel type transistors 24 and 32 each constitute a current mirror circuit, so transistor 21 (or 24
) and the current of the transistor 29 (or 32) take a constant ratio determined by the transistor size ratio,
Therefore, the ratio between the current of transistor 22 (or 23) and the current of transistor 29 (or 32) is always constant.
い捷、非反転入力端子13の電圧が反転入力端子12の
電圧より高くなると、トランジスタ22の電流は増加し
、トランジスタ29の電流も増加する。またトランジス
タ23の電流は減少し、−ラ°
トランジスタ32の電流も減少する。Otherwise, when the voltage at non-inverting input terminal 13 becomes higher than the voltage at inverting input terminal 12, the current in transistor 22 increases and the current in transistor 29 also increases. Also, the current of the transistor 23 decreases, and -
The current in transistor 32 also decreases.
トランジスタ29及び32の電流変化は、Pチャネル形
及びNチャネル形のトランジスタ30及ヒ31を負荷と
して出力端子14の端子電圧を共に上昇させ、大きな電
圧変化に変換させ、大きな差動電圧利得を実現できる。The current changes of the transistors 29 and 32 cause the terminal voltage of the output terminal 14 to rise together using the P-channel type and N-channel type transistors 30 and 31 as loads, converting it into a large voltage change, and realizing a large differential voltage gain. can.
まだ、反転入力端子12と非反転入力端子13に同相の
電圧変化が加えられた場合、トランジスタ22と27及
び23と28には等しい電流が流れ、トランジスタ21
及び24には電流変化は起らず、大きな同相信号除去比
も実現できる。If an in-phase voltage change is applied to the inverting input terminal 12 and the non-inverting input terminal 13, equal currents flow through the transistors 22 and 27 and 23 and 28, and the transistor 21
No current change occurs in and 24, and a large common-mode signal rejection ratio can be achieved.
以上の動作説明から明らかなように本発明の演算増幅器
は、入力部は電圧を電流に変換する動作を行ない、出力
段のみが電圧利得を得るように構成し、しかも出力段は
相補形のカスコード増幅回路を構成しているのでトラン
ジスタ29及び32の入力容量は小さく、接続点a及び
a′の電圧Va及びva′は高速に変化することができ
、さらに接続点a及びa′のインピーダンスは低いので
、入力部の電流変換によって生じる信号の位相遅れは極
めて小さい。なお出力段では高周波域において位相遅れ
を生じるが、本発明による増幅段は1段で、その位相遅
れは高々90°であるため、何ら位相補償回路を付加す
ることなく安定に帰還をかけることが可能である。As is clear from the above explanation of the operation, the operational amplifier of the present invention is configured such that the input section converts voltage into current, only the output stage obtains voltage gain, and the output stage is a complementary cascode. Since they constitute an amplifier circuit, the input capacitance of the transistors 29 and 32 is small, the voltages Va and va' at the connection points a and a' can change rapidly, and the impedance at the connection points a and a' is low. Therefore, the phase delay of the signal caused by current conversion at the input section is extremely small. Note that a phase lag occurs in the high frequency range in the output stage, but since the amplification stage according to the present invention is one stage and the phase lag is at most 90 degrees, it is possible to stably apply feedback without adding any phase compensation circuit. It is possible.
演算増幅器のオフセット電圧は一般に差動増幅回路のア
ンバランスによって生じる。第2図の例では入力部と出
力段を合せて差動増幅回路の機能を実現している。その
ためオフセント電圧を小さくするには、差動対を形成す
るトランジスタ22と27及び23と28を同一特性ト
ランジスタとする他に、
但し、I25+ I26・・・・・・・・・定電流源の
トランジスタ25、 26の動作点電流
S21+ S24+ S29+ 832・・・・・・・
・ トランジッタ21 。Offset voltage of an operational amplifier is generally caused by imbalance in a differential amplifier circuit. In the example shown in FIG. 2, the input section and output stage are combined to realize the function of a differential amplifier circuit. Therefore, in order to reduce the offset voltage, in addition to using transistors 22 and 27 and transistors 23 and 28 forming the differential pair with the same characteristics, it is necessary to use transistors with the same characteristics. Operating point current of 25, 26 S21+ S24+ S29+ 832...
・Transiter 21.
24、 29. 32の寸法比 の条件で設計すればよい。24, 29. Dimension ratio of 32 It should be designed under the following conditions.
以上説明したように、本発明演算増幅器の位相遅れは高
周波域においても小さく、位相補償回路なしに安定に動
作するため、広:、帯域の演算増幅器を容易に実現でき
る利点がある。As explained above, the phase delay of the operational amplifier of the present invention is small even in a high frequency range, and it operates stably without a phase compensation circuit, so it has the advantage that a wide band operational amplifier can be easily realized.
また、位相補償回路が不要なことから、小形化、低電力
化が図れる利点があり、さらに、入力部は電圧利得を有
しないだめ、ミラー効果による入力容量増加がなく、入
力容量が極めて小畑いという利点をも有するものである
。In addition, since a phase compensation circuit is not required, it has the advantage of being compact and low power.Furthermore, since the input section has no voltage gain, there is no increase in input capacitance due to the Miller effect, and the input capacitance is extremely small. It also has the advantage of
第1図は従来の演算増幅器の回路図の一例を示す図、第
2図は本発明の一実施例の回路構成を示す図である。
1〜5・・・・・・・・差動増幅回路を構成するトラン
ジスタ、6,7 ・・・位相補償用バッファのソース
・ホロワ回路を構成するトランジスタ、 8,9.10
・・パ・・出力段のカスコード回路を構成するトランジ
スタ、 11 ・パ°°・・位相補償容量、 12・
・・・・・・・・反転入力端子、 13・・・・・・・
・非反転入力端子、 14 ・・・・・・出力端子、
15.16・・・・・・・・・電源端子、 21〜2
8・°゛・・ 入力段を構成するトランジスタ、 29
〜32・・・・・・・・出力段を構成するトランジスタ
、 VDI〜vB4・・・・・・・・・バイアス電圧。
。FIG. 1 is a diagram showing an example of a circuit diagram of a conventional operational amplifier, and FIG. 2 is a diagram showing a circuit configuration of an embodiment of the present invention. 1 to 5...Transistors forming a differential amplifier circuit, 6, 7...Transistors forming a source follower circuit of a phase compensation buffer, 8,9.10
...Pa...transistor that constitutes the cascode circuit of the output stage, 11 -Pa°°...phase compensation capacitor, 12.
......Inverting input terminal, 13...
・Non-inverting input terminal, 14...output terminal,
15.16......Power terminal, 21~2
8・°゛... Transistor forming the input stage, 29
~32...Transistor forming the output stage, VDI~vB4...Bias voltage. .
Claims (1)
ャネル形のペアMO8)ランジスタとPチャネル形のペ
アMO8)ランジスタを有し、それぞれの共通なソース
端子を第1及び第2の定電流源に接続し、上記N及びP
チャネル形のペアMO8トランジスタの一方のゲート端
子を反転入力端子に、他方のゲート端子を非反転入力端
子にそれぞれ接続し、前記N及びPチャネル形ペアMO
Sトランジスタの電流出力を、カレントミラー回路を用
いてゲート端子をバイアスされたP及びNチャネル形の
出力用MOSトランジスタのソース端子にそれぞれ入力
し、その出力用MO8)ランジスタのドレイン端子を共
に出力端子に接続してなることを特徴とする演算増幅器
。A pair of N-channel type transistors having a common source terminal and forming a differential pair MO8) A pair of transistors and a P-channel type MO8) Having a transistor, each having a common source terminal connected to the first and second constant current sources Connect to the above N and P
One gate terminal of the channel type pair MO8 transistors is connected to an inverting input terminal, and the other gate terminal is connected to a non-inverting input terminal, respectively, and the N and P channel type pair MO8 transistors are connected to each other.
The current output of the S transistor is input to the source terminals of P and N channel type output MOS transistors whose gate terminals are biased using a current mirror circuit, and the drain terminals of the output MO8) transistors are both output terminals. An operational amplifier characterized by being connected to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57102191A JPS58220508A (en) | 1982-06-16 | 1982-06-16 | Operational amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57102191A JPS58220508A (en) | 1982-06-16 | 1982-06-16 | Operational amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58220508A true JPS58220508A (en) | 1983-12-22 |
Family
ID=14320768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57102191A Pending JPS58220508A (en) | 1982-06-16 | 1982-06-16 | Operational amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58220508A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291149A (en) * | 1992-03-30 | 1994-03-01 | Murata Manufacturing Co., Ltd. | Operational amplifier |
US6316998B1 (en) | 1997-11-12 | 2001-11-13 | Nec Corporation | Differential amplifier and a method of compensation |
JP2007074670A (en) * | 2005-09-09 | 2007-03-22 | Nec Electronics Corp | Differential amplifier circuit and semiconductor device |
JP2013162483A (en) * | 2012-02-08 | 2013-08-19 | Asahi Kasei Electronics Co Ltd | Operational amplifier |
-
1982
- 1982-06-16 JP JP57102191A patent/JPS58220508A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291149A (en) * | 1992-03-30 | 1994-03-01 | Murata Manufacturing Co., Ltd. | Operational amplifier |
US6316998B1 (en) | 1997-11-12 | 2001-11-13 | Nec Corporation | Differential amplifier and a method of compensation |
JP2007074670A (en) * | 2005-09-09 | 2007-03-22 | Nec Electronics Corp | Differential amplifier circuit and semiconductor device |
JP4694323B2 (en) * | 2005-09-09 | 2011-06-08 | ルネサスエレクトロニクス株式会社 | Differential amplifier circuit and semiconductor device |
JP2013162483A (en) * | 2012-02-08 | 2013-08-19 | Asahi Kasei Electronics Co Ltd | Operational amplifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5933056A (en) | Single pole current mode common-mode feedback circuit | |
US20060006942A1 (en) | Balanced amplifier and filter using the same | |
JPH0786850A (en) | Perfect differential operational amplifier and same phase reconstruction in differential operational amplifier | |
US5789981A (en) | High-gain operational transconductance amplifier offering improved bandwidth | |
US4284957A (en) | CMOS Operational amplifier with reduced power dissipation | |
JPS62217707A (en) | Total differential amplifier circuit and method for the same | |
JP3115741B2 (en) | Transconductance cell with improved linearity | |
WO1999003197A2 (en) | A high speed and high gain operational amplifier | |
JPH01311608A (en) | Voltage/current converter | |
US7521994B2 (en) | Three-stage amplifier | |
US7098736B2 (en) | Amplifier circuit | |
JPH11500883A (en) | amplifier | |
JP2725718B2 (en) | Common-mode feedback circuit of differential amplifier | |
US5406220A (en) | Pole/zero compensation in cascode amplifiers | |
US5337007A (en) | High efficiency class AB transconductance amplifier | |
US4446444A (en) | CMOS Amplifier | |
JPS58220508A (en) | Operational amplifier | |
US11658626B2 (en) | Split miller compensation in two-stage differential amplifiers | |
US11742812B2 (en) | Output pole-compensated operational amplifier | |
JPH0380608A (en) | Push-pull amplifier | |
JPH07142941A (en) | Amplifier output stage | |
JPH0555836A (en) | Amplifier | |
JPH051646B2 (en) | ||
JPH05283950A (en) | Operational amplifier | |
JPS61131606A (en) | Differential amplifier circuit |