JPS61234024A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS61234024A
JPS61234024A JP7612485A JP7612485A JPS61234024A JP S61234024 A JPS61234024 A JP S61234024A JP 7612485 A JP7612485 A JP 7612485A JP 7612485 A JP7612485 A JP 7612485A JP S61234024 A JPS61234024 A JP S61234024A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
anthrazoline
derivative
solid electrolytic
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7612485A
Other languages
Japanese (ja)
Other versions
JPH0482045B2 (en
Inventor
修三 平田
泰幸 西村
隆 望月
伸次 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP7612485A priority Critical patent/JPS61234024A/en
Publication of JPS61234024A publication Critical patent/JPS61234024A/en
Publication of JPH0482045B2 publication Critical patent/JPH0482045B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解質を改良したアルミニウム電解コンデ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aluminum electrolytic capacitor with an improved solid electrolyte.

従来の技術 表面に陽極酸化皮膜を有する弁作用金属からなる陽極用
電極と、該電極に対向して構成された陰極用電極との間
に固体電解質を介在させてなる従来の固体電解コンデン
サは二酸化マンガンを固体電解質として用いてきたもの
がほとんどであった。
Conventional technology A conventional solid electrolytic capacitor in which a solid electrolyte is interposed between an anode electrode made of a valve metal having an anodized film on its surface and a cathode electrode configured to face the electrode is a carbon dioxide Most of them have used manganese as a solid electrolyte.

発明が解決しようとする問題点 しかしながら、この方法は二酸化マンガンを電極上に形
成させる際に、−aに硝酸マンガン溶液に浸漬した後加
熱分解を行うため、陽極酸化皮膜が損傷を受けること、
加えて二酸化マンガンによる陽極酸化皮膜の修復性が乏
しいという欠点があった。
Problems to be Solved by the Invention However, in this method, when forming manganese dioxide on the electrode, the anodic oxide film is damaged because -a is immersed in a manganese nitrate solution and then thermally decomposed.
In addition, there was a drawback in that the repairability of the anodic oxide film by manganese dioxide was poor.

問題点を解決するための手段 本発明は上記の欠点を改善させる目的で、固体電解質と
して有機半導体、主として7.7.8.8テトラシアノ
キノジメタン(以下TCNQという)の塩を用いた固体
電解コンデンサを提供しようとするものである。
Means for Solving the Problems In order to improve the above-mentioned drawbacks, the present invention provides a solid electrolyte using an organic semiconductor, mainly a salt of 7.7.8.8 tetracyanoquinodimethane (hereinafter referred to as TCNQ). The aim is to provide an electrolytic capacitor.

TCNQはアクセプター材として用いられ、ドナー材と
してキノリン(以下Q1という)、テトラチアフルバレ
ン(以下TTFという)、N−メチルツェナジニウム(
以下NMPという)、テトラセレナフルバレン(以下T
SFという)などがあり、特に新しいドナー材について
の研究は精力的に行われている。
TCNQ is used as an acceptor material, and donor materials include quinoline (hereinafter referred to as Q1), tetrathiafulvalene (hereinafter referred to as TTF), and N-methylzenadinium (hereinafter referred to as TTF).
(hereinafter referred to as NMP), tetraselenafulvalene (hereinafter referred to as T
In particular, research into new donor materials is being actively conducted.

ドナー材としての特徴は、イオン化ポテンシャルが適度
に小さいこと、π電子系の広がりが大きく、そのイオン
が安定すること、分極率が高いことなどが挙げられる。
Its characteristics as a donor material include a suitably small ionization potential, a large π-electron system, stable ions, and high polarizability.

これらの諸条件をすべて満たすことは分子設計のうえで
重要な因子であるが、すべてを満たすには非常に困難を
伴う。またTCNQとドナー材からなるTCNQ錯体を
電解コンデンサへ適応するには電極との接着の問題があ
り、きわめて微細な結晶粒を有するもので、かつ金属酸
化物とのなじみが良好のTCNQ錯体が望ましい。
Satisfying all of these conditions is an important factor in molecular design, but it is extremely difficult to satisfy all of them. Furthermore, when applying a TCNQ complex consisting of TCNQ and a donor material to an electrolytic capacitor, there is a problem of adhesion with electrodes, so it is desirable to use a TCNQ complex that has extremely fine crystal grains and has good compatibility with metal oxides. .

また電気伝導性も低温から高温まであまり変化せず、高
温になっても分解しにくいTCNQ錯体が要求される。
Furthermore, a TCNQ complex is required that does not change its electrical conductivity much from low to high temperatures and is difficult to decompose even at high temperatures.

本発明者らは種々の実験をくりかえし、上記の要求を満
たすTCNQのドナー材を見出した。
The present inventors repeated various experiments and found a donor material for TCNQ that satisfies the above requirements.

すなわち、本発明は陽極酸化皮膜を有する弁金属からな
る陽極用電極と、該電極に対向して構成された陰極用電
極との間に介在された電解質としてTCNQと1.9−
アントラゾリン誘導体とからなる有機半導体を用いたこ
とを特徴とする固体電解コンデンサである。そして上記
l、9−アントラゾリン誘導体は、次に示す構造式(I
)または(II)を有し、N位の一方もしくは両方をプ
ロトンおよび炭化水素基で4級化したもので、炭化水素
基の炭素数は1〜18である。炭素数が19以上になる
と熱的に不安定となるため、コンデンサとしての使用に
耐えない。
That is, the present invention uses TCNQ and 1.9- as electrolytes interposed between an anode electrode made of a valve metal having an anodic oxide film and a cathode electrode configured to face the anode electrode.
This is a solid electrolytic capacitor characterized by using an organic semiconductor made of an anthrazoline derivative. The above l,9-anthrazoline derivative has the following structural formula (I
) or (II), and one or both of the N positions are quaternized with a proton and a hydrocarbon group, and the hydrocarbon group has 1 to 18 carbon atoms. When the number of carbon atoms exceeds 19, it becomes thermally unstable and cannot be used as a capacitor.

構造式(I) ^1     、青2 作用 1.9−アントラゾリン誘導体−TCNQ塩はベレット
状にした状態で(10−”〜10− ’ )Ω−’ c
ill −’の高い導電性を示す。さらに熱的に非常に
安定な特性を示す。
Structural formula (I) ^1, Blue 2 Effect 1.9-Anthrazoline derivative-TCNQ salt is pellet-shaped (10-''~10-')Ω-'c
It shows high conductivity of ill-'. Furthermore, it exhibits extremely thermally stable properties.

また、陽極酸化皮膜を有する弁金属からなる陽極用電極
と対向して構成された陰極用電極との間に1.9−アン
トラゾリン誘導体−TCNQ塩を含浸し“ζ通電した結
果、非常に低い漏洩電流特性を示した。
In addition, as a result of impregnating a 1,9-anthrazoline derivative-TCNQ salt between an anode electrode made of a valve metal having an anodized film and a cathode electrode configured to face each other and applying current, extremely low leakage can be achieved. The current characteristics are shown.

実施例 以下、本発明の具体的実施例を示す。Example Specific examples of the present invention will be shown below.

電極として表面倍率を約10倍にエツチングしたアルミ
ニウム箔をリン酸アンモニウム溶液を用いて80V化成
を行い充分に乾燥を行ったものを用いた。次にN−ブチ
ル−アントラシリニウム・ (TCN Q)Z錯体をア
セトニトリル中に加熱溶解して飽和溶液を作成し、上記
電極上に塗布し、80〜90℃で加熱して溶媒のアセト
ニトリルを飛散除去した。この操作を3回行い、陰極と
してコロイダルカーボンを塗布乾燥し、その後銀ペース
トを塗布しリード線をハンダ付けして外装し、定格50
v。
As an electrode, an aluminum foil etched to a surface magnification of about 10 times was used, which was subjected to 80V chemical conversion using an ammonium phosphate solution and thoroughly dried. Next, the N-butyl-anthrasilinium (TCN Q)Z complex was heated and dissolved in acetonitrile to create a saturated solution, which was applied onto the electrode and heated at 80 to 90°C to scatter the solvent acetonitrile. Removed. Repeat this operation three times, apply colloidal carbon as a cathode, dry it, then apply silver paste, solder the lead wire, and package it with a rating of 50.
v.

2.2μFのコンデンサ試料を製作した。(試料群A) また従来例として硝酸マンガンを水に溶かして飽和溶液
を作成し、上記電極を浸漬し400℃で5分間乾燥処理
を行い、この操作を3回くりかえした。陰極およびリー
ド線の取付けは上述と同様に行い、同様にコンデンサ試
料(試料群B)を製作した。
A 2.2 μF capacitor sample was manufactured. (Sample Group A) As a conventional example, a saturated solution was prepared by dissolving manganese nitrate in water, and the electrode was immersed in the solution and dried at 400° C. for 5 minutes, and this operation was repeated three times. The cathode and lead wires were attached in the same manner as described above, and capacitor samples (sample group B) were produced in the same manner.

この2種のコンデンサの初期特性および105℃の雰囲
気中で2000時間定格電圧を印加し、高温負荷試験し
た結果を第1表および第2表に示す。
Tables 1 and 2 show the initial characteristics of these two types of capacitors and the results of a high temperature load test in which a rated voltage was applied for 2000 hours in an atmosphere of 105°C.

静電容量およびtanδは常温、120kllzにおけ
る値、漏れ電流は常温、定格電圧印加1分後の値を示す
The capacitance and tan δ are the values at room temperature and 120kllz, and the leakage current is the value at room temperature and 1 minute after application of the rated voltage.

第2表(高温負荷試験特性) なお、本発明の陽極用電極はアルミニウム箔に限定する
ものでなく、他の弁金属や粉末焼結金属電極についても
同様に適用でき、本発明の技術範囲に含まれるものであ
る。
Table 2 (High-temperature load test characteristics) Note that the anode electrode of the present invention is not limited to aluminum foil, and can be similarly applied to other valve metals and powder sintered metal electrodes, and is within the technical scope of the present invention. It is included.

発明の効果 以上のように1.9−アントラゾリン誘導体−TCNQ
錯体は電極との接合性も極めて良好であり、コンデンサ
の固体電解質として用いた場合価れた特性を示し、信頼
性も良好であり、工業的ならびに実用的価値大なるもの
である。
Effects of the invention As described above, 1,9-anthrazoline derivative-TCNQ
The complex has extremely good bondability with electrodes, exhibits excellent properties when used as a solid electrolyte of a capacitor, and has good reliability, and is of great industrial and practical value.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極酸化皮膜を有する弁金属からなる陽極用電極
と、該電極に対向して構成された陰極用電極との間に介
在された電解質として7、7、8、8テトラシアノキノ
ジメタンと1,9−アントラゾリン誘導体とからなる有
機半導体化合物を用いたことを特徴とする固体電解コン
デンサ。
(1) 7, 7, 8, 8 tetracyanoquinodimethane as an electrolyte interposed between an anode electrode made of a valve metal having an anodic oxide film and a cathode electrode configured to face the electrode. A solid electrolytic capacitor characterized in that it uses an organic semiconductor compound consisting of a 1,9-anthrazoline derivative and a 1,9-anthrazoline derivative.
(2)上記1,9−アントラゾリン誘導体は、次の構造
式( I )または(II)を有し、N位の一方もしくは両
方が4級化されていることを特徴とする特許請求の範囲
第1項記載の固体電解コンデンサ。 構造式( I ) ▲数式、化学式、表等があります▼ 構造式(II) ▲数式、化学式、表等があります▼
(2) The above 1,9-anthrazoline derivative has the following structural formula (I) or (II), and one or both of the N positions are quaternized. Solid electrolytic capacitor according to item 1. Structural formula (I) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ Structural formula (II) ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼
JP7612485A 1985-04-09 1985-04-09 Solid electrolytic capacitor Granted JPS61234024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7612485A JPS61234024A (en) 1985-04-09 1985-04-09 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7612485A JPS61234024A (en) 1985-04-09 1985-04-09 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61234024A true JPS61234024A (en) 1986-10-18
JPH0482045B2 JPH0482045B2 (en) 1992-12-25

Family

ID=13596171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7612485A Granted JPS61234024A (en) 1985-04-09 1985-04-09 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61234024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867748A (en) * 2016-09-28 2018-04-03 南京工业大学 A kind of method of organic semiconductor diphenylanthrancene isoxazoline compound Treatment by Photocatalysis Oxidation methylene blue waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867748A (en) * 2016-09-28 2018-04-03 南京工业大学 A kind of method of organic semiconductor diphenylanthrancene isoxazoline compound Treatment by Photocatalysis Oxidation methylene blue waste water
CN107867748B (en) * 2016-09-28 2020-11-17 南京工业大学 Method for treating methylene blue wastewater by photocatalytic oxidation of organic semiconductor diphenyl anthraoxazoline compound

Also Published As

Publication number Publication date
JPH0482045B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
JPS61234024A (en) Solid electrolytic capacitor
JPS62118509A (en) Solid electrolytic capacitor
JPS61129809A (en) Solid electrolytic capacitor
JPS6232606A (en) Solid state electrolytic capacitor
JPS61129808A (en) Solid electrolytic capacitor
JPS61218127A (en) Solid electrolytic capacitor
JPS61218129A (en) Solid electrolytic capacitor
JPS61218128A (en) Solid electrolytic capacitor
JPS61188925A (en) Solid electrolytic capacitor
JPS6229125A (en) Solid state electrolytic capacitor
JPS61129807A (en) Solid electrolytic capacitor
JPS61188926A (en) Solid electrolytic capacitor
JPS6317515A (en) Solid electrolytic capacitor
JPS6017909A (en) Solid electrolytic condenser
JPS63217618A (en) Solid electrolytic capacitor
JPS63219120A (en) Solid electrolytic capacitor
JPS6364319A (en) Solid electrolytic capacitor
JPS61188806A (en) Solid electrolyte
JPS63173314A (en) Solid electrolytic capacitor
JPH01243410A (en) Solid electrolytic capacitor
JPS6214413A (en) Solid electrolytic capacitor
JPS63172417A (en) New solid electrolytic capacitor
JPS63172418A (en) New solid electrolytic capacitor
JPS61163622A (en) Solid electrolytic capacitor
JPS622519A (en) Manufacture of solid electrolytic capacitor