JPS61129808A - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPS61129808A JPS61129808A JP25273984A JP25273984A JPS61129808A JP S61129808 A JPS61129808 A JP S61129808A JP 25273984 A JP25273984 A JP 25273984A JP 25273984 A JP25273984 A JP 25273984A JP S61129808 A JPS61129808 A JP S61129808A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- solid electrolytic
- electrode
- tcnq
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Glass Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は固体電解質を改良した電解コンデンサに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrolytic capacitor with an improved solid electrolyte.
従来の技術
表面に陽極酸化皮膜を有する弁作用金属からなる陽極用
電極と該電極に対向して構成された陰極用電極との間に
固体電解質を介在させてなる固体電解コンデンサには、
従来はとんど二酸化マンガンが固体電解質として用いら
れてきた。Conventional technology A solid electrolytic capacitor in which a solid electrolyte is interposed between an anode electrode made of a valve metal having an anodic oxide film on its surface and a cathode electrode configured to face the electrode includes:
Traditionally, manganese dioxide has been used as the solid electrolyte.
発明が解決しようとする問題点
しかしながら、二酸化マンガンを電極上に形成させる際
に一般に硝酸マンガン溶液に浸漬した後加熱分解を行う
ため、陽極酸化皮膜が損傷を受けること、加えて二酸化
マンガンによる陽極酸化皮膜の修復性が乏しいという問
題点があった。Problems to be Solved by the Invention However, when manganese dioxide is formed on an electrode, it is generally immersed in a manganese nitrate solution and then thermally decomposed, which causes damage to the anodic oxide film, and in addition, the anodic oxidation with manganese dioxide There was a problem that the repairability of the film was poor.
問題点を解決するための手段
本発明は上述の問題を解消するため、表面に陽極酸化皮
膜を有する弁金属からなる陽極用電極と該電極に対向し
て構成された陰極用電極との間に介在された電解質とし
て、ベンゾチアゾール−N−ラジカル類と7.7.8.
8テトラシアノキノジメタンとからなる有機半導体化合
物を用いたことを特徴とする固体電解コンデンサである
。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a structure between an anode electrode made of a valve metal having an anodic oxide film on its surface and a cathode electrode arranged opposite to the anode electrode. Benzothiazole-N-radicals as intervening electrolytes and 7.7.8.
This is a solid electrolytic capacitor characterized by using an organic semiconductor compound consisting of 8-tetracyanoquinodimethane.
作用
ドナー材としての特徴は、イオン化ポテンシャルが適度
に小さいこと、π電子系の広がりが大きく共鳴構造を取
り安定であること、分極率が高いことなどが挙げられる
。これらの諸条件をすべて満たすことはドナー材の分子
設計の上で重要な因子であり、また錯体を電解コンデン
サに適応するには電極との接着の問題があり、極めて微
細な結晶粒を有するもので、かつ金属酸化物となじみが
良好の7.7.8.8テトラシアノキノジメタン(以下
TCNQという)が望ましい。Characteristics as a working donor material include a suitably small ionization potential, a stable π-electron system with a large resonance structure, and a high polarizability. Satisfying all of these conditions is an important factor in the molecular design of the donor material, and in order to apply the complex to electrolytic capacitors, there is a problem with adhesion to the electrodes, so it is necessary to use complexes with extremely fine crystal grains. 7.7.8.8 tetracyanoquinodimethane (hereinafter referred to as TCNQ), which has good compatibility with metal oxides, is desirable.
さらに電気伝導性も低温から高温まで余り変化せず、高
温になっても分解しにくいTCNQ錯体が要求される。Furthermore, a TCNQ complex is required that does not change its electrical conductivity much from low to high temperatures and is difficult to decompose even at high temperatures.
そこで本発明者は種々の検討をくりかえし、上記の要求
をできるだけ満たすTCNQのドナー材を見出した。Therefore, the inventor of the present invention repeatedly conducted various studies and found a TCNQ donor material that satisfies the above requirements as much as possible.
ベンゾチアゾール−N−ラジカル類は以下のよテンシャ
ルがかなり小さくまた分極率もラジカルによる電子の片
寄りが大きいため非常に大きい。Benzothiazole-N-radicals have a considerably small tensile as shown below, and a very large polarizability due to the large bias of electrons due to the radical.
π電子系の広がりに関してもN、S原子は独立電子対を
有して、ベンゼン環の6個のπ電子と共鳴安定化し広い
π電子の広がりををしている。このためラジカルではあ
るがそれほど激しい反応性はなく、電子をアクセプター
材であるTCNQに与えるに際し、完全に電子を与えて
しまわず中間的な状態に保った状態が最も安定であるよ
うな分子構造をしており、電気伝導性は非常によく、常
温で400 kg / crAで圧縮したペレットの伝
導性は3Ω−’ Cl1l −’であった。Regarding the expansion of the π-electron system, the N and S atoms have independent electron pairs, which stabilize the resonance with the 6 π-electrons of the benzene ring, resulting in a wide π-electron expansion. Therefore, although it is a radical, it is not very reactive, and when giving electrons to TCNQ, which is an acceptor material, it has a molecular structure that is most stable when it is kept in an intermediate state without giving away electrons completely. It has very good electrical conductivity, and the conductivity of the pellet compressed at 400 kg/crA at room temperature was 3Ω-'Cl11-'.
実施例 以下本発明の具体的実施例について説明する。Example Specific examples of the present invention will be described below.
電極として表面倍率を約10倍にエツチングしたアルミ
ニウム箔をリン酸アンモニウム?容?夜を用いて80V
化成を行い充分に乾燥を行った。次にベンゾ1.3.2
ジチアゾール2イル(TCNQ)z錯体をアセトニトリ
ル中に加熱溶解し、飽和溶液を作成し、上記電極上に塗
布し80〜90℃で加熱して溶媒のアセトニトリルを飛
散除去した。この操作を3回行い陰極としてコロイダル
カーボンを塗布乾燥し、その後銀ペーストを塗布し、リ
ード線をハンダ付けして外装しコンデンサ試料(試料群
A)を作成した。Ammonium phosphate is an aluminum foil etched with a surface magnification of about 10 times as an electrode. Yong? 80V using night
Chemical conversion was performed and sufficient drying was performed. Next benzo 1.3.2
Dithiazole 2yl (TCNQ) z complex was heated and dissolved in acetonitrile to create a saturated solution, which was applied onto the electrode and heated at 80 to 90°C to scatter off the solvent acetonitrile. This operation was repeated three times, colloidal carbon was applied and dried as a cathode, and then silver paste was applied and lead wires were soldered and packaged to prepare a capacitor sample (sample group A).
また比較のために従来例として硝酸マンガンを水に溶か
して飽和溶液を作成し、上記電極を浸漬し400℃で5
分間乾燥処理を行い、この操作を3回くりかえした。陰
極およびリード線の取付けは上記の通りに行い、同様に
コンデンサ試料(試料群B)を作成した。定格は何れも
50WV−2,2μFとした。For comparison, as a conventional example, a saturated solution was prepared by dissolving manganese nitrate in water, and the above electrode was immersed in the solution for 50 minutes at 400℃.
A drying process was performed for a minute, and this operation was repeated three times. The cathode and lead wires were attached as described above, and a capacitor sample (sample group B) was prepared in the same manner. The rating for each was 50WV-2, 2μF.
この2種類のコンデンサの初期特性および105℃雰囲
気中で2000時間定格電圧を印加した信頬性(高温負
荷試験)データーを第1表および第2表に示した。Tables 1 and 2 show the initial characteristics of these two types of capacitors and the reliability (high temperature load test) data in which a rated voltage was applied for 2000 hours in an atmosphere of 105°C.
静電容量およびtanδは常温120 Hzにおける値
、漏れ電流は常温、定格電圧印加1分後の値を示す。The capacitance and tan δ are the values at room temperature of 120 Hz, and the leakage current is the value at room temperature and 1 minute after application of the rated voltage.
第1表(初期特性)
第2表(高温負荷試験特性)
発明の効果
以上のようにベンゾチアゾール−TCNQ錯体からなる
固体電解質は酸化皮膜に損傷を与えることなくすみやか
に電極と接合し、コンデンサとしてもすぐれた特性を示
し、また信頼性もきわめて良好であり、固体電解コンデ
ンサの特性を著しく改善させ、かつ安定化させ、工業的
ならびに実用的価値の大なるものである。Table 1 (Initial characteristics) Table 2 (High temperature load test characteristics) Effects of the invention As described above, the solid electrolyte made of the benzothiazole-TCNQ complex quickly bonded to the electrode without damaging the oxide film, and was used as a capacitor. It exhibits excellent characteristics and extremely good reliability, significantly improves and stabilizes the characteristics of solid electrolytic capacitors, and is of great industrial and practical value.
Claims (1)
と該電極に対向して構成された陰極用電極との間に介在
された電解質としてベンゾチアゾール−N−ラジカル類
と7,7,8,8テトラシアノキノジメタンとからなる
有機半導体化合物を用いたことを特徴とする固体電解コ
ンデンサ。Benzothiazole-N-radicals and 7,7,8, A solid electrolytic capacitor characterized by using an organic semiconductor compound consisting of 8-tetracyanoquinodimethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25273984A JPS61129808A (en) | 1984-11-28 | 1984-11-28 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25273984A JPS61129808A (en) | 1984-11-28 | 1984-11-28 | Solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61129808A true JPS61129808A (en) | 1986-06-17 |
JPH0410732B2 JPH0410732B2 (en) | 1992-02-26 |
Family
ID=17241593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25273984A Granted JPS61129808A (en) | 1984-11-28 | 1984-11-28 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61129808A (en) |
-
1984
- 1984-11-28 JP JP25273984A patent/JPS61129808A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0410732B2 (en) | 1992-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61129808A (en) | Solid electrolytic capacitor | |
JPS62118509A (en) | Solid electrolytic capacitor | |
JPS61234024A (en) | Solid electrolytic capacitor | |
JPS61218127A (en) | Solid electrolytic capacitor | |
JPS61129809A (en) | Solid electrolytic capacitor | |
JPS61218129A (en) | Solid electrolytic capacitor | |
JPS61218128A (en) | Solid electrolytic capacitor | |
JPS6232606A (en) | Solid state electrolytic capacitor | |
JPS6229125A (en) | Solid state electrolytic capacitor | |
JPS61188925A (en) | Solid electrolytic capacitor | |
JPS6017909A (en) | Solid electrolytic condenser | |
JPS61129807A (en) | Solid electrolytic capacitor | |
JPS61188926A (en) | Solid electrolytic capacitor | |
JPS6317515A (en) | Solid electrolytic capacitor | |
JPH01243410A (en) | Solid electrolytic capacitor | |
JPS61188806A (en) | Solid electrolyte | |
JPS63219120A (en) | Solid electrolytic capacitor | |
JPS6364319A (en) | Solid electrolytic capacitor | |
JPS63217618A (en) | Solid electrolytic capacitor | |
JPH0426534B2 (en) | ||
JPS622519A (en) | Manufacture of solid electrolytic capacitor | |
JPS63239914A (en) | Electrolytic capacitor | |
JPS6214413A (en) | Solid electrolytic capacitor | |
JPS63268225A (en) | Aluminum electrolytic capacitor | |
JPS63172417A (en) | New solid electrolytic capacitor |