JPS6017909A - Solid electrolytic condenser - Google Patents
Solid electrolytic condenserInfo
- Publication number
- JPS6017909A JPS6017909A JP12546183A JP12546183A JPS6017909A JP S6017909 A JPS6017909 A JP S6017909A JP 12546183 A JP12546183 A JP 12546183A JP 12546183 A JP12546183 A JP 12546183A JP S6017909 A JPS6017909 A JP S6017909A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- acetylene
- electrolyte
- polymer
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Primary Cells (AREA)
- Thermistors And Varistors (AREA)
- Fuel Cell (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本弁明は微粒状のアセヂレン系高重合体にドーパントを
ドープして(りられる電導性高分子化合物を固体電解質
とする固体電解コンデンサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolytic capacitor in which a conductive polymer compound obtained by doping a dopant into a finely divided acetylene-based polymer is used as a solid electrolyte.
固体電解コンデンサは陽極酸化皮膜を有するアルミニウ
ム、タンタルなどの皮膜形成金属に固体電解質を付着し
た構造を有している。従来のこの種の固体コンデンサの
固体電解質には主に硝酸マンガンの熱分解により形成さ
れる二酸化マンガンが用いられている。しかし、この熱
分解の際に要する高熱と発生するNOXガスの酸化作用
などによって誘電体であるアルミニウム、タンタルなど
の金属酸化皮膜の11″J傷があり、ぞのため耐電圧は
低下し、もれ電流が大きくなり、誘電特性を劣化させる
など極めて大きな欠点がある。また、再化成という工程
−b必要である。A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a film-forming metal such as aluminum or tantalum having an anodized film. Manganese dioxide, which is formed by thermal decomposition of manganese nitrate, is mainly used as the solid electrolyte in conventional solid capacitors of this type. However, due to the high heat required during this thermal decomposition and the oxidizing effect of the NOx gas generated, there is a 11" J scratch on the dielectric metal oxide film such as aluminum or tantalum, which reduces the withstand voltage and There are extremely serious drawbacks such as increased leakage current and deterioration of dielectric properties.Furthermore, step-b of re-formation is required.
これらの欠点を補うため、高熱を付加せずに固体電解質
層を形成する方法、つまり高電IJ竹の有機半導体材料
を固体電解質とする方法が試みられている。その例とし
ては特開vII52−79255号公報に記載されてい
る7、7,8.8−テトラシアノキノジメタン(TCN
Q)錯塩を含む電導性高重合体組成物を固体電解質とし
て含む固体電解コンデンサ、特開昭58−17609号
公報に記載されているN−n−プロピルイソキノリンと
7.7,8.8−テトラシアノキノジメタンからなるI
II J7J、を固体電解コンデンυが知られている。In order to compensate for these drawbacks, attempts have been made to form a solid electrolyte layer without applying high heat, that is, to use an organic semiconductor material such as Koden IJ Bamboo as a solid electrolyte. As an example, 7,7,8,8-tetracyanoquinodimethane (TCN
Q) A solid electrolytic capacitor containing a conductive polymer composition containing a complex salt as a solid electrolyte, Nn-propylisoquinoline and 7.7,8.8-tetra described in JP-A-58-17609. I consisting of cyanoquinodimethane
II J7J, solid electrolytic capacitor υ is known.
これらTCNQCN化合物は陽極酸化皮膜どのf−1着
性に劣り、電導度も10−3〜10−259cm−1ど
不十分であるためコンデンサの容量値は小さく誘電損失
も大きい。また熱的経時的41安定性も劣り信頼性が悪
い。These TCNQCN compounds have poor f-1 adhesion to the anodized film and insufficient conductivity of 10@-3 to 10@-259 cm@-1, resulting in a small capacitance value and large dielectric loss. Furthermore, the thermal stability over time is also poor, resulting in poor reliability.
本発明の目的は上述した従来の欠点を解決するため、電
導tαが高く誘電体皮nQとの(=I着性のよい有機2
1′導体を固体7u解質に用いた固体電解]ンデン4ノ
を提供することにある。The purpose of the present invention is to solve the above-mentioned conventional drawbacks by using an organic 2
An object of the present invention is to provide a solid electrolyte using a 1' conductor as a solid 7U electrolyte.
本弁明は固体電解質に高電導度を有するドーパン1〜を
ドープしたアセチレン系高重合体を用いた固体電解]ン
デン4ノを特徴としており、本発明にJ:り得られる固
体電解コンデンサは従来の無機酸化生シ9体や有機半導
体を用いた固体電解コンデンサに比して容量、誘電損失
、経時安定性において著しく優れた性能を右している。The present defense is characterized by a solid electrolyte using an acetylene polymer doped with dopanes 1 to 4 having high conductivity as a solid electrolyte, and the solid electrolytic capacitor obtained by the present invention is a conventional solid electrolytic capacitor. Compared to solid electrolytic capacitors using inorganic oxide raw materials or organic semiconductors, it has significantly superior performance in terms of capacity, dielectric loss, and stability over time.
以下本発明について詳細に説明する。The present invention will be explained in detail below.
本発明において用いられるアセチレン系高重合体とはア
はヂレン単独重合体あるいはアセチレンど置換アセチレ
ンとの共重合体である。置換アセチレンの代表例として
はフェニルアセヂレン、ナフチルア1?ヂレン、t c
r t−ブチルアセチレンなどがあげられる。The acetylene-based polymer used in the present invention is a ethylene homopolymer or a copolymer of acetylene or substituted acetylene. Typical examples of substituted acetylenes are phenylacetylene and naphthyla 1? Jiren, tc
Examples include r t-butylacetylene.
上記ボリアはヂ1ノン系高重合体は多孔質陽極金属内に
入り込むことによりコンデンサが製造されるため、微粒
状であることが必要であり、1μm以下であることが好
ましい。そのにうなポリアセチレン系高重合体は例えば
特願昭、’18−84145号に記載されているJ:う
な特定の触媒組成にJ:り製造することができる。上記
アセチレン系高重合体はAS F5 、BF3 、SO
3、+2.811 F5.1−+2 SO4、Fe O
E、:+ 、WCl2、l−1CJ)、04などの電子
受容体あるいはLi、に、Naなどの電子供与体をドー
プすることにJ:って電気伝力度を1叶8〜1(Ll
s、cm−1まで広範囲にコン1へロールできる。また
、アセチ1ノン系高重合体は金属との付着性もTCNQ
銘塩に比べ良好である。Since a capacitor is manufactured by entering the boria-di1non-based high polymer into a porous anode metal, it is necessary to be in the form of fine particles, and preferably 1 μm or less. Such polyacetylene-based high polymers can be produced, for example, by using a specific catalyst composition described in Japanese Patent Application No. 18-84145. The acetylene polymers mentioned above are AS F5, BF3, SO
3, +2.811 F5.1-+2 SO4, FeO
By doping an electron acceptor such as E, :+, WCl2, l-1CJ), 04 or Li with an electron donor such as Na, the electrical conductivity increases to 1 or 8~1(Ll
It can be rolled to Con 1 over a wide range up to s, cm-1. In addition, acetinone-based polymers have good adhesion to metals such as TCNQ.
It is better than famous salt.
したがって、アセチレン系高重合体に電子受容体あるい
は電子供与体をドープした電導↑)1高重合体を電M質
に用いれば、下記のごとき効果が得られる。Therefore, if a conductive ↑)1 high polymer obtained by doping an acetylene-based high polymer with an electron acceptor or an electron donor is used as an electromagnetic material, the following effects can be obtained.
■ 高部加熱を一8jることなしに電解質層を形成でき
るのでl!l極の酸化皮膜の損傷がなく、補修のための
陽極酸化(再化成)を行なう必要がない。そのため定格
電圧を従来の数倍にでき、同容量、同定格電圧のコンデ
ンサを得るのに形状を小型化できる。■ Electrolyte layer can be formed without heating the upper part! There is no damage to the oxide film of the l electrode, and there is no need to perform anodic oxidation (reformation) for repair. Therefore, the rated voltage can be increased several times compared to conventional capacitors, and the shape can be made smaller to obtain a capacitor with the same capacity and rated voltage.
3− ■ −bれ電流が小さい。3- ■ -B leakage current is small.
■ 高耐圧のコンデンサを作製できる。■ Capacitors with high withstand voltage can be manufactured.
■ 電解質の電導度が102〜103 s、co+−1
と十分に高いため、グラファイトなどの導電層を設置ノ
る必要がない。そのため工程が簡略化され、コメ1〜的
にも有利となる。■ Electrolyte conductivity is 102 to 103 s, co+-1
is sufficiently high that there is no need to install a conductive layer such as graphite. Therefore, the process is simplified, which is advantageous in terms of rice.
電子受容体あるいは電子供与体をドープした微粒状アセ
チレン系高重合体を電解質に用いた固体電解質コンデン
サの製造方法の一例を示せば誘電体皮膜を形成さゼたア
ルミニウム、タンタルニオブIeTどの弁作用金属の電
極体に微粒状のアセチレン系高重合体または電子受容体
あるいは電子供17体をドープしたアセチレン系高重合
体の懸濁液を塗布して乾燥する付着作業を2〜3回行な
うことにJ、って電解質層を形成させる。An example of a method for producing a solid electrolyte capacitor using a finely divided acetylene polymer doped with an electron acceptor or electron donor as an electrolyte is to use a valve metal such as aluminum or tantalum niobium IeT on which a dielectric film is formed. The adhesion process was carried out two to three times by applying a suspension of fine particles of acetylene polymer or an acetylene polymer doped with an electron acceptor or 17 electrons to the electrode body and drying it. , to form an electrolyte layer.
ここで未ドープのアセチレン系高重合体を電解質層に用
いた場合は付着作業後にドーピングを行なう。If an undoped acetylene polymer is used for the electrolyte layer, doping is performed after the deposition process.
固体電解質の電導度は10−1〜103 s、cn+−
1となる。The conductivity of the solid electrolyte is 10-1 to 103 s, cn+-
It becomes 1.
次に銀ペーストにJζって陰極を取り出しケース=4− に入れ樹脂封口する。Next, take out the cathode with Jζ in the silver paste and case = 4- Place it in a container and seal it with resin.
以下に実施例を示し本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.
実施例1
高純度アルミ箔を電解エツチングににり高倍率の表面積
どしてから弱酸性溶液中で陽極酸化し酸化薄膜誘電体を
生成さゼる。Example 1 A high-purity aluminum foil is electrolytically etched to obtain a high surface area magnification and then anodized in a weakly acidic solution to produce an oxidized thin film dielectric.
このアルミニウム素子にFeCJL3−二トロメタン溶
液に平均粒径0,3zzmのアセチレン高重合体を浸す
ことにJ:ってFOC見3をドープし、二1〜口メタン
で洗i1ノたアセチレン系重合体のペース]へ状懸濁液
を塗布、乾燥の操作をくり返1ノ電解質層を形成し銀ペ
ーストで陰極を取り出しケースに入れ樹脂封口し固体]
ンデン1ノを作成した。This aluminum element was doped with an acetylene polymer having an average particle size of 0.3zzm in a FeCJL3-nitromethane solution, and the acetylene polymer was washed with methane. Repeat the steps of applying a gelatinous suspension and drying to form one electrolyte layer, remove the cathode with silver paste, place it in a case, seal it with resin, and solidify]
I created 1no.
実施例2
実施例1において「c CfL3−二1〜ロメタン溶液
をN028F4−二トロメタン溶液に変えてBF4をド
ープした平均粒径0.1μmのアセチレン系高重合体を
用いて固体電解コンデンサを作成した。Example 2 In Example 1, a solid electrolytic capacitor was created using an acetylene-based high polymer with an average particle size of 0.1 μm doped with BF4 by changing the CfL3-21~romethane solution to a N028F4-nitromethane solution. .
実施例3
実施例1同様に陽極酸化したアルミニウム素子に平均粒
径0.2μmのアレヂレンーフェニルアセチレンJt重
合体を1ヘルエンに懸濁させたペースト状懸濁液を塗布
し、乾燥する。この操作をくり返しアレチ1ノンーフェ
ニルアセヂレン共重合体層を形成した後、ヨウ素蒸気を
接触させることによってドーピングを行ない電解質層を
形成し、固体電解コンデンサを作成した。Example 3 A paste-like suspension in which an alleylene-phenylacetylene Jt polymer having an average particle size of 0.2 μm is suspended in 1 heluene is applied to an anodized aluminum element in the same manner as in Example 1, and then dried. This operation was repeated to form an arethy1non-phenylacetylene copolymer layer, and then doping was performed by contacting with iodine vapor to form an electrolyte layer, thereby producing a solid electrolytic capacitor.
実施例1と同様な陽極酸化したアルミニウム素子を用い
た従来の二酸化マンガンを電解質とする固体−コンデン
サ(比較例1)と実施例1,2.3の特性を比較した結
果を第1表に示す。Table 1 shows the results of comparing the characteristics of Examples 1 and 2.3 with a conventional solid capacitor using manganese dioxide as an electrolyte (Comparative Example 1) using an anodized aluminum element similar to Example 1. .
第1表
第1表から明らかなJ:うに本発明によるドーパンl−
をドープした微粒状アセチレン系高重合体を電解質とす
る固体電解コンデンサは従来の二酸化マンガンを電解質
とする固体電解コンデンサ゛に比して誘電損失、b4″
L電流が小さく、定格電圧が高く高耐電圧の固体電解コ
ンデンサを作成Jることかできる。J、た本発明による
固体電解]ンデン1ノの容団X定格電圧の値は二酸化マ
ンガンを用いた固体電解コンデンサーに比して、大きく
、同じ形状ならば大容量を得ることができる。Table 1 J: Sea urchin dopant according to the present invention l-
A solid electrolytic capacitor using a fine-grained acetylene-based polymer doped with as an electrolyte has a lower dielectric loss, b4'' than a conventional solid electrolytic capacitor using manganese dioxide as an electrolyte.
It is possible to create solid electrolytic capacitors with low current, high rated voltage, and high withstand voltage. The solid electrolytic capacitor according to the present invention has a larger rated voltage value than that of a solid electrolytic capacitor using manganese dioxide, and a large capacity can be obtained with the same shape.
」−記実施例ひは素子の金属はアルミニウム、■ッヂン
グ箔であったが他の弁作用金属のタンタル、二Aブでも
よく形状は粉末焼結型の素子でもJ:0゜またドーピン
グの万一法は化学的ドーピングに限らず電気化学的ドー
ピング方法[J’、’C,S。The metal of the element in Example 1 was aluminum, and the metal of the element was aluminum, but other valve metals such as tantalum and aluminum foil may also be used. Even if the shape is a powder sintered element, One method is not only chemical doping but also electrochemical doping [J', 'C, S.
Chem、C0m1l11.l11.1979594.
C& E N J an、26゜39 (InO2)
; J 、C、S 、CI)em、 CovIlun
、、19B1゜311]でもにい。Chem, C0m1l11. l11.1979594.
C & E N J an, 26°39 (InO2)
; J, C, S, CI) em, CovIlun
,,19B1゜311] Demonii.
Claims (1)
プして1りられる電導性高分子化合物を固体電解質とす
ることを特徴とJる固体電解コンデンサ。A solid electrolytic capacitor characterized in that a solid electrolyte is a conductive polymer compound obtained by doping a dopant into a finely divided 12-1 non-based polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12546183A JPS6017909A (en) | 1983-07-12 | 1983-07-12 | Solid electrolytic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12546183A JPS6017909A (en) | 1983-07-12 | 1983-07-12 | Solid electrolytic condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6017909A true JPS6017909A (en) | 1985-01-29 |
JPH0410204B2 JPH0410204B2 (en) | 1992-02-24 |
Family
ID=14910660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12546183A Granted JPS6017909A (en) | 1983-07-12 | 1983-07-12 | Solid electrolytic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017909A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070719A (en) * | 1983-08-11 | 1985-04-22 | ノ−ス・アメリカン・フイリツプス・コ−ポレ−シヨン | Solid electrolytic condenser |
JPS61203924U (en) * | 1985-06-10 | 1986-12-22 | ||
US5019949A (en) * | 1988-05-20 | 1991-05-28 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
-
1983
- 1983-07-12 JP JP12546183A patent/JPS6017909A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070719A (en) * | 1983-08-11 | 1985-04-22 | ノ−ス・アメリカン・フイリツプス・コ−ポレ−シヨン | Solid electrolytic condenser |
JPS61203924U (en) * | 1985-06-10 | 1986-12-22 | ||
JPH0422649Y2 (en) * | 1985-06-10 | 1992-05-25 | ||
US5019949A (en) * | 1988-05-20 | 1991-05-28 | Sanyo Electric Co., Ltd. | Solid electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0410204B2 (en) | 1992-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6037114A (en) | Solid electrolytic condenser | |
JPS62118511A (en) | Manufacture of solid electrolytic capacitor | |
JPS62118509A (en) | Solid electrolytic capacitor | |
JPS6017909A (en) | Solid electrolytic condenser | |
JP3356018B2 (en) | Capacitor and manufacturing method thereof | |
US3226607A (en) | Electrical capacitor | |
JP2716032B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPS61163622A (en) | Solid electrolytic capacitor | |
JPH0684708A (en) | Manufacture of solid electrolytic capacitor | |
JPS63253614A (en) | Solid electrolytic capacitor | |
JPS6122614A (en) | Solid electrolytic condenser | |
JPS6229123A (en) | Solid state electrolytic capacitor | |
JPS63126210A (en) | Manufacture of solid electrolytic capacitor | |
JPS61218126A (en) | Solid electrolytic capacitor | |
JPH058565B2 (en) | ||
JPS62113415A (en) | Solid electrolytic capacitor | |
JPS6364319A (en) | Solid electrolytic capacitor | |
JPS61234024A (en) | Solid electrolytic capacitor | |
JPH0582726B2 (en) | ||
JPS61129809A (en) | Solid electrolytic capacitor | |
JPS62126625A (en) | Solid electrolyte capacitor | |
JPS62216211A (en) | Solid electrolytic capacitor | |
JPH10303074A (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0410732B2 (en) | ||
JPH0426533B2 (en) |