JPS6317515A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS6317515A
JPS6317515A JP16221886A JP16221886A JPS6317515A JP S6317515 A JPS6317515 A JP S6317515A JP 16221886 A JP16221886 A JP 16221886A JP 16221886 A JP16221886 A JP 16221886A JP S6317515 A JPS6317515 A JP S6317515A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
complex
phenylpyridinium
tcnq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16221886A
Other languages
Japanese (ja)
Other versions
JPH0770441B2 (en
Inventor
隆 望月
文良 浦野
中畑 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP16221886A priority Critical patent/JPH0770441B2/en
Publication of JPS6317515A publication Critical patent/JPS6317515A/en
Publication of JPH0770441B2 publication Critical patent/JPH0770441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)
  • Pyridine Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解質を用いた固体電解コンデンサの改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a solid electrolytic capacitor using a solid electrolyte.

〔発明の背景〕[Background of the invention]

固体電解コンデンサは、陽極酸化皮膜を有するアルミニ
ウムなどの誘電体皮膜生成金属に固体電解質を付着した
構造を有している。この種のコンデンサには、従来まで
は殆ど二酸化マンガンが固体電解質として用いられて来
た。
A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a dielectric film-forming metal such as aluminum having an anodized film. Conventionally, manganese dioxide has been used as the solid electrolyte in this type of capacitor.

しかしながら、二酸化マンガンを電極上に形成させる際
に、一般に硝酸マンガン溶液に浸漬させた後加熱分解を
行うため、陽極酸化皮膜が損傷をうけること、加えて二
酸化マンガンによる陽極酸化皮膜の修復性が乏しいとい
う欠点があった。
However, when manganese dioxide is formed on an electrode, it is generally immersed in a manganese nitrate solution and then thermally decomposed, resulting in damage to the anodic oxide film and, in addition, the ability of manganese dioxide to repair the anodic oxide film is poor. There was a drawback.

上記の欠点を改善させる目的で固体電解質として有機半
導体、主として7,7,8.8−テトラシアノキノジメ
タン(TCNQ)の塩を用いることが提案されている。
In order to improve the above-mentioned drawbacks, it has been proposed to use an organic semiconductor, mainly a salt of 7,7,8,8-tetracyanoquinodimethane (TCNQ), as a solid electrolyte.

TCNQ錯体は、TCNQをアクセプターとし、ドナー
材としてはキノリン(Qn)、テトラチアフルバレン(
TTF)、N−メチルフェナジン(NMP)、テトラセ
レナフルバレン(TSF)などがこれまで検討されてお
り、更に新しいドナー材についての研究も精力的に行わ
わているが、まだ充分満足できるものは得られていない
The TCNQ complex uses TCNQ as an acceptor and donor materials as quinoline (Qn) and tetrathiafulvalene (
TTF), N-methylphenazine (NMP), and tetraselenafulvalene (TSF) have been studied so far, and research on new donor materials is also being actively carried out, but there are still none that are fully satisfactory. Not obtained.

特に耐熱性の点に関しては、従来検討されてきたTCN
Q錯体はいずれも問題を抱えている。
Especially in terms of heat resistance, TCN
All Q complexes have problems.

即ち、固体電解コンデンサに於ては、コンデンサの構造
処理過程に於て、ハンダ処理等の熱に曝される機会が多
いこと、及び電源回路に於てトランスの近くに配置され
ること等の点から、電解質は熱的に安定でなくてはなら
ないが、従来のTCNQ錯体はいずれもこの点で不安要
素がある。
In other words, solid electrolytic capacitors are often exposed to heat such as soldering during the capacitor's structural processing process, and are placed near transformers in power supply circuits. Therefore, the electrolyte must be thermally stable, but all conventional TCNQ complexes have concerns in this respect.

〔発明の目的〕[Purpose of the invention]

本発明は、固体電解コンデンサが有する上記した如き諸
問題を全く有さない、新規で且つ有用な固体電解コンデ
ンサを提供することにある。
An object of the present invention is to provide a new and useful solid electrolytic capacitor that does not have any of the above-mentioned problems that solid electrolytic capacitors have.

(発明の概要) 本発明は、表面に陽極酸化皮膜を有する弁作用金属から
なる陽極用電極と、該電極に対向して構成された陰極用
電極との間に介在された電解質として、N−アルキル−
4−フェニルピリジニウムカチオンをドナー材としたT
CNQ錯体な用いることを特徴とする固体電解コンデン
サである。
(Summary of the Invention) The present invention provides an electrolyte that uses N- Alkyl-
T using 4-phenylpyridinium cation as donor material
This is a solid electrolytic capacitor characterized by the use of a CNQ complex.

ドナー材としての特徴は、イオン化ポテンシャルが適度
に小さいこと、π電子系の広がりが犬きくそのイオンが
安定化すること、分極率が高いことなどが挙げられる。
Its characteristics as a donor material include a moderately small ionization potential, a stable ion with a wide π-electron system, and a high polarizability.

これらの諸条件を全て満たすことは分子設計の上で重要
な因子であるが、全てを満たすには、非常な困難を伴う
。また袖々のドナー材からなるT CN Q 26体を
電解コンデンサへ適応するには電極との接着の問題があ
り、極めて微細な結晶粒を有するもので且つ金属酸化物
とのなじみが良好のTCNQ錯体が望ましい。
Satisfying all of these conditions is an important factor in molecular design, but it is extremely difficult to satisfy all of them. In addition, there is a problem in adhesion with electrodes when applying TCNQ26 bodies made of donor materials to electrolytic capacitors, and TCNQ, which has extremely fine crystal grains and has good compatibility with metal oxides, Complexes are preferred.

また電気伝導性も低温から高温まであまり変化せず、高
温になっても分解しないTCNQ錯体が要求される。
Furthermore, there is a need for a TCNQ complex whose electrical conductivity does not change much from low to high temperatures and does not decompose even at high temperatures.

本発明者らは鋭意研究を重ね、上記の要求を充分満足し
得るTCNQ錯体のドナー材を新たに見出し、本発明に
到達した。即ち、本発明は特に製品化した後、プリント
基板にハンダ付けする際に、充分高い温度でのりフロー
で行っても対応出来得る有機半導体を用いている点に特
徴を有する。
The present inventors have conducted extensive research, discovered a new donor material for the TCNQ complex that can fully satisfy the above requirements, and have arrived at the present invention. That is, the present invention is characterized in that it uses an organic semiconductor that can be soldered to a printed circuit board at a sufficiently high temperature using a soldering flow after it has been commercialized.

N−アルキル−4−フェニルピリジニウムTCNQ錯体
は、例えば下記の如く表わされる。
The N-alkyl-4-phenylpyridinium TCNQ complex is represented, for example, as follows.

(式中、nは0.5≦n≦2なる任意の数を表わす。) N−アルキル−4−フェニルピリジニ、ウムTCNQ錯
体は、比較的高い温度の融点および分解点を有している
。例えばN−イソブチル−4−フェニルピリジニウムT
CNQ錯体は、融解開始点が250℃、また分解点が2
81”Cであり、N−n−ブチルイソキノリンTCNQ
錯体の融解開始点217.5℃、分解点267.1’C
に比べいずれも高い値を示している。このようにN−ア
ルキル−4−フェニルピリジニウムTCNQ錯体は極め
て熱的に安定な錯体である。
(In the formula, n represents an arbitrary number such as 0.5≦n≦2.) The N-alkyl-4-phenylpyridiny, umTCNQ complex has a relatively high melting point and decomposition point. . For example, N-isobutyl-4-phenylpyridinium T
The CNQ complex has a melting point of 250°C and a decomposition point of 2.
81”C, N-n-butylisoquinoline TCNQ
Complex melting start point 217.5°C, decomposition point 267.1'C
Both values are higher than that of . Thus, the N-alkyl-4-phenylpyridinium TCNQ complex is an extremely thermally stable complex.

また、N−アルキル−4−フェニルピリジニウムTCN
Q錯体は、電導性についても電解コンデンサ用の固体電
解質として充分適応出来得るものである。例えば、N−
イソブチル−4−フェニルピリジニウムTCNQ錯体粉
末を400kg加圧してペレット状にしたときの比抵抗
値は1〜12Ω・cmであった。
Also, N-alkyl-4-phenylpyridinium TCN
Regarding conductivity, the Q complex can be sufficiently applied as a solid electrolyte for electrolytic capacitors. For example, N-
When 400 kg of isobutyl-4-phenylpyridinium TCNQ complex powder was pressurized and pelletized, the specific resistance value was 1 to 12 Ω·cm.

TCNQとN−アルキル−4−フェニルピリジニウムカ
チオンの錯体は高温まで安定であるがゆえに、電極との
接合技術に於て有利な利点をもたらす。即ち、高沸点で
極性の高い溶媒に溶かすことが可能であり、浸漬、乾燥
時に極めて速やかに電極表面上での再結晶化が起こる。
Complexes of TCNQ and N-alkyl-4-phenylpyridinium cations are stable up to high temperatures and therefore offer advantages in electrode bonding techniques. That is, it can be dissolved in a highly polar solvent with a high boiling point, and recrystallization occurs extremely quickly on the electrode surface during immersion and drying.

またアルミニウム電解コンデンサのように細かくエツチ
ングされた電極面の凹凸の中にも無理なく含浸される。
It can also be easily impregnated into the finely etched unevenness of the electrode surface of an aluminum electrolytic capacitor.

これは結晶化速度との条件がらみの問題もあるが、結晶
の微細化、高密度化と共に、含浸状旭が良好になるのは
言うまでもない。
Although this is a problem due to conditions related to the crystallization rate, it goes without saying that the impregnated Asahi becomes better as the crystals become finer and denser.

なお、本発明の固体電解コンデンサに用いられる陽極用
電極はアルミニウム箔に限定されるものではなく、他の
弁作用金属も当然ながら使用可能であり、また粉末焼結
電極を用いても同様な効果が得られることは言うまでも
ない。
Note that the anode electrode used in the solid electrolytic capacitor of the present invention is not limited to aluminum foil, and other valve metals can of course be used, and the same effect can be obtained even if a powder sintered electrode is used. Needless to say, you can obtain

本発明の固体電解コンデンサに使用する4−フェニルピ
リジニウムカチオンのN位につくアルキル基の炭素数と
しては1〜IOが良好で、それ以上になると不安定であ
り、また、コスト的にみても不都合な点が多い。
The number of carbon atoms in the alkyl group attached to the N position of the 4-phenylpyridinium cation used in the solid electrolytic capacitor of the present invention is preferably 1 to IO; anything larger than that is unstable and is also disadvantageous from a cost perspective. There are many points.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

実施例I N−イソアミル−4−フェニルピリジニウムTCNQ錯
体を180℃に熱したニトロベンゼン溶液に過飽和溶解
させた。次に40倍にエツチング処理したアルミニウム
箔を50v化成し、陽極用電極とした。該電極を、上記
溶液を180℃にした中に浸漬し、ゆっくりと引き上げ
、230℃で乾燥させた。この操作を4回行い含浸を終
了させた。次に陰極としてカーボンを塗布し、その上に
銀ペーストを塗布し、リード線をはんだ付けして外装し
たコンデンサ試料(試料群A)を作製した。
Example I N-isoamyl-4-phenylpyridinium TCNQ complex was supersaturated and dissolved in a nitrobenzene solution heated to 180°C. Next, an aluminum foil that had been etched 40 times was subjected to 50V chemical conversion to form an anode electrode. The electrode was immersed in the solution heated to 180°C, slowly pulled up, and dried at 230°C. This operation was repeated four times to complete the impregnation. Next, a capacitor sample (sample group A) was prepared by coating carbon as a cathode, coating silver paste thereon, and soldering lead wires.

また比較のため従来例として、N−n−ブチルイソキノ
リンTCNQ錯体を同様にして 180℃に加熱したニ
トロベンゼン中に過飽和溶解させ、同様の操作を繰り返
した。陰極およびリード線の取り付けは上記と同様に行
いコンデンサ試料(試料群B)を作製した。
For comparison, as a conventional example, N-n-butylisoquinoline TCNQ complex was dissolved in nitrobenzene heated to 180° C. in a supersaturated manner, and the same operation was repeated. The cathode and lead wires were attached in the same manner as described above to produce a capacitor sample (sample group B).

また更に従来例として硝酸マンガン飽和水溶液を用い、
220℃にて60秒浸禎、加熱処理を6回繰り返した。
Furthermore, as a conventional example, using a saturated aqueous solution of manganese nitrate,
Immersion at 220° C. for 60 seconds and heat treatment were repeated six times.

そして陰極およびリード線の取り付けを上記と同様に行
いコンデンサ試料(試料C)を作製した。
Then, the cathode and lead wires were attached in the same manner as above to produce a capacitor sample (sample C).

何れの試料も定格25v、47μFの固体電解コンデン
サである。
Both samples are solid electrolytic capacitors with a rating of 25V and 47μF.

第1表に初期特性を示す。静電容量及びtanδは常温
、 l 2011 zに於ける値、漏わ電流は常温、定
格電圧印加1分後の値を示す。
Table 1 shows the initial characteristics. The capacitance and tan δ are the values at room temperature, l 2011 z, and the leakage current is the value at room temperature, 1 minute after application of the rated voltage.

第  1  表 さらに105℃の雰囲気で定格電圧を印加し2000時
間までの高温負荷試験を行った結果を第2表に示す。
Table 1 Further, Table 2 shows the results of a high temperature load test for up to 2000 hours by applying a rated voltage in an atmosphere of 105°C.

第  2  表 上記第1表および第2表より明らかなように本発明の固
体電解コンデンサは熱的にも安定であることが、実証さ
れた。
Table 2 As is clear from Tables 1 and 2 above, it was demonstrated that the solid electrolytic capacitor of the present invention is thermally stable.

実施例2 実施例1と同様の電極を用い陽極箔とし、それに対向し
て約10倍にエツチングしたアルミ箔を陰極とし、電解
紙をセパレーターとして巻回型コンデンサ(定格25w
v−33μF)の素子を作製した。上記素子を火焔処理
し、これにN−インブチル−4−フェニルピリジニウム
TCNQ錯体を含浸し、外装して、コンデンサ試料群り
を作製した。
Example 2 The same electrode as in Example 1 was used as an anode foil, an aluminum foil etched about 10 times as much as the opposite electrode was used as a cathode, and electrolytic paper was used as a separator to form a wound capacitor (rated at 25W).
A device of 33 μF) was fabricated. The above element was subjected to flame treatment, impregnated with N-inbutyl-4-phenylpyridinium TCNQ complex, and packaged to prepare a group of capacitor samples.

比較のため、N−n−ブチルイソキノリンTCNQ錯体
も同様に含浸し、試料群Eを作製した。
For comparison, sample group E was prepared by similarly impregnating N-n-butylisoquinoline TCNQ complex.

第3表に初期特性、及び250℃に於けるはんだリフロ
ー1分を行った後の特性を示す。
Table 3 shows the initial characteristics and the characteristics after 1 minute of solder reflow at 250°C.

第3表の結果からも明らかな様にN−n−ブチルイソキ
ノリンTCNQ錯体を用いた製品は、静電容量が大幅に
減少し、tanδは逆に大幅に増大しておりリフロ一時
に於ける熱ストレスによって錯体が劣化したことを示し
ている。それに対しN−イソブチル−4−フェニルピリ
ジニウムTCNQ錯体は静電容量、 tanδ共に変化
は少なく極めて安定していることを示している。
As is clear from the results in Table 3, the capacitance of the product using the N-n-butylisoquinoline TCNQ complex significantly decreased, while the tan δ increased significantly. This indicates that the complex was degraded by stress. In contrast, the N-isobutyl-4-phenylpyridinium TCNQ complex is extremely stable with little change in both capacitance and tan δ.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、N−アルキル−4−フェニルピリジ
ニウムカチオンのTCNQ錯体からなる固体電解質は熱
的に極めて安定で、電極と固体電解質との接合性も良好
なので、これを電解質として用いた本発明の固体電解コ
ンデンサは従来のものと比べその電気特性が著しく改善
され且つ安定化されたものである点に顕著な効果を奏す
るものであり、工業的且つ実用的価値大なるものがある
As described above, the solid electrolyte made of the TCNQ complex of N-alkyl-4-phenylpyridinium cation is extremely stable thermally and has good bonding properties between the electrode and the solid electrolyte, so the present invention uses this as an electrolyte. The solid electrolytic capacitor has remarkable effects in that its electrical characteristics are significantly improved and stabilized compared to conventional ones, and it has great industrial and practical value.

特許出願人 和光純薬工業株式会社 手続補正書 昭和62年10月 9日 1、事件の表示 昭和61年 特許願 第162218号2、発明の名称 〒 541 住 所 大阪府大阪市東区道峰町3丁目10番地連絡先
 特許法(東京)置03−270−8571名 称 和
光純薬工業株式会社 自発 5、補正の対象 明細書の発明の詳細な説明の欄。
Patent Applicant: Wako Pure Chemical Industries, Ltd. Procedural Amendment October 9, 1985 1, Indication of Case 1988 Patent Application No. 162218 2, Name of Invention 541 Address 3, Domine-cho, Higashi-ku, Osaka-shi, Osaka Prefecture 10-chome Contact information Patent Law (Tokyo) 03-270-8571 Name Wako Pure Chemical Industries, Ltd. Sponsored 5 Column for detailed description of the invention in the specification to be amended.

6、補正の内容 (3)明細書3頁6行目に記載の「構造処理過程」を「
製造処理過程」と補正する。
6. Contents of amendment (3) “Structural treatment process” stated on page 3, line 6 of the specification has been changed to “
"Manufacturing process".

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)表面に陽極酸化皮膜を有する弁作用金属からなる
陽極用電極と、該電極に対向して構成された陰極用電極
との間に介在された電解質として、N−アルキル−4−
フェニルピリジニウムカチオンをドナー材としたTCN
Q 錯体を用いることを特徴とする固体電解コンデンサ。
(1) N-alkyl-4-
TCN using phenylpyridinium cation as donor material
A solid electrolytic capacitor characterized by using a Q complex.
(2)ドナー材のアルキル基の炭素数が1〜10である
、特許請求の範囲第1項記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the alkyl group of the donor material has 1 to 10 carbon atoms.
JP16221886A 1986-07-10 1986-07-10 Solid electrolytic capacitor Expired - Lifetime JPH0770441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16221886A JPH0770441B2 (en) 1986-07-10 1986-07-10 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16221886A JPH0770441B2 (en) 1986-07-10 1986-07-10 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6317515A true JPS6317515A (en) 1988-01-25
JPH0770441B2 JPH0770441B2 (en) 1995-07-31

Family

ID=15750207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16221886A Expired - Lifetime JPH0770441B2 (en) 1986-07-10 1986-07-10 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0770441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231207A (en) * 1988-03-11 1989-09-14 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
US8710377B2 (en) 2007-07-09 2014-04-29 Autonetworks Technologies, Ltd. Electric connection box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231207A (en) * 1988-03-11 1989-09-14 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
US8710377B2 (en) 2007-07-09 2014-04-29 Autonetworks Technologies, Ltd. Electric connection box

Also Published As

Publication number Publication date
JPH0770441B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JPS6317515A (en) Solid electrolytic capacitor
US4679124A (en) Solid electrolytic capacitors
JPS61188926A (en) Solid electrolytic capacitor
JPS61188806A (en) Solid electrolyte
JPS61188925A (en) Solid electrolytic capacitor
JPS63173314A (en) Solid electrolytic capacitor
JPS61234024A (en) Solid electrolytic capacitor
JPH0373961B2 (en)
JPH0455321B2 (en)
JPS63172417A (en) New solid electrolytic capacitor
JPS63219120A (en) Solid electrolytic capacitor
JPS61218129A (en) Solid electrolytic capacitor
JPS6364319A (en) Solid electrolytic capacitor
JPS63173315A (en) New solid electrolytic capacitor
JPS61129808A (en) Solid electrolytic capacitor
JP3093810B2 (en) Method for manufacturing solid electrolytic capacitor
JPS61234023A (en) Manufacture of solid electrolytic capacitor
JPS622519A (en) Manufacture of solid electrolytic capacitor
JPS6048091B2 (en) solid electrolytic capacitor
JPS61129807A (en) Solid electrolytic capacitor
JPS6232606A (en) Solid state electrolytic capacitor
JPS63172418A (en) New solid electrolytic capacitor
JPS61218128A (en) Solid electrolytic capacitor
JPS61218127A (en) Solid electrolytic capacitor
JPS63217618A (en) Solid electrolytic capacitor