JPS63173314A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS63173314A
JPS63173314A JP539787A JP539787A JPS63173314A JP S63173314 A JPS63173314 A JP S63173314A JP 539787 A JP539787 A JP 539787A JP 539787 A JP539787 A JP 539787A JP S63173314 A JPS63173314 A JP S63173314A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
solid electrolytic
electrolytic capacitor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP539787A
Other languages
Japanese (ja)
Other versions
JPH0777182B2 (en
Inventor
隆 望月
文良 浦野
中畑 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP539787A priority Critical patent/JPH0777182B2/en
Publication of JPS63173314A publication Critical patent/JPS63173314A/en
Publication of JPH0777182B2 publication Critical patent/JPH0777182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は固体電解質を用いた固体電解コンデンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolytic capacitor using a solid electrolyte.

[従来の技術] 固体電解コンデンサは陽極酸化皮膜を有するアルミニウ
ムなどの誘電体皮膜生成金属に固体電解質を付着した構
造を有している。この種のコンデンサには、従来までほ
とんど二酸化マンガンが固体電解質として用いられてき
た。
[Prior Art] A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a dielectric film-forming metal such as aluminum having an anodized film. Up until now, most capacitors of this type have used manganese dioxide as the solid electrolyte.

[発明が解決しようとする問題点] しかしながら、二酸化マンガンを電極上に形成させる際
には、一般に硝酸マンガン溶液に浸漬させた後、加水分
解を行うため、陽極酸化皮膜が損傷をうけること、加え
て二酸化マンガンによる陽極酸化皮膜の修復性が乏しい
という欠点があった。
[Problems to be Solved by the Invention] However, when manganese dioxide is formed on an electrode, it is generally immersed in a manganese nitrate solution and then hydrolyzed, which causes damage to the anodic oxide film. However, there was a drawback in that the repairability of the anodic oxide film by manganese dioxide was poor.

上記の欠点を改善させる目的で、固体電解質として有機
半導体、主として?、7,8.8−テトラシアノキノジ
メタン(TCNQ)の塩(TCNQ錯体)を用いること
が、提案されている。
In order to improve the above drawbacks, organic semiconductors are mainly used as solid electrolytes. , 7,8.8-tetracyanoquinodimethane (TCNQ) (TCNQ complex) has been proposed.

TCNQCN上TCNQをアクセプター材とし、ドナー
材としてはキノリン(Qn)、テトラチアフルバレン(
TTF)、N−メチルフェナジン(NMP)、テトラセ
レナフルバレン(TSF)などがこれまで検討されてお
り、更に新しいドナー材についての研究も精力的に行わ
れているが、まだ充分満足できるものは得られていない
On TCNQCN TCNQ was used as an acceptor material, and quinoline (Qn) and tetrathiafulvalene (
TTF), N-methylphenazine (NMP), and tetraselenafulvalene (TSF) have been studied so far, and research on new donor materials is also being actively conducted, but there are still none that are fully satisfactory. Not obtained.

特に耐熱性の点に関しては、従来検討されてきたTCN
QCN上いずれも問題を抱えている。即ち、固体電解コ
ンデンサに於ては、コンデンサの製造処理過程に於てハ
ンダ処理等の熱に曝される機会が多いこと、及び電源回
路に於いてトランスの近くに配置されることなどの点か
ら、電解質は熱的に安定でなくてはならないが、従来の
TCNQCN上いずれもこの点で不安要素がある。即ち
、例えばイソキノリンをドナー材としたTCNQCN上
固体電解質とする固体電解コンデンサは、これまでに種
々提案されているが、いずれも上記の問題を解決するに
到っていない。
Especially in terms of heat resistance, TCN
Both have problems with QCN. In other words, solid electrolytic capacitors are often exposed to heat such as soldering during the capacitor manufacturing process, and are placed near transformers in power supply circuits. Although the electrolyte must be thermally stable, conventional TCNQCN all have concerns in this respect. That is, various solid electrolytic capacitors using TCNQCN as a solid electrolyte using, for example, isoquinoline as a donor material have been proposed, but none of them have been able to solve the above problems.

[発明の目的] 本発明の目的は、固体電解コンデンサが有する上記した
如き諸問題を全く有さない、新規で且つ有用な固体電解
コンデンサを提供することにある。
[Object of the Invention] An object of the present invention is to provide a new and useful solid electrolytic capacitor that does not have any of the above-mentioned problems that solid electrolytic capacitors have.

[発明の概要コ 本発明は、表面に陽極酸化皮膜を有する弁作用金属から
なる陽極用電極と、該電極に対向して構成された陰極用
電極との間に介在させる電解質として、式 (但し、R1,R2は夫々独立して水素原子、炭素数1
〜4のアルキル基、シアノ基、アセチル基又はハロゲン
原子を示し、R3,R4,R5は夫々独立して水素原子
、炭素数1〜4のアルキル基、炭素数1〜4のアルコキ
シ基、ニトロ基、トリフルオロメチル基、フルオロ基又
は水酸基を示し、nは1〜3の任意の整数を示す。) で表される置換ピリジニウムカチオンをドナー材とした
TCNQCN上用いることを特徴とする固体電解コンデ
ンサである。
[Summary of the Invention] The present invention provides an electrolyte of the formula (however, , R1, R2 are each independently a hydrogen atom, carbon number 1
~4 alkyl group, cyano group, acetyl group, or halogen atom, R3, R4, R5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a nitro group. , a trifluoromethyl group, a fluoro group, or a hydroxyl group, and n represents an arbitrary integer of 1 to 3. ) This solid electrolytic capacitor is characterized in that it is used on TCNQCN using a substituted pyridinium cation represented by the following as a donor material.

即ち、本発明者等は、上記目的を達成すべく鋭意研究を
重ねた結果、ヘンシル基、フェネチル基などのアラルキ
ル基をN−位に導入し4級化したピリジン誘導体をドナ
ー材とするTCNQCN上、耐熱性、安定性に優れてお
り、これを電解コンデンサの固体電解質に適用した場合
、優れた温度特性及び安定性を示し、特に製品化した後
、プリント基板にハンダ付けする際には、充分高い温度
でのりフローが行えることを見出し本発明を完成するに
到った。
That is, as a result of extensive research to achieve the above object, the present inventors have developed a TCNQCN-based pyridine derivative using a quaternized pyridine derivative by introducing an aralkyl group such as a Hensyl group or a phenethyl group into the N-position as a donor material. , has excellent heat resistance and stability, and when applied to the solid electrolyte of electrolytic capacitors, it shows excellent temperature characteristics and stability, and is particularly suitable for soldering to printed circuit boards after commercialization. They discovered that glue flow can be performed at high temperatures and completed the present invention.

本発明に用いられるTCNQCN上、例えば下記の如く
表わされる。
On the TCNQCN used in the present invention, it is expressed, for example, as follows.

(式中、kは0.5≦に≦2.0なる任意の数を表す。(In the formula, k represents an arbitrary number of 0.5≦≦2.0.

)原子、例えばメチル基、エチル基、プロピル基。) atoms, such as methyl, ethyl, propyl groups.

ブチル基等炭素数1〜4の直鎖状若しくは分枝状のアル
キル基、シアノ基、アセチル基又は塩素。
A linear or branched alkyl group having 1 to 4 carbon atoms such as a butyl group, a cyano group, an acetyl group, or chlorine.

臭素、弗素、沃素等のハロゲン原子を示し、R3゜R4
,R5は、夫々独立して水素原子、例えばメチル基、エ
チル基、プロピル基、ブチル基等炭素数1〜4の直鎖状
若しくは分枝状のアルキル基、例えばメトキシ基、エト
キシ基、プロポキシ基、ブトキシ基等炭素数1−4の直
鎖状若しくは分枝状のアルコキシ基、ニトロ基、フルオ
ロ基、トリフルオロメチル基又は水酸基を示し、nは1
〜3の任意の整数を示す。
Indicates a halogen atom such as bromine, fluorine, iodine, etc., R3゜R4
, R5 each independently represents a hydrogen atom, such as a linear or branched alkyl group having 1 to 4 carbon atoms, such as a methyl group, ethyl group, propyl group, or butyl group, such as a methoxy group, ethoxy group, or propoxy group. , a linear or branched alkoxy group having 1 to 4 carbon atoms such as a butoxy group, a nitro group, a fluoro group, a trifluoromethyl group, or a hydroxyl group, where n is 1
Indicates any integer between ~3.

本発明に係るTCNQCN上、自体公知の方法、例えば
置換ピリジニウムカチオンのハロゲン化物とに中性TC
NQをドーピングさせる方法により容易に及びnは前記
と同じ。)を、要すれば適当な溶媒の存在下ピリジン或
は置換ピリジンと反応させることにより容易に得ること
ができるので、この様例えばBer、、95.2837
(+962)、J、Org、Chem、、26.422
0(1961)、J、Chem、Soc、、+961,
206、J、Chem、Soc、、11、 ] 6] 
9、J、Chem、Soc、、Part C,皿TO,
1134、Bull、Chem、Soc、Japan、
45.2810(+972)、J、Am、Chen+、
5oc02皿、3197(194B)、Be1g、Pa
t、、615349 (1962)、J。
On the TCNQCN according to the present invention, neutral TC can be prepared by a method known per se, for example, with a halide of a substituted pyridinium cation.
This can be easily done by doping NQ, and n is the same as above. ) can be easily obtained by reacting with pyridine or substituted pyridine in the presence of a suitable solvent if necessary;
(+962), J, Org, Chem,, 26.422
0 (1961), J, Chem, Soc, +961,
206, J,Chem,Soc,,11,] 6]
9, J, Chem, Soc,, Part C, plate TO,
1134, Bull, Chem, Soc, Japan,
45.2810 (+972), J, Am, Chen+,
5oc02 dish, 3197 (194B), Be1g, Pa
t, 615349 (1962), J.

Am、Chem、Soc、、85,567(1963)
、J 、Chem、Soc、 r155X+3719等
に記載の方法に準して、例えばピリジン等の脱塩酸剤の
存在下、要すれば適当な溶媒中、相当するカルビノール
と塩化チオニルとを加熱反応させれば容易に得られるか
ら、このようにして得られたものを用いればよい。また
、本発明のTCNQ錯体は、ヨードイオン I−の還元
力を利用し、し得ることは言うまでもない。
Am, Chem, Soc, 85, 567 (1963)
According to the method described in J. Chem. Since it can be easily obtained, it is sufficient to use the one obtained in this way. Moreover, it goes without saying that the TCNQ complex of the present invention can be produced by utilizing the reducing power of iodo ion I-.

本発明に係るTCNQ錯体は高温まで安定であるが故に
、電極との接合技術に於いて有利な利点をもたらす。即
ち、高沸点で極性の高い溶媒に溶かすことが可能であり
、浸漬、乾燥時に極めて速やかに電極表面上での再結晶
化が起こる。また、アルミニウム電解コンデンサの様に
細かくエツチングされた電極の凹凸の中にも無理なく含
浸される。
Since the TCNQ complex according to the invention is stable up to high temperatures, it provides advantageous advantages in bonding technology with electrodes. That is, it can be dissolved in a highly polar solvent with a high boiling point, and recrystallization occurs extremely quickly on the electrode surface during immersion and drying. It can also be easily impregnated into the finely etched irregularities of electrodes such as those of aluminum electrolytic capacitors.

これは結晶化速度との条件がらみの問題もあるが、結晶
のV&細化、高密度化とともに含浸状態が良好になるの
は言うまでもない。
Although this is a problem due to conditions related to the crystallization rate, it goes without saying that the impregnated state becomes better as the crystals become thinner and denser.

尚、本発明の固体電解コンデンサに用いられる陽極用電
極はアルミニウム箔に限定されるものではなく、他の弁
作用金属も当然ながら使用可能であり、また、粉末焼結
電極を用いても同様の効果が得られることは言うまでも
ない。
Note that the anode electrode used in the solid electrolytic capacitor of the present invention is not limited to aluminum foil; other valve metals can of course be used, and even if a powder sintered electrode is used, the same result can be obtained. Needless to say, it is effective.

以下、本発明の具体的実施例について説明するが、本発
明はこれらに限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.

[実施例] 参考例1゜ 本発明に用いられる代表的なTCNQ錯体の数例につき
その基本物性を表−1(1)〜(2)に示す。
[Example] Reference Example 1゜The basic physical properties of several typical TCNQ complexes used in the present invention are shown in Tables 1 (1) and (2).

実施例1゜ (試料群−■の調製) 参考例1に例示したもののうち錯体A−Kまでについて
定格10WV−33μFのアルミニウム電解コンデンサ
素子を用いて行った。含浸は各錯体を180℃に熱した
ニトロベンゼン溶液に過飽和させ、該素子を浸漬させ2
10℃で乾燥させた。この操作を4回繰り返し含浸を終
了させ製品とした。
Example 1° (Preparation of Sample Group-①) Of the compounds exemplified in Reference Example 1, complexes A to K were tested using an aluminum electrolytic capacitor element with a rating of 10 WV-33 μF. For impregnation, each complex was supersaturated in a nitrobenzene solution heated to 180°C, and the element was immersed.
It was dried at 10°C. This operation was repeated four times to complete the impregnation and produce a product.

(試料−■の調製) N−n−ブチルイソキノリンTCNQ錯体を用いて、試
料群−■の調製方法に準じて含浸、製品化を行った。
(Preparation of Sample -■) Using Nn-butylisoquinoline TCNQ complex, impregnation and commercialization were carried out according to the preparation method of Sample Group -■.

(試料−■の調製) 硝酸マンガン飽和水溶液を用い、220℃にて60秒浸
漬、加熱処理を6回繰り返したのち、試料群−Iと同様
に製品化した。
(Preparation of Sample-■) Using a saturated manganese nitrate aqueous solution, immersion at 220° C. for 60 seconds and heat treatment were repeated six times, and then products were manufactured in the same manner as Sample Group-I.

(結果) 初期特性を表−2に示す。静電容量及びtanδは常温
、120Hzに於ける値を、また、漏れ電流は常温、定
格電圧印加1分後の値を示す。
(Results) The initial characteristics are shown in Table 2. The capacitance and tan δ are the values at room temperature and 120 Hz, and the leakage current is the value at room temperature and 1 minute after application of the rated voltage.

更に、105℃の雰囲気で定格電圧を印加し2000時
間までの高温負荷試験を行った結果を表−3(1)〜(
3)に示す。
Furthermore, the results of a high temperature load test for up to 2000 hours by applying the rated voltage in an atmosphere of 105°C are shown in Tables 3 (1) to (
3).

表−2 表−3(1) (定格電圧印加時間:500hrs) 表−3(2) (定格電圧印加時m:1000hrs)表−3(3) (定格電圧印加時間:2000hrs)表−2及び表−
3(1)〜(3)の結果から、本発明に係るTCNQ錯
体を使用した電解コンデンサは熱的にもかなり安定であ
ることが実証された。
Table-2 Table-3(1) (Rated voltage application time: 500hrs) Table-3(2) (Rated voltage application m: 1000hrs) Table-3(3) (Rated voltage application time: 2000hrs) Table-2 and Table -
From the results of 3(1) to (3), it was demonstrated that the electrolytic capacitor using the TCNQ complex according to the present invention is quite stable thermally.

実施例2゜ (試料群−■の調製) 参考例1に示す錯体L−Rを用いて、実施例1の試料群
−Iの調製方法に準じて試料群−■を調製した。
Example 2゜(Preparation of Sample Group-■) Using the complex LR shown in Reference Example 1, Sample Group-■ was prepared according to the method for preparing Sample Group-I of Example 1.

(結果) 試料群−■及び試料■、■を用いて、230℃に於ける
リフローを60秒間行いりフローによる特性変化の調査
を行った結果を表−4に示す。
(Results) Using sample group ■ and samples ■ and ■, reflow was performed at 230° C. for 60 seconds and changes in characteristics due to flow were investigated. Table 4 shows the results.

表−4 表−4の結果からも明らかな様に、N−n−ブチルイソ
キノリンTCNQ錯体を用いた製品と二酸化マンガンを
用いた製品は静電容量が大幅に増大しており、リフロ一
時に於ける熱ストレスによって錯体が劣化したことを示
しているが、本発明に係る錯体を用いた固体電解コンデ
ンサはいずれも静電容量、tanδ及び漏れ電流が安定
しており極めて安定な製品であることが判る。
Table 4 As is clear from the results in Table 4, the capacitance of the product using Nn-butylisoquinoline TCNQ complex and the product using manganese dioxide increased significantly, and the capacitance increased significantly during reflow. However, all solid electrolytic capacitors using the complex according to the present invention have stable capacitance, tan δ, and leakage current, and are therefore extremely stable products. I understand.

(発明の効果) 以上述べたことく、本発明に使用したTCNQ錯体は、
固体電解質として熱的に極めて安定であり、電極と固体
電解質との接合性も良好なので、これを電解質として用
いた本発明の固体電解コンデンサは従来のものと比へそ
の電気特性が著しく改善され且つ安定化されたものであ
る点に顕著な効果を奏するものであり、工業的且つ実用
的価値穴なるものである。
(Effect of the invention) As described above, the TCNQ complex used in the present invention is
As a solid electrolyte, it is extremely thermally stable and has good bonding properties between the electrode and the solid electrolyte, so the solid electrolytic capacitor of the present invention using this as an electrolyte has significantly improved electrical characteristics compared to conventional ones. It has a remarkable effect in that it is stabilized, and has great industrial and practical value.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に陽極酸化皮膜を有する弁作用金属からなる
陽極用電極と、該電極に対向して構成された陰極用電極
との間に介在させる電解質として、式 ▲数式、化学式、表等があります▼ (但し、R^1、R^2は夫々独立して水素原子、炭素
数1〜4のアルキル基、シアノ基、アセチル基又はハロ
ゲン原子を示し、R^3、R^4、R^5は夫々独立し
て水素原子、炭素数1〜4のアルキル基、炭素数1〜4
のアルコキシ基、ニトロ基、トリフルオロメチル基、フ
ルオロ基又は水酸基を示し、nは1〜3の任意の整数を
示す。) で表される置換ピリジニウムカチオンをドナー材とした
TCNQ錯体を用いることを特徴とする固体電解コンデ
ンサ。
(1) As an electrolyte interposed between an anode electrode made of a valve metal having an anodic oxide film on its surface and a cathode electrode configured to face the electrode, a formula ▲ mathematical formula, chemical formula, table, etc. Yes▼ (However, R^1 and R^2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, an acetyl group, or a halogen atom, and R^3, R^4, R^ Each of 5 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or 1 to 4 carbon atoms.
represents an alkoxy group, nitro group, trifluoromethyl group, fluoro group or hydroxyl group, and n represents any integer of 1 to 3. ) A solid electrolytic capacitor characterized by using a TCNQ complex using a substituted pyridinium cation represented by the following as a donor material.
JP539787A 1987-01-12 1987-01-12 Solid electrolytic capacitor Expired - Lifetime JPH0777182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP539787A JPH0777182B2 (en) 1987-01-12 1987-01-12 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP539787A JPH0777182B2 (en) 1987-01-12 1987-01-12 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63173314A true JPS63173314A (en) 1988-07-16
JPH0777182B2 JPH0777182B2 (en) 1995-08-16

Family

ID=11610017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP539787A Expired - Lifetime JPH0777182B2 (en) 1987-01-12 1987-01-12 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0777182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166405A (en) * 1987-12-22 1989-06-30 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
US5419854A (en) * 1992-12-25 1995-05-30 Yoshida Kogyo K.K. Organic solid electrolyte and coloring-discoloring device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166405A (en) * 1987-12-22 1989-06-30 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
US5419854A (en) * 1992-12-25 1995-05-30 Yoshida Kogyo K.K. Organic solid electrolyte and coloring-discoloring device using the same

Also Published As

Publication number Publication date
JPH0777182B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JPS6247109A (en) Manufacture of solid electrolytic capacitor
JPS61239617A (en) Solid electrolytic capacitor
JPS63173314A (en) Solid electrolytic capacitor
JPS63172418A (en) New solid electrolytic capacitor
JPS63173315A (en) New solid electrolytic capacitor
JPS63173316A (en) New solid electrolytic capacitor
JPS63172417A (en) New solid electrolytic capacitor
JPS6317515A (en) Solid electrolytic capacitor
JPS63126212A (en) Solid electrolytic capacitor
JPS61188926A (en) Solid electrolytic capacitor
JPS61234024A (en) Solid electrolytic capacitor
JPS63219120A (en) Solid electrolytic capacitor
JPS61188925A (en) Solid electrolytic capacitor
JPH02241014A (en) Solid electrolytic capacitor
JPS61129807A (en) Solid electrolytic capacitor
JPH02294009A (en) Solid electrolytic capacitor
JPH01255209A (en) Solid electrolytic capacitor
JPS61188806A (en) Solid electrolyte
JPH01255208A (en) Solid electrolytic capacitor
JPS6364319A (en) Solid electrolytic capacitor
JPS61163624A (en) Solid electrolytic capacitor
JPS61163627A (en) Manufacture of solid electrolytic capacitor
JPS61248514A (en) Solid electrolytic capacitor
JPS6261312A (en) Solid electrolytic condenser
JPH02235324A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term