JPS61233439A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPS61233439A
JPS61233439A JP60072732A JP7273285A JPS61233439A JP S61233439 A JPS61233439 A JP S61233439A JP 60072732 A JP60072732 A JP 60072732A JP 7273285 A JP7273285 A JP 7273285A JP S61233439 A JPS61233439 A JP S61233439A
Authority
JP
Japan
Prior art keywords
light
splitter
optical
diffracted
pickup device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072732A
Other languages
Japanese (ja)
Inventor
Kiyonobu Endo
遠藤 清伸
Tetsuo Kuwayama
桑山 哲郎
Kazuya Matsumoto
和也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60072732A priority Critical patent/JPS61233439A/en
Publication of JPS61233439A publication Critical patent/JPS61233439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a differential detection type optical pickup device which has the satisfactory S/N with a compact design and low cost by putting two optical dividers having diffraction structures superposedly. CONSTITUTION:The luminous flux reflected from a recording medium 45 is transmitted through an objective lens 46 and divided into the diffracted light 47 and the transmitted light by the 1st diffraction structure. The rays of light 47 pass through a polarizing plate 49 while having the total reflection on both sides of the 1st optical divider 43 and reaches an optical sensor 50. While the transmitted light is made incident on the 2nd diffraction structure and this diffracted light 48 passes through the plate 49 and reaches the sensor 50. A low refraction layer 44 having a refraction index lower than the base of the optical divider between the 1st and 2nd optical divider 43 and 42. At the same time, a phase control film 51 is provided on the reflecting surface of diffracted light of the divider 42 or 43. Thus a 180 deg. phase difference is obtained by the film 51 between the P and S polarization components of a reflection mode. Then the polarization surface of the diffracted luminous flux is turned by 90 deg.. As a result, a 90 deg. polarization surface is obtained between the diffracted luminous fluxes 48 and 47.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報担体の情報記録面に光を照射し、情報の
検出又は記録を行なう光ピックアップ装置に関し、特に
小型・低コストで高S/N信号珂生が行なえる光ピック
アップ装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical pickup device that detects or records information by irradiating the information recording surface of an information carrier with light, and particularly relates to an optical pickup device that is small, low cost, and has high speed. This invention relates to an optical pickup device capable of generating /N signals.

〔従来技術〕[Prior art]

近年瞥き換え可能表光ディスク記録媒体およびその媒体
を利用した光デイスク記録再生装置の研究、開発が盛ん
に行なわれている。このような光デイスク記録媒体の一
つに光磁気記録媒体がある。
2. Description of the Related Art In recent years, research and development of reversible optical disc recording media and optical disc recording and reproducing devices using the media has been actively conducted. One such optical disk recording medium is a magneto-optical recording medium.

光磁気記録媒体(以下単に記録媒体と称す)からの信号
再生は、カー効果、又はファラデー効果と呼ばれる磁気
−光学効果を利用して行なわれる。
Signal reproduction from a magneto-optical recording medium (hereinafter simply referred to as a recording medium) is performed using a magneto-optical effect called the Kerr effect or Faraday effect.

すなわち記録媒体からの反射光又は透過光は記録媒体入
射時の偏光面から僅かであるが回転しており、その回転
成分を偏光板等で強度変調に変換して信号検出を行なう
That is, the reflected light or transmitted light from the recording medium is slightly rotated from the polarization plane when it is incident on the recording medium, and the rotational component is converted into intensity modulation using a polarizing plate or the like to perform signal detection.

この偏光面の回転角は大略1°前後なので、検出される
信号成分は微小となり、信号検出の光ピックアップ装置
には幾つかの工夫がなされている。
Since the rotation angle of this plane of polarization is approximately 1°, the detected signal component is minute, and several improvements have been made to the optical pickup device for signal detection.

第8図は従来より用いられている光ピックアップ装置の
概略図を示したものである。同図において半導体レーデ
1(以下単にLDと称す)から発せられた光束はコリメ
ータレンズ2で平行光束に変換される。平行光束はその
後ビームスグリツタ−3を通過し、対物レンズ4により
記録媒体5上に大略φ1μmのスポットに集光される。
FIG. 8 shows a schematic diagram of a conventionally used optical pickup device. In the figure, a light beam emitted from a semiconductor radar 1 (hereinafter simply referred to as LD) is converted into a parallel light beam by a collimator lens 2. The parallel light beam then passes through a beam sinter 3 and is focused by an objective lens 4 onto a spot of approximately 1 μm in diameter on a recording medium 5.

記録媒体5から反射された光束はカー効果及びファラデ
ー効果で偏光面変調を受は再び対物レンズ4を通過し、
ビームスプリッタ−3により入射光束と分離される。分
離された光束は、第2のビームスグリツタ−6により一
部反射され、レンズ系7を通υ光センサ8に入射する。
The light beam reflected from the recording medium 5 undergoes polarization plane modulation due to the Kerr effect and Faraday effect, and passes through the objective lens 4 again.
The beam splitter 3 separates the beam from the incident light beam. The separated luminous flux is partially reflected by the second beam sinter 6, passes through the lens system 7, and enters the υ optical sensor 8.

レンズ系7は公知の方式、例えば非点収差系、ナイフェ
ツジ系、フーコプリズム系で構成されておシ、記録媒体
5と対物レンズ4との間隔の情報、即ちAP誤差信号が
得られる。
The lens system 7 is constituted by a known system, such as an astigmatism system, a Naifezi system, or a Foucault prism system, and provides information on the distance between the recording medium 5 and the objective lens 4, that is, an AP error signal.

またこれも公知のプツシニブル法等で情報トラックとの
ズレ、即ちAT誤差信号も得られる。これらの誤差信号
を図示していない対物レンズの駆動系(一般にはアクチ
ェエータという)にフィードバックして、正確な焦点位
置で、正確にトラッキングを行い、信号の検出又は記録
を行なう。
Also, a deviation from the information track, that is, an AT error signal, can also be obtained using the well-known pushinable method or the like. These error signals are fed back to an objective lens drive system (generally referred to as an actuator), not shown, to accurately track at an accurate focal position and to detect or record signals.

第2のビームスプリッタ−6を通過する残シの光束は、
磯波長板9を通り偏光ビームスグリツタ−10にて2方
向に分割される。磯波長板9の光学的結晶軸を入射光束
の偏光軸に対し22.5°傾けて配置スると、偏光ビー
ムスプリッタ−10により2分割される光量は等しく、
かつ偏光板をそれぞれの光束に45°、−45°の透過
軸を持たせて配置したものと等価になる。2分割された
光束はそれぞれセンサー集束レンズ11.12によって
信号検出用センサー13.14に集束され、該信号検出
用センサー13.14からの電気信号を差分する(差動
検出)事により、記録媒体5上の情報信号の検出が行な
える。
The remaining light flux passing through the second beam splitter 6 is
The beam passes through the wave plate 9 and is split into two directions by the polarizing beam sinter 10. When the optical crystal axis of the Iso wave plate 9 is arranged at an angle of 22.5 degrees with respect to the polarization axis of the incident light beam, the amount of light divided into two by the polarizing beam splitter 10 is equal.
This is equivalent to arranging polarizing plates such that each light beam has a transmission axis of 45° and -45°. The two divided light beams are each focused on a signal detection sensor 13.14 by a sensor focusing lens 11.12, and by differentiating the electrical signals from the signal detection sensor 13.14 (differential detection), a recording medium is detected. 5 can be detected.

この差動検出法の利点を以下に説明する。The advantages of this differential detection method will be explained below.

第9図は凭波長板9と偏光ビームスプリッタ−10に分
割されセンサー13.14に到達する信号振幅成分を模
式的に示したものである。同図において縦軸を入射光束
の偏光方向とすると記録媒体5より反射された光束は光
磁気パターンの磁区の向き(上向きあるいは下向き)に
より、その偏光面がθにあるいは一部に回転する。■波
長板9と偏光ビームスプリッタ−10の組み合せは透過
軸を±45°傾けて偏光板を配置した系と等価であるか
ら、仮想の透過軸X、!’(それぞれ±45°傾けた破
線の軸)への投影成分の差S1と81′が信号振幅成分
となる。
FIG. 9 schematically shows the signal amplitude components that are split between the wave plate 9 and the polarizing beam splitter 10 and reach the sensors 13 and 14. In the figure, when the vertical axis is the polarization direction of the incident light beam, the plane of polarization of the light beam reflected from the recording medium 5 is rotated to θ or partially depending on the direction (upward or downward) of the magnetic domain of the magneto-optical pattern. ■The combination of the wavelength plate 9 and the polarizing beam splitter 10 is equivalent to a system in which polarizing plates are arranged with the transmission axis tilted by ±45°, so the virtual transmission axis X,! The difference S1 and 81' between the projection components on the dotted line axes tilted by ±45°, respectively, becomes the signal amplitude component.

回転角度θにと一部には光磁気パターンによって底聞1
!+11に麿什ナスハ、信号検出用センサー13゜14
で受光された信号の信号強度変化は第10図(a) 、
 (b)に示すように分割された光束でそれぞれ位相が
1800ずれる。
At the rotation angle θ and partly due to the magneto-optical pattern,
! Maroji Nasha on +11, signal detection sensor 13°14
Figure 10(a) shows the change in signal strength of the signal received by the
As shown in (b), the phases of the divided light beams are shifted by 1800.

光磁気信号は以上の如く位相が反転するが、通常ノイズ
成分(記録媒体5からのノイズLDI光のゆらぎノイズ
等)はこれらの信号に乗りこのノイズ成分は同相となっ
ている。
Although the phase of the magneto-optical signal is reversed as described above, normally the noise component (the noise from the recording medium 5, the fluctuation noise of the LDI light, etc.) rides on these signals, and these noise components are in phase.

従って、センサー13.14から得られる信号の差動を
とると信号成分は強め合い、ノイズ成分は減少すること
になシ、光学系の配置が正確に行なわれていればS12
とS・12は等しく、又ノイズ振幅も等しいので信号は
2倍となりノイズはOとなる。(第10図(C)図示) このように第8図に示したような差動検出法はS/Nの
良い信号が検−出できる利点がある。
Therefore, if the signals obtained from the sensors 13 and 14 are differentiated, the signal components will strengthen each other and the noise component will be reduced.If the optical system is arranged correctly, S12
and S·12 are equal, and the noise amplitudes are also equal, so the signal is doubled and the noise is O. (Illustrated in FIG. 10(C)) As described above, the differential detection method as shown in FIG. 8 has the advantage of being able to detect signals with a good S/N ratio.

しかしながら上記のような光ピックアップ装置は部品数
が多く、小型化、低コスト化を図る上では不利であった
。そこで本出願人は小型化、低コスト化を実現する手段
として回折構造体を用いる光ピックアップ装置を提案し
た。(特願59−132293.59−132294.
59−138369.59以下にその概略を説明する。
However, the optical pickup device as described above has a large number of parts, which is disadvantageous in terms of miniaturization and cost reduction. Therefore, the present applicant proposed an optical pickup device that uses a diffractive structure as a means to realize miniaturization and cost reduction. (Patent application 59-132293.59-132294.
59-138369.59 The outline thereof will be explained below.

第11図は上記の光ピックアップ装置に用いる光分割器
の概略図を示したもので、第10図(a)はホログラフ
ィックに作成された回折構造を有する光分割器である。
FIG. 11 shows a schematic diagram of a light splitter used in the above optical pickup device, and FIG. 10(a) shows a light splitter having a holographically created diffraction structure.

同図において透明基板15上に塗布された感光層16上
に、例えばAr  レーデ等で干渉縞を記録する。その
後カバー用の第2の透明板17を貼り付け、薄型の(大
略2m )光分割器とする。この光分割器に入射する光
束18は感光層16に記録された干渉縞により1部回折
光19として回折され、第1の透明基板15及び第2の
透明基板17と空気との境界面で全反射しながら図示さ
れていない光センサーへと導かれる。また残シの光束2
0は0次回折光束20として直進する。この干渉縞のピ
ッチ、傾き等の設計により、入射光のうちほとんどを回
折光19にして光束を集めることも可能で、また偏光特
性を持たせることも可能である。
In the figure, interference fringes are recorded on a photosensitive layer 16 coated on a transparent substrate 15 using, for example, an Ar radar. After that, a second transparent plate 17 for a cover is attached to form a thin (approximately 2 m) light splitter. A portion of the light beam 18 incident on this light splitter is diffracted by the interference fringes recorded on the photosensitive layer 16 as diffracted light 19, and the light beam 18 is completely diffracted at the interface between the first transparent substrate 15 and the second transparent substrate 17 and air. While being reflected, it is guided to an optical sensor (not shown). Also, the remaining luminous flux 2
0 travels straight as a 0th-order diffracted light beam 20. By designing the pitch, inclination, etc. of the interference fringes, it is possible to convert most of the incident light into diffracted light 19 and collect the light beam, and it is also possible to provide polarization characteristics.

第11図(b)に他の製法により作製した光分割器を示
す。この光分割器は例えばPMMA (ポリメチルメタ
アクリレート)等の透明基板21の表面にダイヤモンド
カッターで切削された型からコンブレラシランやイ/ジ
ェクシ胃ン等の方法で鋸歯状の凹凸部24を形成するこ
とによって作られている。
FIG. 11(b) shows a light splitter manufactured by another manufacturing method. This light splitter is made by forming sawtooth-like uneven portions 24 on the surface of a transparent substrate 21 made of, for example, PMMA (polymethyl methacrylate) using a method such as combrella silane or laser cutting from a mold cut with a diamond cutter. It is made by doing.

との鋸歯状部24に所望の反射特性を持つ反射膜22を
蒸着しその後筒2の透明板23を透明基板21および透
明板23とほぼ同一の光学的屈折率を持つ接着剤で貼合
せ、光分割器を作成する。このような光分割器において
も入射する光束は第10図(&)の光分割器における場
合と同様の振舞を示す。
A reflective film 22 having desired reflective properties is deposited on the serrated portion 24 of the tube, and then the transparent plate 23 of the cylinder 2 is bonded with an adhesive having almost the same optical refractive index as the transparent substrate 21 and the transparent plate 23. Create a light splitter. Even in such a light splitter, the incident light flux exhibits the same behavior as in the light splitter shown in FIG. 10(&).

光分割器における格子構造は第12図に示すように曲線
構造をもち、例えば同図においてはその自車中心が、お
およそ光センサー25,26.27の位置になるように
3つに分割されている。
The lattice structure of the light splitter has a curved structure as shown in FIG. 12. For example, in the figure, the grid structure is divided into three parts so that the center of the own vehicle is approximately at the position of the light sensors 25, 26, and 27. There is.

第13図は上記のような格子構造を持った光分割器を用
いた光ピックアップ装置の概略図を示したものでちる。
FIG. 13 shows a schematic diagram of an optical pickup device using a light splitter having a grating structure as described above.

第12図に示す領域28は周辺光束を分割し、第13図
に示す如く、対物レンズ31と記録媒体32の間隔変化
を分割光束の矢印A−A方向(第12図示)の移動とし
て情報を変換する。
The area 28 shown in FIG. 12 divides the peripheral luminous flux, and as shown in FIG. 13, the change in the distance between the objective lens 31 and the recording medium 32 is used as the movement of the divided luminous flux in the arrow A-A direction (shown in FIG. 12) to provide information. Convert.

そして、これらの光束移動を2分割光センサ−25で検
知することによj) AP(auto focusin
g)信号を得る。また記録媒体32の情報トラックの方
向を矢印T−T方向としこの方向に平行に回折構造体の
領域を29.30の如く分割すると、衆知の如く、回折
構造体の29.30の領域ではトラックズレに応じて到
達光量が異なるのでそれぞれの領域から回折される光束
を検出する光センサ26゜27の出力の差分をとること
によりAT(aut。
Then, by detecting the movement of these light beams with the two-split optical sensor 25,
g) Obtain the signal. Further, if the direction of the information track of the recording medium 32 is the direction of the arrow T-T and the area of the diffraction structure is divided into 29.30 areas parallel to this direction, as is well known, the area of 29.30 of the diffraction structure is tracked. Since the amount of arriving light differs depending on the deviation, AT (aut) is determined by taking the difference between the outputs of the optical sensors 26 and 27 that detect the light beam diffracted from each area.

tracking)信号を得ることができる。また光セ
ンサー26.27の和から又は光センサー25,26゜
27の和から記録された情報の信号を検出する事ができ
る。
tracking) signal can be obtained. It is also possible to detect a signal of the recorded information from the sum of the optical sensors 26, 27 or from the sum of the optical sensors 25, 26.27.

すなわち、光磁気記録媒体を対象にする場合、第13図
の如く、LD 33 、フリメータレンズ34、対物レ
ンズ31、光分割器35、該光分割器の右側端面に貼ら
れた偏光板36、光センサ、25゜9.6.27でホ刑
で低コストの弄ピヅクアッf装置が構成できる。
That is, when targeting a magneto-optical recording medium, as shown in FIG. 13, an LD 33, a frimeter lens 34, an objective lens 31, a light splitter 35, a polarizing plate 36 attached to the right end surface of the light splitter, A low-cost Pizquaf device can be constructed using an optical sensor of 25°9.6.27.

しかしながら、この従来構成においては第8図で示した
ようなノイズ除去を目的とした信号の差動検出が行なえ
ず、信号のS/Nの面から考慮すると不利な点があった
However, in this conventional configuration, differential detection of signals for the purpose of noise removal as shown in FIG. 8 cannot be performed, and there is a disadvantage when considering the S/N ratio of the signal.

〔発明の目的〕[Purpose of the invention]

本発明は上記の小型で低コストの光ピックアップ装置を
さらに改良し、信号の差動検出が行なえ、信号S/Nを
向上させた光ピックアップ装置を提供することを目的と
する。
An object of the present invention is to further improve the above-mentioned compact and low-cost optical pickup device, and to provide an optical pickup device that can perform differential signal detection and improve signal S/N.

〔発明の要旨〕[Summary of the invention]

上記の様な目的は、それぞれ回折構造体を有する第1の
光分割器と第2の光分割器を有し、光源から発せられた
光を情報記録面に照射し、前記情報記録面からの反射光
を前記第1光分割器に導く手段を有し、前記反射光を第
1光分割器に入射せしめることにより第1回折光を発生
させ、前記第1光分割器を透過した光を前記第2光分割
器に入射せしめることにより第2回折光を発生させるこ
とと、前記第1回折光の偏光面と前記第2回折光の偏光
面とを相対的に大略90’回転させる手段と、前記第1
回折光と前記第2回折光を光検出器の受光部に導く手段
を有することを特徴とする光ピックアップ装置により達
成される。
The purpose of the above is to have a first light splitter and a second light splitter each having a diffraction structure, to irradiate the information recording surface with light emitted from the light source, and to separate the information from the information recording surface. means for guiding the reflected light to the first light splitter, the reflected light is incident on the first light splitter to generate a first diffracted light, and the light transmitted through the first light splitter is transmitted to the first light splitter. generating a second diffracted light by making it incident on a second light splitter; and means for relatively rotating the plane of polarization of the first diffracted light and the plane of polarization of the second diffracted light by approximately 90'; Said first
This is achieved by an optical pickup device characterized by having means for guiding the diffracted light and the second diffracted light to a light receiving section of a photodetector.

〔実施例〕〔Example〕

第1図は本発明の光ぎツクアップ装置の概略構成図を示
した図である。同図においてLD40から発せられた光
束はコリメータレンズ41にて平行光束となり、第2の
回折構造体を持つ光分割器42を透過する。その後光束
は第1の回折構造体を持つ光分割器43を透過し、対物
レンズ46により記録媒体45上に微小ス?ットで集光
する。
FIG. 1 is a diagram showing a schematic configuration diagram of an optical pickup device of the present invention. In the figure, the light beam emitted from the LD 40 becomes a parallel light beam at a collimator lens 41, and is transmitted through a light splitter 42 having a second diffraction structure. Thereafter, the light beam passes through a light splitter 43 having a first diffraction structure, and is directed onto a recording medium 45 by an objective lens 46. Collect the light with a cut.

記録媒体45から反射された光束は、再び対物レンズ4
6を通シ第1の回折構造体により回折光47と透過光に
分割される。回折光47は、第1の光分割器43の上面
、下面で全反射しながら偏光板49を通シ光センサー5
0に到達する。一方、透過光は第2の回折構造体に入射
し、その回折光48は同様に偏光板49を通シ光センサ
ー50に到達する。(ここで記録媒体45からの反射光
が最初に入射する光分割器を第1光分割器とする)第2
の光分割器42と第1の光分割器43は一体化されてい
る方が組立て時等に便利であるが、この時回折光が全反
射されるように、2つの光分割器の間に光分割器の基体
より低い屈折率を持つ接着材か又別個に誘電膜の蒸着等
で低屈折層44を設ける。又他の方法として高反射膜層
を設けても同様の効果が得られる。
The light beam reflected from the recording medium 45 is directed back to the objective lens 4.
6 is split into diffracted light 47 and transmitted light by the first diffraction structure. The diffracted light 47 is totally reflected on the upper and lower surfaces of the first light splitter 43 and passes through the polarizing plate 49 to the light sensor 5.
Reach 0. On the other hand, the transmitted light enters the second diffraction structure, and the diffracted light 48 similarly passes through the polarizing plate 49 and reaches the light sensor 50. (Here, the light splitter into which the reflected light from the recording medium 45 first enters is referred to as the first light splitter.)
It is more convenient for assembly, etc., if the light splitter 42 and the first light splitter 43 are integrated, but at this time, in order to ensure that the diffracted light is totally reflected, there is a A low refractive layer 44 is provided by an adhesive having a refractive index lower than that of the base of the light splitter or by separately depositing a dielectric film. Alternatively, a similar effect can be obtained by providing a highly reflective film layer.

また、第2の光分割器42又は第1の光分割器43の回
折光の反射面のどちらか一方に位相調整膜51を設ける
。(第1図では、第1の光分割器43の下面に設けた例
を示す。)この位相調整膜51によって反射時のP偏光
成分とS偏光成分の位相差が1800にでき、回折光束
の偏光面を90゜回転させる。このため、回折光束48
と回折光束47は、その偏光面は互いに90°をなすこ
とKなる。またこの位相調整膜51の代りに、結晶等か
ら成る波長板を用いても同様の効果が得られる。
Further, a phase adjustment film 51 is provided on either the diffracted light reflecting surface of the second light splitter 42 or the first light splitter 43. (FIG. 1 shows an example in which it is provided on the lower surface of the first light splitter 43.) This phase adjustment film 51 allows the phase difference between the P polarized light component and the S polarized light component at the time of reflection to be 1800 degrees, and the diffracted light beam is Rotate the plane of polarization by 90°. Therefore, the diffracted light beam 48
The polarization planes of the diffracted light beams 47 and 47 make an angle of 90° to each other. Furthermore, the same effect can be obtained by using a wave plate made of crystal or the like instead of the phase adjustment film 51.

さらに、磯波長板を第2の光分割器42と第1の光分割
器43の間に設け、第2の回折構造体と第1の回折構造
体に入射する光束の偏光面を90’異ならせてもよい。
Furthermore, a rock wave plate is provided between the second light splitter 42 and the first light splitter 43, so that the polarization planes of the light beams incident on the second diffraction structure and the first diffraction structure differ by 90'. You can also let

光分割器42.43にLD40からの光束が入射する時
にも一部回折されるが、回折される方向は光センサ−5
0と逆方向であり、かつ回折構造体が曲率を持っている
為、発散光束となシ光センサー50に迷光として到達し
ても極めて弱い強度の光であり問題はない。
When the light beam from the LD 40 enters the light splitter 42 and 43, it is partially diffracted, but the direction of the diffraction is towards the optical sensor 5.
Since the direction is opposite to 0 and the diffraction structure has a curvature, even if the light reaches the light sensor 50 as a divergent light beam as stray light, the light has extremely low intensity and there is no problem.

次に上記構成にて光磁気による情報信号が差動で得られ
る理由を示す。
Next, the reason why magneto-optical information signals can be obtained differentially in the above configuration will be explained.

第2図は信号振幅成分を模式的に示したもので、記録媒
体45へ入射する光束の偏光面の方向をXとし、それと
垂直方向をYとする。記録媒体45からの反射光は磁気
光学効果によりその偏光面が僅かな角度θにだけ傾いて
いる。この傾きは磁区の上向き、下向きで時計方向ある
いは反時計方向(θにあるいは一〇k)であシ、その傾
き量は大略1゜程度である。今、第1図における偏光板
49の透過軸の方向をX方向から大略45°傾けておく
。第1図の例では回折光48は第2図(4)の状態、回
折光47は第8図(B)の状態になっている。従って偏
光板を通過する光束の強度変化は 5s2=S’t2=(邸(45°−θk) )2− (
cos (45°+θk))2であるが、第2図(4)
、o3)から判るようKその大きさは相補的表関係にあ
る。すなわち、偏光板49を透過した2光束の強度変調
は互いに位相が1800ずれたものとなる。
FIG. 2 schematically shows the signal amplitude component, where X is the direction of the polarization plane of the light beam incident on the recording medium 45, and Y is the direction perpendicular thereto. The plane of polarization of the reflected light from the recording medium 45 is tilted at a slight angle θ due to the magneto-optic effect. This inclination may be upward or downward in the clockwise or counterclockwise direction (in θ or 10k), and the amount of inclination is approximately 1°. Now, the direction of the transmission axis of the polarizing plate 49 in FIG. 1 is tilted approximately 45 degrees from the X direction. In the example shown in FIG. 1, the diffracted light 48 is in the state shown in FIG. 2 (4), and the diffracted light 47 is in the state shown in FIG. 8 (B). Therefore, the intensity change of the light flux passing through the polarizing plate is 5s2=S't2=((45°−θk))2−(
cos (45°+θk))2, but Fig. 2(4)
, o3), the sizes of K are in a complementary table relationship. That is, the intensity modulation of the two beams transmitted through the polarizing plate 49 has a phase shift of 1800 degrees from each other.

光センサ−50は第3図(B)に示すように受光部が複
数のセグメントに分れている。例えば光センサ一部が図
のように8分割されており、光分割器42.43の各回
折構造体の分割の様子が第3図(4)の如く3分割され
ているものとすると、各信号は各セグメントからの出力
をIAI I!11 Ice IDI III!、e 
I、l I。として次のような演算で得られる。
As shown in FIG. 3(B), the optical sensor 50 has a light receiving section divided into a plurality of segments. For example, if a part of the optical sensor is divided into 8 parts as shown in the figure, and each diffraction structure of the light splitter 42 and 43 is divided into 3 parts as shown in FIG. 3 (4), each The signal output from each segment is IAI I! 11 Ice IDI III! , e
I, l I. can be obtained by the following calculation.

AP誤差信号 IA、=(I□+IE) −(1,+I
、)AT誤差信号 IAT= (IC+I、) −(I
、+IH)光磁気情報信号 l5=(I、+I、+I、
+I、 )−(I、+I、+I、+IH)他の組み合せ
の例として第4図(ト)の如く回折構造体が光分割器4
2は3分割、光分割器43は分割無し、光センサ−50
はA−Eの5つのセグメ/トが第4図(B)のように配
置されているとすれば、AF誤差信号 IAF=工A 
 ’B AT誤差信号 IAT =IC−■D 光磁気情報信号 I、=(I、+Il+I、+ID)−
I。
AP error signal IA, = (I□+IE) −(1, +I
, )AT error signal IAT= (IC+I,) −(I
, +IH) magneto-optical information signal l5=(I, +I, +I,
+I, )-(I, +I, +I, +IH) As an example of another combination, as shown in FIG.
2 is divided into 3 parts, light splitter 43 is not divided, optical sensor 50
If the five segments A-E are arranged as shown in Figure 4(B), then the AF error signal IAF=A
'B AT error signal IAT =IC-■D Magneto-optical information signal I, = (I, +Il+I, +ID)-
I.

で得られる。It can be obtained with

また第5図囚の如く光分割器42は2分割光分割器43
も2分割で、光センサ−50はA−Hの5つのセグメン
トが第5図(B)のように配置されているとすれば、 AF誤差信号 ”AP”工A−II AT誤差信号 IAT”より  ’1 光磁気情報信号 l5=(IA−1−I、−)−I、)
−(I、+1.)で得られる。その細光分割器の回折構
造体の分割の方式と光センサ−50の受光部の配置によ
り、幾種類かの組み合せが可能である。
Also, as shown in Figure 5, the light splitter 42 is a two-part light splitter 43.
If the optical sensor 50 is divided into two segments and the five segments A-H are arranged as shown in Fig. 5 (B), then AF error signal "AP" A-II AT error signal IAT" From '1 magneto-optical information signal l5=(IA-1-I,-)-I,)
−(I, +1.). Depending on the method of dividing the diffraction structure of the fine light splitter and the arrangement of the light receiving section of the optical sensor 50, several types of combinations are possible.

また各信号を演算する為の回路、増幅器系を受光部と同
一のチップ上又は光センサ−50内に内蔵することによ
り外乱ノイズの飛び込みに強い信号検出が可能となる。
Furthermore, by incorporating the circuit and amplifier system for calculating each signal on the same chip as the light receiving section or in the optical sensor 50, signal detection that is resistant to disturbance noise becomes possible.

また、ここで回折構造体を2個の点光源からの光束の干
渉で形成した場合、本発明第1図の光束47.48は紙
面方向にも集光作用を持ち、その結果、受光面での両光
束の分離が明確となり、センサー受光部のA〜Dのグル
ープとE〜Hのグループを近接出来、センサーの小型化
が可能となる。
Furthermore, if the diffraction structure is formed by interference of the light beams from two point light sources, the light beams 47.48 in FIG. The separation of the two luminous fluxes becomes clear, and the groups A to D and the groups E to H of the sensor light-receiving parts can be brought close to each other, making it possible to downsize the sensor.

また、第1図の構成の光ピックアップ装置を実施する場
合、光源から出た光束が2個の光分割器42゜43を通
るので記録媒体に到達する光量の低下が問題゛となる場
合もあり得る。光磁気記録媒体を対象にする場合記録も
行なうので光量低下の問題は媒体感度と照し合せ考える
必要がある。
Furthermore, when implementing the optical pickup device having the configuration shown in FIG. 1, the light flux emitted from the light source passes through two light splitters 42 and 43, so a reduction in the amount of light reaching the recording medium may become a problem. obtain. When a magneto-optical recording medium is used, since recording is also performed, the problem of reduction in light amount must be considered in conjunction with the sensitivity of the medium.

第6図は以上の点を考慮した光ピックアップ装置を示す
概略図である。同図においてLD 40からの光束はコ
リメータレンズ41で平行光束となシビームスグリッタ
52、対物レンズ46を通シ、微小スーットを記録媒体
45上に形成する。記録媒体45からの反射光は再び対
物レンズ46を通り、ビームスグリツタ52で分割され
、回折構造体を有する光分割器42.43に入射し、前
記実施例と同様に各種信号を光センサ−50で検出する
FIG. 6 is a schematic diagram showing an optical pickup device that takes the above points into consideration. In the figure, the light beam from the LD 40 is passed through a collimator lens 41 into a collimated beam beam slitter 52 and an objective lens 46 to form a minute soot on a recording medium 45. The reflected light from the recording medium 45 passes through the objective lens 46 again, is split by the beam splitter 52, enters the light splitter 42, 43 having a diffraction structure, and similarly to the previous embodiment, various signals are sent to the optical sensor. Detected at 50.

このような光ピックアップ装置ではLD 40から記録
媒体45に至る光路中に光分割器42.43がないため
にLD40からの光は1個の光分割器(ビームスグリツ
タ51)の透過のみで記録媒体45に入射できる利点が
ある。
In such an optical pickup device, since there is no light splitter 42 or 43 in the optical path from the LD 40 to the recording medium 45, the light from the LD 40 is recorded only by passing through one light splitter (beam splitter 51). It has the advantage of being able to enter the medium 45.

また、第7図に示す如く例えば基板60の両側に感光材
を塗布し回折角度がそれぞれ異なるような2つの回折構
造体をホログラフィックに焼きつけ耐候性を上げるため
カバーガラス61;62を貼った光分割器を使用すると
回折光束47 、48はセンサー面で分離して集光する
。こ゛の為、第1図よりも薄い光分割器が構成出来、そ
の為に受光部の分割間隔をより狭め、センサーの小型化
が図れる利点がある。
Further, as shown in FIG. 7, for example, a photosensitive material is coated on both sides of a substrate 60, two diffraction structures having different diffraction angles are holographically printed, and cover glasses 61 and 62 are pasted to increase weather resistance. When a splitter is used, the diffracted light beams 47 and 48 are separated and focused on the sensor surface. Therefore, it is possible to construct a light splitter that is thinner than that shown in FIG. 1, which has the advantage that the division interval of the light-receiving section can be made narrower, and the sensor can be miniaturized.

なお、同図において第1光分割器は透過型の回折格子で
あシ、第2光分割器は第1実施例に使用したと同じ反射
型の回折格子である。
In the figure, the first light splitter is a transmission type diffraction grating, and the second light splitter is the same reflection type diffraction grating as used in the first embodiment.

このような光ピックアップ装置では、回折構造体63と
基板60とで光分割器42を構成し、もう一方の回折構
造体64と基板60とで光分割器43を構成していると
考え、2つの光分割器が一体化していると考えればその
構成および効果について前記2実施例と同様に考えるこ
とができる。
In such an optical pickup device, the diffraction structure 63 and the substrate 60 constitute the light splitter 42, and the other diffraction structure 64 and the substrate 60 constitute the light splitter 43. Considering that the two light splitters are integrated, the structure and effects can be considered in the same way as in the above two embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、回折構造体を持つ光分割器を2個
重ねる構成によって、小型、低コストでなおかつS/N
が良い差動検出型の光ピックアップ装置が提供できる。
As explained above, by stacking two light splitters with diffraction structures, it is possible to achieve small size, low cost, and S/N ratio.
A differential detection type optical pickup device with good performance can be provided.

この光ピックアップ装置によれば、上記の効果のほか、
部品点数が少なくできることや、一体化できるため軸合
せが簡単で使用中の軸ズレにも強いこと、また光センサ
ー内に差動アンプ回路を内蔵できるためノイズに強いこ
と等のメリットがある。
According to this optical pickup device, in addition to the above effects,
It has the advantages of being able to reduce the number of parts, being integrated, which makes axis alignment easy and resistant to axis misalignment during use, and having a differential amplifier circuit built into the optical sensor, making it resistant to noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ピックアラ!装置の第1実施例の概
略図であシ、第6図、第7図はそれぞれ第2実施例、第
3実施例を示す概略図である。 第2図は光束の信号振幅成分を示した模式図である。 第3図、第4図、第5図はそれぞれ格子構造体と光セン
サーの組み合せの例を示した概略図である。 第8図は従来の回折構造体を使わない差動検出型の光ピ
ックアップ装置の概略図であり、第9図、第10図はそ
れぞれ差動検出法の説明をするための図である。 第11図は回折構造体を持つ光分割器の例を示す図であ
シ、第12図、第13図はそれぞれ第11図の光分割器
を用いた光ピックアップ装置の概略図である。 40:半導体レーデ、41:コリメータレンズ、42:
第2光分割器、43:第1光分割器、45:記録媒体、
46:対物レンズ、49:偏光板、50:光センサ−,
51:位相調整膜。 代理人 弁理士 山 下 穣 平 第1図 第2図 第3図 (A)             (B)第411 第5図 第91!I
Figure 1 shows the optical pick-up arrangement of the present invention! This is a schematic diagram of a first embodiment of the apparatus, and FIGS. 6 and 7 are schematic diagrams showing a second embodiment and a third embodiment, respectively. FIG. 2 is a schematic diagram showing the signal amplitude component of the luminous flux. FIGS. 3, 4, and 5 are schematic diagrams showing examples of combinations of grating structures and optical sensors, respectively. FIG. 8 is a schematic diagram of a conventional differential detection type optical pickup device that does not use a diffraction structure, and FIGS. 9 and 10 are diagrams for explaining the differential detection method, respectively. FIG. 11 is a diagram showing an example of a light splitter having a diffraction structure, and FIGS. 12 and 13 are schematic diagrams of an optical pickup device using the light splitter shown in FIG. 11, respectively. 40: semiconductor radar, 41: collimator lens, 42:
Second light splitter, 43: First light splitter, 45: Recording medium,
46: Objective lens, 49: Polarizing plate, 50: Optical sensor,
51: Phase adjustment film. Agent Patent Attorney Jo Taira Yamashita Figure 1 Figure 2 Figure 3 (A) (B) Figure 411 Figure 5 Figure 91! I

Claims (4)

【特許請求の範囲】[Claims] (1)それぞれ回折構造体を有する第1の光分割器と第
2の光分割器を有し、 光源から発せられた光を情報記録面に照射し、前記情報
記録面からの反射光を前記第1光分割器に導く手段を有
し、 前記反射光を第1光分割器に入射せしめることにより第
1回折光を発生させ、前記第1光分割器を透過した光を
前記第2光分割器に入射せしめることにより第2回折光
を発生させることと、前記第1回折光の偏光面と前記第
2回折光の偏光面とを相対的に大略90°回転させる手
段と、 前記第1回折光と前記第2回折光を光検出器の受光部に
導く手段を有することを特徴とする光ピックアップ装置
(1) It has a first light splitter and a second light splitter each having a diffraction structure, irradiates the information recording surface with light emitted from the light source, and directs the reflected light from the information recording surface to the comprising a means for guiding the reflected light to a first light splitter, causing the reflected light to enter the first light splitter to generate a first diffracted light, and splitting the light transmitted through the first light splitter into the second light splitter. generating second diffracted light by making it incident on a container; and means for relatively rotating the plane of polarization of the first diffracted light and the plane of polarization of the second diffracted light by approximately 90 degrees; An optical pickup device comprising means for guiding light and the second diffracted light to a light receiving section of a photodetector.
(2)前記光源より前記情報記録面に至る光路中に前記
第1光分割器と前記第2光分割器があることを特徴とす
る特許請求の範囲第1項記載の光ピックアップ装置。
(2) The optical pickup device according to claim 1, wherein the first light splitter and the second light splitter are provided in an optical path from the light source to the information recording surface.
(3)前記光検出器の受光部が複数で構成され、前記受
光部で受けた信号を差動検出で処理する手段を有するこ
とを特徴とする特許請求の範囲第1項記載の光ピックア
ップ装置。
(3) The optical pickup device according to claim 1, characterized in that the photodetector includes a plurality of light receiving sections, and has means for processing signals received by the light receiving sections by differential detection. .
(4)前記第1光分割器と前記第2光分割器が一体化し
ていることを特徴とする特許請求の範囲第1項記載の光
ピックアップ装置。
(4) The optical pickup device according to claim 1, wherein the first light splitter and the second light splitter are integrated.
JP60072732A 1985-04-08 1985-04-08 Optical pickup device Pending JPS61233439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072732A JPS61233439A (en) 1985-04-08 1985-04-08 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072732A JPS61233439A (en) 1985-04-08 1985-04-08 Optical pickup device

Publications (1)

Publication Number Publication Date
JPS61233439A true JPS61233439A (en) 1986-10-17

Family

ID=13497820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072732A Pending JPS61233439A (en) 1985-04-08 1985-04-08 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS61233439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144432A (en) * 1986-12-05 1988-06-16 Nec Corp Optical head device
JPS63146243A (en) * 1986-12-09 1988-06-18 Nec Corp Optical head device
JPS63148448A (en) * 1986-12-12 1988-06-21 Nec Corp Magneto-optical head device
JPH01311428A (en) * 1988-06-09 1989-12-15 Matsushita Electric Ind Co Ltd Optical head device and optical information device using the same
JPH03216821A (en) * 1990-01-22 1991-09-24 Hitachi Ltd Optical head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144432A (en) * 1986-12-05 1988-06-16 Nec Corp Optical head device
JPS63146243A (en) * 1986-12-09 1988-06-18 Nec Corp Optical head device
JPS63148448A (en) * 1986-12-12 1988-06-21 Nec Corp Magneto-optical head device
JPH01311428A (en) * 1988-06-09 1989-12-15 Matsushita Electric Ind Co Ltd Optical head device and optical information device using the same
JPH03216821A (en) * 1990-01-22 1991-09-24 Hitachi Ltd Optical head
JP2738759B2 (en) * 1990-01-22 1998-04-08 株式会社日立製作所 Light head

Similar Documents

Publication Publication Date Title
JP3658763B2 (en) Optical pickup device for magneto-optical storage device
EP0581597B1 (en) An optical information reproducing device
US5579291A (en) Compact-size magneto-optical head apparatus
JPS61233439A (en) Optical pickup device
JP2801746B2 (en) Optical information recording / reproducing device and double diffraction grating
JPS6117103A (en) Polarizing beam splitter
JPH08306091A (en) Optical head
JP3106047B2 (en) Optical pickup device
JPH0619838B2 (en) Optical playback device
JPH0690817B2 (en) Light pickup
JPS61237246A (en) Optical pickup device
JPS6047653B2 (en) optical signal regenerator
JPS61233441A (en) Optical head device
JPH0656673B2 (en) Light pickup
JPS63119024A (en) Optical head device
JPH0829124A (en) Displacement measuring device and optical pickup
JPH0646463B2 (en) Optical pickup device
JP2879601B2 (en) Optical information recording / reproducing device
JPS6111951A (en) Optical head device
JPS61258339A (en) Optical recording and reproducing device
KR100595509B1 (en) Base optical unit in optical disk player
JPS61289545A (en) Optical head device
JPS63157341A (en) Magneto-optical recording/reproducing head
JPS61233442A (en) Optical head device
JPH0785523A (en) Magneto-optical disk device