JPS61233441A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPS61233441A
JPS61233441A JP60073591A JP7359185A JPS61233441A JP S61233441 A JPS61233441 A JP S61233441A JP 60073591 A JP60073591 A JP 60073591A JP 7359185 A JP7359185 A JP 7359185A JP S61233441 A JPS61233441 A JP S61233441A
Authority
JP
Japan
Prior art keywords
light
wavelength
diffracted
light source
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60073591A
Other languages
Japanese (ja)
Other versions
JPH0746439B2 (en
Inventor
Tetsuo Kuwayama
桑山 哲郎
Masaru Osawa
大 大沢
Naosato Taniguchi
尚郷 谷口
Kiyonobu Endo
遠藤 清伸
Hiroaki Hoshi
星 宏明
Yasuo Nakamura
保夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Electronics Inc
Original Assignee
Canon Inc
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Electronics Inc filed Critical Canon Inc
Priority to JP60073591A priority Critical patent/JPH0746439B2/en
Priority to US06/748,342 priority patent/US4733065A/en
Priority to FR8509716A priority patent/FR2566953A1/en
Priority to DE19853522849 priority patent/DE3522849A1/en
Priority to NL8501857A priority patent/NL194898C/en
Publication of JPS61233441A publication Critical patent/JPS61233441A/en
Publication of JPH0746439B2 publication Critical patent/JPH0746439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To eliminate the effects of the wavelength variance of a light source by increasing the size of a photodetecting surface in the direction where it is diffracted by a diffraction grating in comparison with the size of said photodetecting surface in the direction orthogonal the first mentioned direction. CONSTITUTION:The traveling direction of the diffracted light 11 is changed slightly by the wavelength variance of a light source 1. The change of direction due to said wave motion variance is coincident with the direction due to said wave motion variance is coincident with the direction diffracted by a diffraction grating. Therefore 11a'-11c' have vertical fluctuations to the distribution of light quantity of 11a-11c. Here the photodetecting surfaces 13a-13d of a photo detector 13 have relatively large sizes in the direction where the luminous flux is shifted by said wavelength fluctuation. At the same time, the dividing line of each photodetecting surface is set in parallel to said direction. As a result, the output of each photodetecting part is not substantially affected despite the wavelength variance of the light source 1. This attains the correct auto- focusing and auto-tracking actions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報担体の情報記録面に光を照射し、情報の
検出又は記録を行なう光ヘッド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical head device that detects or records information by irradiating an information recording surface of an information carrier with light.

〔従来技術〕[Prior art]

従来、上記のような光ヘッド装置におい【は、フォーカ
スエラーおよびトラッキングエラーを検出するために、
情報記録担体で反射された光束が光検出器に導かれる光
路中に特殊な形をしたプリズムや、特殊な非球面レンズ
であるシリンドリカルレンズあるいはドーリ、クレンメ
等を配置するのが普通であった。
Conventionally, in optical head devices such as those described above, in order to detect focus errors and tracking errors,
It was common to place a specially shaped prism, a special aspherical lens such as a cylindrical lens, a dori, or a lens in the optical path in which the light beam reflected by the information recording carrier was guided to the photodetector.

このような特殊な光学部品は、光へ、ド装置を製造する
際に高価格化の原因となシ、また、各光学部品が個別に
存在する形態なので配置調整が複雑になるという欠点を
有していた。これらの欠点を補うために、光検出器に光
束を導く光路中に回折格子を設は九光ヘッド装置が種々
提案されている。例えば、シリンドリカルレンズを回折
格子素子に置き換えた例としては、特開昭53−100
808号、特開昭54−43005号、特開昭54−6
1503号、特開昭54−134605号等がある。こ
れらの光ヘッド装置におい【は、シリンドリカルレンズ
、あるいはトーリックレンズを平板型の回折格子で置換
えているため、安価な光へ、ド装置が構成可能なこと、
他の部品と接着しているので位置調整が安易なこと等の
長所を有している。
Such special optical components do not cause high costs when manufacturing optical devices, and also have the disadvantage that arrangement adjustment becomes complicated because each optical component exists individually. Was. In order to compensate for these drawbacks, various nine-optical head devices have been proposed in which a diffraction grating is provided in the optical path that guides the light beam to the photodetector. For example, as an example of replacing a cylindrical lens with a diffraction grating element, JP-A-53-100
No. 808, JP-A-54-43005, JP-A-54-6
No. 1503, JP-A-54-134605, etc. In these optical head devices, the cylindrical lens or toric lens is replaced with a flat-plate diffraction grating, so the device can be configured to produce inexpensive light.
Since it is bonded to other parts, it has advantages such as easy position adjustment.

しかし、このような回折格子素子を半導体レーデ光源と
組合せたときには重大な問題点が発生する。それは、半
導体レーデ光源がヘリウム・ネオンレーザ等の気体レー
ザーと比較して波長の安定性が低いために、使用時の環
境温度の変化、駆動電流の変動によりて光源の波長が変
化し、上記光学ヘッド装置の場合、正しいオートフォー
カス動作等ができなくなることである。
However, serious problems arise when such a grating element is combined with a semiconductor radar light source. This is because the wavelength stability of the semiconductor radar light source is lower than that of gas lasers such as helium/neon lasers, so the wavelength of the light source changes due to changes in the environmental temperature and drive current during use, and the above-mentioned optical In the case of a head device, this means that correct autofocus operation etc. cannot be performed.

たとえば−例として、λ=830 nmの波長の半導体
レーデは、1℃の温度上昇に対して約0.3nmの波長
シフトを生じ、この結果20℃の温度上昇ではdnmも
の波長変動を生じる。通常の非点収差方式のフォーカス
エラー検出において、シリンドリカルレンズとしてホロ
グラムレンズを用いているときに、波長が830画から
836画に変化すると、光の回折方向の変化により合焦
位置のドリフトを生じ、特別な補正無しでは正しいオー
トフォーカス動作が行なわれなくなりてしまう。
For example - by way of example, a semiconductor radar with a wavelength of λ=830 nm undergoes a wavelength shift of approximately 0.3 nm for a temperature increase of 1 DEG C., resulting in a wavelength variation of as much as dnm for a temperature increase of 20 DEG C. In normal astigmatic focus error detection, when a hologram lens is used as a cylindrical lens, if the wavelength changes from 830 pixels to 836 pixels, the focus position will drift due to a change in the direction of diffraction of light. Without special correction, correct autofocus operation will not be performed.

またこのような光へ、ド装置に用いられている回折格子
が高次回折光にブレーズされている格子であるときに、
前述したような波長変動が生じた場合には、回折光が1
00チ特定の次数に集中することはできず、隣接するい
くつかの次数にエネルギーが分配されてしまう。このよ
うな回折格子を光へ、ドに用いた場合、光検出器が特定
の次数光だけを検出するように作られている場合には、
検出量の低下を生じてしまう。また、特定の回折次数光
の回折効率が光源の波長に敏感な場合には、検出光量が
光源の波長変動の影響を強く受けてしまう問題点もある
In addition, when the diffraction grating used in the device is a grating that is blazed with higher-order diffraction light,
When the wavelength fluctuation as mentioned above occurs, the diffracted light becomes 1
It is not possible to concentrate on a specific order, and the energy is distributed to several adjacent orders. When such a diffraction grating is used for light, if the photodetector is made to detect only a specific order of light,
This results in a decrease in the amount of detection. Furthermore, when the diffraction efficiency of a specific diffraction order light is sensitive to the wavelength of the light source, there is also the problem that the amount of detected light is strongly influenced by the wavelength fluctuation of the light source.

〔発明の目的〕[Purpose of the invention]

本発明は上記のよ5な光源の波長変動の影響を受けない
光ヘッド装置を提供することを目的とする。
An object of the present invention is to provide an optical head device that is not affected by the wavelength fluctuations of a light source as described above.

〔発明の要旨〕[Summary of the invention]

本発明によれば、以上の様な目的は、光源からの光を情
報記録面上に入射させ、該情報記録面からの反射光を前
記入射光の光路中に配置された回折格子を有する光分割
器により回折光として光検出器に導き、情報の検出又は
記録を行なう光へ。
According to the present invention, the above object is to make light from a light source incident on an information recording surface and convert the reflected light from the information recording surface into a light beam having a diffraction grating arranged in the optical path of the incident light. The splitter guides the light as diffracted light to a photodetector, where it is used to detect or record information.

ド装置において、 前記光検出器は単一あるいは複数に分割された光検知面
を有し、該光検知面の前記回折格子により回折される方
向に対する寸法が、該方向に直交する方向の寸法に比較
して、前記光源の波長変動により生じる前記回折光の変
動を含むように大きく設定されたことを特徴とする光へ
、ド装置により達成される。
In the photodetector, the photodetector has a single or plurally divided photodetection surface, and a dimension of the photodetection surface in a direction in which it is diffracted by the diffraction grating is a dimension in a direction perpendicular to the direction. In comparison, a light beam characterized in that the light is set to be large enough to include fluctuations in the diffracted light caused by wavelength fluctuations of the light source is achieved by a de-device.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明による光ヘッド装置の一実施例の概略
的構成図である。
FIG. 1 is a schematic diagram of an embodiment of an optical head device according to the present invention.

同図において半導体レーデlから出射したP偏光はコリ
メータレンズ2により平行光束となシ、平行平板4,6
及び体積型回折格子5とから構成される光分割器3に入
射する。この光分割器3を透過した直線偏光(P偏光)
は、対物レンズ7によって基板8上の情報記録面9に径
1μm前後のスデットに集光される。磁気的に情報が記
録された記録面9において、情報に応じて偏光面が回転
(カー回転)された反射光10は光分割器3に再び入射
し、体積型回折格子5によって、波長と回折格子5のピ
ッチにより定まる所定の回折角で回折される。この回折
光11は平行平板4或いは6の表面で全反射を繰シ返し
ながら導波され、光分割器3の端面に設けられた4分割
光検出器13に入射する。光検出器13の直前には検光
子12が設けられていて、光磁気信号を光量変化に変換
する。
In the figure, the P-polarized light emitted from the semiconductor radar 1 is converted into a parallel beam by the collimator lens 2, and the parallel plate 4, 6
and a volume type diffraction grating 5. Linearly polarized light (P polarized light) transmitted through this light splitter 3
is focused by the objective lens 7 onto the information recording surface 9 on the substrate 8 into a stub with a diameter of about 1 μm. On the recording surface 9 on which information is magnetically recorded, the reflected light 10 whose polarization plane has been rotated (Kerr rotation) according to the information enters the light splitter 3 again, and is subjected to wavelength and diffraction by the volume type diffraction grating 5. The light is diffracted at a predetermined diffraction angle determined by the pitch of the grating 5. This diffracted light 11 is guided while undergoing repeated total reflection on the surface of the parallel plate 4 or 6, and enters a four-split photodetector 13 provided at the end face of the light splitter 3. An analyzer 12 is provided immediately in front of the photodetector 13, and converts the magneto-optical signal into a change in the amount of light.

第1図に示した光分割器3を半導体レーデ1側から見た
図を第2図に示す。本笑施例の体積型回折格子5は、格
子が円錐形に形成され【おり、回折光11を集束せしめ
るレンズ作用を有する。また、4分割光検出器13は4
つの受光面が紙面方向に直列に配置されている。この光
検出器13上の光量分布は、第1図における記録面9上
のスポ、トの合焦状態に応じ【変化する。例えば、対物
レンズ7の焦点位置が記録面9に一致しているときKは
、反射光10は平行光となり、回折光11は第2図の実
線のようKなりて、光検出器13に11bK示す形状で
入射する。tfc、対物レンズ7が記録面に近ずきすぎ
た或いは遠ざかシすぎた場合には、反射光10は発散光
或いは集束光となり、回折光11は第2図におい【夫々
一点鎖線或いは点線のようになって、光検出器13上で
夫々11C或いは11轟に示す形状となる。このような
光束形状の変化を利用してフォーカスエラー信号を検出
する原理を以下に詳しく説明する。
FIG. 2 shows a view of the light splitter 3 shown in FIG. 1 viewed from the semiconductor radar 1 side. The volume type diffraction grating 5 of this embodiment has a conical grating and has a lens function to focus the diffracted light 11. In addition, the 4-split photodetector 13 has 4
Two light-receiving surfaces are arranged in series in the direction of the paper. The light intensity distribution on the photodetector 13 changes depending on the focusing state of the spots on the recording surface 9 in FIG. For example, when the focal position of the objective lens 7 coincides with the recording surface 9, the reflected light 10 becomes parallel light, and the diffracted light 11 becomes K as shown by the solid line in FIG. It is incident in the shape shown. tfc, when the objective lens 7 is too close to or too far away from the recording surface, the reflected light 10 becomes a diverging light or a convergent light, and the diffracted light 11 becomes as shown in FIG. 11C or 11D, respectively, on the photodetector 13. The principle of detecting a focus error signal using such a change in the shape of the light beam will be explained in detail below.

第3図(a) 、 (b) 、 (e)は4分割光検出
器13を光の入射側から見九図で(b)は合焦状態、(
、) 、 (C)は焦点外れ状態を示す。ここで、13
a 513b +13c*13dは夫々分割された光検
知面を示し、入射光束の形状は上述のように、11M$
11b、lieと変化する。なお、lla’ I ll
b’ #  tie’については後述する。光検知面1
3as13b+13c+13dからの出力を夫々Ia 
、Ib 、IC,Idとすると、第4図(&)に示すよ
うな電気系で(Ib+Ic )−(Ia+Id ) なる演算を行なう事によって、差動増幅器14の出力端
子15は、第4図(b)に示す様なフォーカスエラー信
号が得られる。第4図(b)において横軸は合焦位置を
零とし九ときの対物レンズと記録面との距離(フォーカ
ス誤差)を示し、縦軸は信号出力を示す。得られたフォ
ーカスエラー信号に従い、不図示のアクテ、二一タを介
して対物レンズ7或いは光ヘッド全体を入射光の光軸に
沿りてディスクに対して動かすことによ)、オートフォ
ーカスが可能となる。
Figures 3 (a), (b), and (e) are nine views of the 4-split photodetector 13 from the light incident side, and (b) shows the focused state;
, ), (C) shows an out-of-focus condition. Here, 13
a 513b +13c*13d indicate the divided light detection surfaces, and the shape of the incident light flux is 11M$ as described above.
11b, lie. In addition, lla' I ll
b'#tie' will be described later. Light detection surface 1
The outputs from 3as13b+13c+13d are respectively Ia
, Ib, IC, and Id, by performing the calculation (Ib+Ic)-(Ia+Id) in the electrical system shown in FIG. 4(&), the output terminal 15 of the differential amplifier 14 becomes A focus error signal as shown in b) is obtained. In FIG. 4(b), the horizontal axis indicates the distance (focus error) between the objective lens and the recording surface when the in-focus position is zero, and the vertical axis indicates the signal output. According to the obtained focus error signal, autofocus is possible by moving the objective lens 7 or the entire optical head relative to the disk along the optical axis of the incident light via an actuator (not shown) or an actuator (not shown). becomes.

次に、第1図示の実施例におけるオートトラッキングの
原理を説明する。第5図(51) # (b) t (
e)のように情報記録担体の基板8に溝8鳳が形成され
ているとすると、対物レンズ7により、入射光束はこの
$ g mの近傍に集光される。ここで(b) 社、目
的の溝8朧の上にスポットが生じている状態、(轟)。
Next, the principle of auto-tracking in the embodiment shown in the first diagram will be explained. Figure 5 (51) # (b) t (
Assuming that grooves 8 are formed in the substrate 8 of the information recording carrier as shown in e), the incident light beam is focused by the objective lens 7 in the vicinity of this $ g m. Here (b), a spot is generated above the target groove 8 (Todoroki).

(e)は夫々溝に対してスポットが右または左くずれて
いる状態を示す。この基板8上の記録面9で反射される
光束は溝81での回折或いは散乱によるトラッキング情
報を含む。第2図示の4分割光検出器13で、前記反射
光を受けると光検知面13a。
(e) shows a state in which the spot is shifted to the right or left with respect to the groove, respectively. The light beam reflected by the recording surface 9 on the substrate 8 contains tracking information due to diffraction or scattering at the grooves 81. In the quadrant photodetector 13 shown in the second diagram, when the reflected light is received, the photodetecting surface 13a.

13b 、13c 、13dで受ける光量は、前述の第
5図(fi) 、 (b) # (c)の状態に応じて
、夫々第6図(a)。
The amount of light received by 13b, 13c, and 13d is as shown in FIG. 6(a) depending on the conditions shown in FIGS. 5(fi), (b), and (c), respectively.

(b) t (e)のように変化する。従って、第7図
(−)に示すような電気系で、 (I轟+Ib)−(Ic+Id) なる演算を行なう事によって、差動増幅器16の出力端
子17には、第7図(b)に示すようなトラッキングエ
ラー信号が得られる。第7図(b)において、横軸はト
ラッキング誤差、縦軸は信号出力を示す。
(b) t Changes as shown in (e). Therefore, by performing the calculation (I Todo + Ib) - (Ic + Id) in the electrical system as shown in Figure 7 (-), the output terminal 17 of the differential amplifier 16 is outputted as shown in Figure 7 (b) A tracking error signal as shown is obtained. In FIG. 7(b), the horizontal axis shows the tracking error and the vertical axis shows the signal output.

得られたトラ、キングエラー信号に従って、不図示のト
ラッキングアクチーエータを駆動し、対物レンズ7を光
軸に垂直に移動させる等の方法で、オートトラッキング
が可能となる。尚、ここで基板8に予め案内トラックと
しての溝が形成されている場合を説明したが、このよう
な溝がない場合でも、記録面9の情報が記録されている
部分(記録トラック)と、その他の部分とでは、前述の
磁気光学効果によって検光子12を透過する光量が異な
シ、記録トラックとスポットとの位置関係に応じて光検
出器13上の光量分布にアンバランスが生じる。従って
、このような場合でも、第7図(−)のように、4分割
光検出器13の各々の光検知面の出力を演算することく
よシ同様にトラッキングエラー信号が得られる。
Auto-tracking is possible by driving a tracking actuator (not shown) in accordance with the obtained tracking and king error signals to move the objective lens 7 perpendicular to the optical axis. Here, a case has been described in which a groove as a guide track is formed in advance on the substrate 8, but even if there is no such groove, the portion of the recording surface 9 where information is recorded (recording track), In other parts, the amount of light passing through the analyzer 12 is different due to the above-mentioned magneto-optic effect, and an imbalance occurs in the light amount distribution on the photodetector 13 depending on the positional relationship between the recording track and the spot. Therefore, even in such a case, a tracking error signal can be obtained in the same way as by calculating the output of each photodetecting surface of the four-split photodetector 13, as shown in FIG. 7(-).

また第2図に示した実施例においては、回折格子5から
の回折光は集束光となって回折されているが、このよう
にレンズ作用を生ずる回折格子は例えば格子を円錐形に
作製する事によって実現できる。
Furthermore, in the embodiment shown in FIG. 2, the diffracted light from the diffraction grating 5 is diffracted as a focused light, but a diffraction grating that produces a lens effect in this way can be made, for example, in a conical shape. This can be achieved by

次に本発明の内容となる光源の波長変動の影響を受けな
くする方法について記述する。
Next, a method of eliminating the influence of wavelength fluctuations of a light source, which is the content of the present invention, will be described.

第1図の光ヘッド装置において半導体レーデ光源1の波
長に変動が生じたと仮定する。この波長変動により、回
折光11の進行方向はわずかに変動するが第1図におい
てはこの変化の方向は紙面内の方向である。第2図およ
び第3図に示した光量分布のうち、11a’+ 11”
e lie’は光源波長が変動したときに生じる光量分
布である。この波動変動により生じる方向の変化は回折
格子により回折される方向なので第3図においてはそれ
ぞれ11 m’ 、 1 l b’ 、 11 c’は
目、a、11b、11cの光量分布の上下に変動するこ
とKなる。ここで第3図に示すよ5K、光検出器13の
各光検知面13 m = 13 b −13c @ 1
3 dをこの波長変動で光束の移動する方向に相対的に
大きな寸法で作シ、また、各光検知面の分割線をこの方
向に平行させることにより、光源の波長変動が生じても
、各光検出器の出力はほとんど影響を受けず、正しいオ
ートフォーカスおよびオートトラッキングを行うことが
できる。
Assume that in the optical head device shown in FIG. 1, the wavelength of the semiconductor radar light source 1 changes. Due to this wavelength change, the traveling direction of the diffracted light 11 changes slightly, but in FIG. 1, the direction of this change is in the plane of the paper. Of the light intensity distributions shown in Figures 2 and 3, 11a'+ 11"
e lie' is the light amount distribution that occurs when the light source wavelength changes. The change in direction caused by this wave fluctuation is the direction that is diffracted by the diffraction grating, so in Fig. 3, 11 m', 1 l b', and 11 c' are the vertical fluctuations in the light intensity distribution of the eyes, a, 11b, and 11c, respectively. It becomes K to do. Here, as shown in FIG. 3, each light detection surface 13 m of the photodetector 13 is 5K = 13 b - 13 c @ 1
By making 3d relatively large in the direction in which the light flux moves due to this wavelength variation, and by making the dividing line of each light detection surface parallel to this direction, even if the wavelength variation of the light source occurs, each The output of the photodetector is hardly affected and correct autofocus and autotracking can be performed.

もし本発明のような工夫がなく第8図(畠)に示すよ5
に光束の移動する方向に相対的に寸法が大きくない場合
、又は第8図(b)のよう、に光束の移動方向に各光検
知面13 a e 13 b a 13 c * 13
 dの分割線が平行になっていない場合は、光検出器1
3の全体の受光光量の減少や各光検知面13a。
If there is no ingenuity like the present invention, as shown in Figure 8 (Hata),
If the dimensions are not relatively large in the direction in which the light flux moves, or as shown in FIG. 8(b), each light detection surface 13 a e 13 b a 13 c * 13
If the dividing lines d are not parallel, the photodetector 1
3, the overall amount of received light decreases and each light detection surface 13a.

13b、13c、13dの出力が光源の波長変動によっ
て変化してしまう不都合が生じる。
A problem arises in that the outputs of 13b, 13c, and 13d change due to wavelength fluctuations of the light source.

第9図は、本発明の第2実施例を示した図である。第1
図図示の実施例と同様に、回折格子5により回折された
光束11は検光子12を通って光検出器13に入射する
。いま、半導体レーザー1の発振波長が長くなったとき
、回折光11の生じる角度はこの波長変化に比例して大
きくなシ、この結果、回折光11’は光分割器3に近い
場所に光ステ、トを生じることになる。
FIG. 9 is a diagram showing a second embodiment of the present invention. 1st
As in the illustrated embodiment, the light beam 11 diffracted by the diffraction grating 5 passes through an analyzer 12 and enters a photodetector 13 . Now, when the oscillation wavelength of the semiconductor laser 1 becomes longer, the angle at which the diffracted light 11 occurs becomes larger in proportion to this change in wavelength. , this will result in a loss.

第10図は、光検出器130分割法と、光スポ、トの関
係をあられした図である。光スポット11が光スポット
11′と変化しても、光検出器13の分割線は、光源波
長変動により回折光の移動する方向に設定されているた
め、AFの作動点ドリフトを生じることが無い。
FIG. 10 is a diagram showing the relationship between the photodetector 130 division method and the light spots. Even if the light spot 11 changes to the light spot 11', the dividing line of the photodetector 13 is set in the direction in which the diffracted light moves due to fluctuations in the light source wavelength, so no AF operating point drift occurs. .

次に本発明に用いる回折構造体を製造するための型作成
の1例を示す・ 型作成においては第11図に示すように凰材18を回転
し、ダイヤモンド等のカッター19を紙面に垂直方向へ
移動させながら型を作成する。
Next, an example of making a mold for manufacturing the diffractive structure used in the present invention will be shown. In making the mold, as shown in FIG. Create a mold while moving the

カッター19の刃先の頂角は、角α、βによって定まシ
、上記例では〜65°の角度を持たせる。型材18はリ
ン青銅、真鍮Ni等の金属でも良いし、ロウ盤やプラス
チ、り材等の高分子系の材質でもかまわない。但し、金
属型材の場合は直接スタン・譬−として使用可能であり
電鋳等でスタン・臂−を作成する工程が必要ないと云う
利点がある。第11図で示した方法で切削されるとレリ
ーフ構造は第12図(B)に示した如く、同心円状のレ
リーフ構造が得られる。第12図(6)は(B)図の一
部を拡大した図でαへ35°、β七80°、ピッチ〜2
0μmである。
The apex angle of the cutting edge of the cutter 19 is determined by the angles α and β, and in the above example, the angle is approximately 65°. The mold material 18 may be made of metal such as phosphor bronze or brass Ni, or may be made of a polymeric material such as brazing disc, plasti, or resin. However, metal shapes have the advantage that they can be used directly as stumps and armholes, and there is no need for the process of creating stuns and arms by electroforming or the like. When cut by the method shown in FIG. 11, a concentric relief structure as shown in FIG. 12(B) is obtained. Figure 12 (6) is an enlarged view of a part of Figure (B), with 35° to α, 80° to β, pitch ~2
It is 0 μm.

次に、第13図に示す如く、アクリルの如きプラスチッ
ク材20にコンブレッジ、/転写を行なう。この時、型
18、アクリル材20を適轟な温度と圧力をかける事に
よυ金型18のレリーフ構造を忠実にアクリル材20に
転写する事が可能である。
Next, as shown in FIG. 13, combination/transfer is performed on a plastic material 20 such as acrylic. At this time, by applying appropriate temperature and pressure to the mold 18 and the acrylic material 20, it is possible to faithfully transfer the relief structure of the υ mold 18 to the acrylic material 20.

転写したアクリル材のレリーフ構造部に第14図に示す
如、<、例えば蒸着等で反射層21を設ける。反射層2
1は多層構造でも単層構造でもかまわない。また、Mg
F2 * TlO2* ZrO2* 81029等の誘
電膜でもAu 、 Ag 、 kL 、 Cu等の金属
膜でもかまわない。
As shown in FIG. 14, a reflective layer 21 is provided on the transferred relief structure of the acrylic material by, for example, vapor deposition. reflective layer 2
1 may have a multilayer structure or a single layer structure. Also, Mg
It may be a dielectric film such as F2*TlO2*ZrO2* 81029 or a metal film such as Au, Ag, kL, Cu or the like.

次に第15図に示す如く、アクリル材20の屈折率に近
い物質22でレリーフ部を埋める。この時、カバー材2
3t−設ける事により、表面を光学的に滑らかにする事
ができる。その為に物質22は接層作用を持りている事
が好ましく、例えばアクリル系の紫外線硬化型接着材が
有利である。またカバー材23はアクリル材20と同一
のものでも、他の物質(例えばガラス)でもかまわない
Next, as shown in FIG. 15, the relief portion is filled with a substance 22 having a refractive index close to that of the acrylic material 20. At this time, cover material 2
By providing 3t, the surface can be made optically smooth. For this reason, it is preferable that the substance 22 has a bonding effect, and for example, an acrylic ultraviolet curing adhesive is advantageous. Further, the cover material 23 may be the same as the acrylic material 20 or may be made of another material (for example, glass).

以上の経過により本発明の光分割器が作成される。Through the above process, the light splitter of the present invention is produced.

〔発明の効果〕 以上述べてき九ように本発明の光へ、ド装置によれば温
度変化などくよって光源の波長変動が生じた場合でもド
リフトを生じることなく、信号を検出することが可能と
なった。
[Effects of the Invention] As described above, the optical device of the present invention makes it possible to detect signals without causing drift even when the wavelength of the light source fluctuates due to temperature changes or other factors. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ヘッド装置を示す概略構成図であり
、第2図および第3図は本発明の光へ。 ド装置に生じる光量分布を示した図である。 第4図はフォーカスエラー検出回路を表し要因、第5図
および第6図はトラ、キングエラー検出の原理を表し要
因であ夛、第7図はトラッキングエラー検出回路を表し
た図である。 第8図は波動変動の影響を受けてしまう光検出器の光検
知面の例を示す図である。 第9図は本発明の第2実施例を示す概略構成図であり、
第10図は、第2実施例における光検出器の各光検知面
の形状を示した図である。 また第11図、第12図、第13図、第14図。 第15図はそれぞれ本発明の光ヘッド装置に使用する回
折格子の製造方法を示した図である。 1:レーデ光源、2:コリメーターレンズ、3:ビーム
スグリ、ター、4,6:平行平板、5:回折格子、7:
対物レンズ、8:基板、9:情報記録担体、10:反射
光、11:回折光、12:検光子、13:光検出器。 代理人  弁理士 山 下 積 子 弟2図 (0)      (b)     (c)第4因 (b) 第5図 (0)    (b)    (C) 第6図 +50  +5c        15e)  1,5
C13t)  13c第7図 (b) 第8図
FIG. 1 is a schematic configuration diagram showing the optical head device of the present invention, and FIGS. 2 and 3 are diagrams showing the optical head device of the present invention. FIG. 3 is a diagram showing the light amount distribution generated in the hard drive device. FIG. 4 shows the focus error detection circuit and its factors, FIGS. 5 and 6 show the principles of tiger and king error detection and the factors, and FIG. 7 shows the tracking error detection circuit. FIG. 8 is a diagram showing an example of a light detection surface of a photodetector that is affected by wave fluctuations. FIG. 9 is a schematic configuration diagram showing a second embodiment of the present invention,
FIG. 10 is a diagram showing the shape of each photodetecting surface of the photodetector in the second embodiment. Also, FIGS. 11, 12, 13, and 14. FIG. 15 is a diagram showing a method of manufacturing a diffraction grating used in the optical head device of the present invention. 1: Rede light source, 2: Collimator lens, 3: Beam gooseberry, tar, 4, 6: Parallel plate, 5: Diffraction grating, 7:
Objective lens, 8: Substrate, 9: Information recording carrier, 10: Reflected light, 11: Diffracted light, 12: Analyzer, 13: Photodetector. Agent Patent Attorney Seki Yamashita Children Figure 2 (0) (b) (c) Fourth cause (b) Figure 5 (0) (b) (C) Figure 6 +50 +5c 15e) 1,5
C13t) 13c Fig. 7(b) Fig. 8

Claims (1)

【特許請求の範囲】[Claims] (1)光源からの光を情報記録面上に入射させ、該情報
記録面からの反射光を前記入射光の光路中に配置された
回折格子を有する光分割器により回折光として光検出器
に導き、情報の検出又は記録を行なう光ヘッド装置にお
いて、 前記光検出器は単一あるいは複数に分割された光検知面
を有し、該光検知面の前記回折格子により回折される方
向に対する寸法が、該方向に直交する方向の寸法に比較
して、前記光源の波長変動により生じる前記回折光の変
動を含むように大きく設定されたことを特徴とする光ヘ
ッド装置。
(1) Light from a light source is made incident on an information recording surface, and the reflected light from the information recording surface is transmitted to a photodetector as diffracted light by a light splitter having a diffraction grating placed in the optical path of the incident light. In the optical head device for guiding, detecting or recording information, the photodetector has a single or plurally divided photodetecting surface, and the photodetecting surface has a dimension with respect to a direction in which it is diffracted by the diffraction grating. , an optical head device characterized in that the size is set to be larger than the dimension in a direction perpendicular to the direction so as to include fluctuations in the diffracted light caused by wavelength fluctuations of the light source.
JP60073591A 1984-06-27 1985-04-09 Optical head device Expired - Lifetime JPH0746439B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60073591A JPH0746439B2 (en) 1985-04-09 1985-04-09 Optical head device
US06/748,342 US4733065A (en) 1984-06-27 1985-06-24 Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom
FR8509716A FR2566953A1 (en) 1984-06-27 1985-06-26 Optical head device
DE19853522849 DE3522849A1 (en) 1984-06-27 1985-06-26 OPTICAL HEAD
NL8501857A NL194898C (en) 1984-06-27 1985-06-27 Optical reader.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073591A JPH0746439B2 (en) 1985-04-09 1985-04-09 Optical head device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8112327A Division JP2594421B2 (en) 1996-05-07 1996-05-07 Optical head device

Publications (2)

Publication Number Publication Date
JPS61233441A true JPS61233441A (en) 1986-10-17
JPH0746439B2 JPH0746439B2 (en) 1995-05-17

Family

ID=13522708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073591A Expired - Lifetime JPH0746439B2 (en) 1984-06-27 1985-04-09 Optical head device

Country Status (1)

Country Link
JP (1) JPH0746439B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125739A (en) * 1987-11-11 1989-05-18 Nec Home Electron Ltd Optical detector for hologram type optical head
JPH01220133A (en) * 1988-02-26 1989-09-01 Matsushita Electric Ind Co Ltd Optical head device
JPH038134A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Optical integrated circuit and optical device
US5696748A (en) * 1996-01-22 1997-12-09 Fujitsu Limited Hologram optical system for optical pickup for optical disk drive

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657013A (en) * 1979-09-28 1981-05-19 Philips Nv Focus error detector
JPS59160166A (en) * 1983-02-28 1984-09-10 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Holography optical head
JPS59217235A (en) * 1983-05-23 1984-12-07 Mitsubishi Electric Corp Optical information reproducing device
JPS59231736A (en) * 1983-06-13 1984-12-26 Hitachi Ltd Focus and tracking error detector
JPS605425A (en) * 1983-06-22 1985-01-12 Mitsubishi Electric Corp Optical information reader
JPS6028044A (en) * 1983-07-26 1985-02-13 Toshiba Corp Optical information reader
JPS6055519A (en) * 1983-09-05 1985-03-30 Mitsubishi Electric Corp Optical information producer
JPS60171644A (en) * 1984-02-17 1985-09-05 Mitsubishi Electric Corp Focus deviation detecting device of light disk head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657013A (en) * 1979-09-28 1981-05-19 Philips Nv Focus error detector
JPS59160166A (en) * 1983-02-28 1984-09-10 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Holography optical head
JPS59217235A (en) * 1983-05-23 1984-12-07 Mitsubishi Electric Corp Optical information reproducing device
JPS59231736A (en) * 1983-06-13 1984-12-26 Hitachi Ltd Focus and tracking error detector
JPS605425A (en) * 1983-06-22 1985-01-12 Mitsubishi Electric Corp Optical information reader
JPS6028044A (en) * 1983-07-26 1985-02-13 Toshiba Corp Optical information reader
JPS6055519A (en) * 1983-09-05 1985-03-30 Mitsubishi Electric Corp Optical information producer
JPS60171644A (en) * 1984-02-17 1985-09-05 Mitsubishi Electric Corp Focus deviation detecting device of light disk head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125739A (en) * 1987-11-11 1989-05-18 Nec Home Electron Ltd Optical detector for hologram type optical head
JPH01220133A (en) * 1988-02-26 1989-09-01 Matsushita Electric Ind Co Ltd Optical head device
JPH038134A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Optical integrated circuit and optical device
JP2728502B2 (en) * 1989-06-05 1998-03-18 株式会社日立製作所 Optical integrated circuit and optical device
US5696748A (en) * 1996-01-22 1997-12-09 Fujitsu Limited Hologram optical system for optical pickup for optical disk drive

Also Published As

Publication number Publication date
JPH0746439B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US5278817A (en) Optical pick-up for use with an opto-magnetic signal
US4733065A (en) Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom
US5155622A (en) Polarizing optical element and device using the same
JPH047016B2 (en)
US5243583A (en) Optical pickup device with dual grating element
JPS6227456B2 (en)
CN101188128B (en) Optical pickup device
EP0147749B1 (en) Optical head
JPS58220248A (en) Optical pickup
CN100377233C (en) Optical pickup device and optical disk device and optical device and composite optical element
JPS6117103A (en) Polarizing beam splitter
JPS61233441A (en) Optical head device
JPS61233442A (en) Optical head device
JPS63119024A (en) Optical head device
JPS61233439A (en) Optical pickup device
JP2594421B2 (en) Optical head device
JPS61237246A (en) Optical pickup device
JPH04167236A (en) Optical disk apparatus
JPH0580736B2 (en)
JP2501097B2 (en) Optical head device
KR100595509B1 (en) Base optical unit in optical disk player
JP2001110082A (en) Optical pickup and optical disk device
JPH0743845B2 (en) Optical head device
JPH0654548B2 (en) Optical information reproducing device
JPS6117232A (en) Optical head device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term