JPH0580736B2 - - Google Patents
Info
- Publication number
- JPH0580736B2 JPH0580736B2 JP59132294A JP13229484A JPH0580736B2 JP H0580736 B2 JPH0580736 B2 JP H0580736B2 JP 59132294 A JP59132294 A JP 59132294A JP 13229484 A JP13229484 A JP 13229484A JP H0580736 B2 JPH0580736 B2 JP H0580736B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- diffraction grating
- information
- recording surface
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 9
- 230000010287 polarization Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/1055—Disposition or mounting of transducers relative to record carriers
- G11B11/10576—Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
- G11B11/10541—Heads for reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Head (AREA)
Description
【発明の詳細な説明】
本発明は、情報担体の記録面より光学的に情報
を読み取る光ヘツド装置に関し、特に小型・軽量
で量産に適した光ヘツド装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical head device that optically reads information from a recording surface of an information carrier, and particularly to an optical head device that is small and lightweight and suitable for mass production.
従来、情報担体としては記録面の屈折率或いは
反射率の変化を利用して情報を記録したものや、
磁気的に情報が記録された所謂光磁気記録媒体な
ど種々のものが知られている。このような情報担
体から情報を読み取る場合には、これらの記録面
に光を入射し、記録面からの反射光を入射光の光
路中に設けられた光分割器により入射光と分離
し、光検出器に導くことによつて行なつている。
一般に、前記光分割器としては、対角面が接合さ
れた2つの直角プリズムから成るものが用いられ
ている。しかし、このような光分割器は、作製の
際に複雑な加工や位置合せ調整が必要であり、低
コスト化が困難であるという欠点を有していた。
また、形状がほぼ立方体であることから、光ヘツ
ド装置の薄型化を妨げる要因となつていた。 Conventionally, information carriers have been used to record information using changes in the refractive index or reflectance of the recording surface,
Various types of media, such as so-called magneto-optical recording media in which information is recorded magnetically, are known. When reading information from such information carriers, light is incident on these recording surfaces, and the reflected light from the recording surface is separated from the incident light by a light splitter installed in the optical path of the incident light. This is done by guiding it to a detector.
Generally, the light splitter is made up of two right angle prisms whose diagonal surfaces are joined. However, such a light splitter requires complicated processing and alignment adjustment during production, and has the disadvantage that it is difficult to reduce the cost.
Moreover, since the shape is almost cubic, it has been a factor that prevents the optical head device from being made thinner.
一方、前記プリズム型の光分割器に代えて、体
積型回折格子を用いた例が、特開昭57−155508号
公報及び米国特許第3622220号公報に記載されて
いる。このような体積型回折格子を用いた光ヘツ
ド装置の構成を第1図に示す。第1図において、
レーザ光源及びコリメータレンズを含んだ光源部
1より射出した平行光束2は、この光束に対して
45゜の角度に置かれた体積型回折格子3に入射す
る。ここで光束2は紙面に垂直な方向に振動面を
有するS偏光である。また体積型回折格子3は、
入射光の波長をλとすると、ピツチがほぼλ/
1.414に等しく、光束2を90゜の回折角で偏向す
る。このとき、S偏光に対する回折効果はほぼ
100%で、P偏光に対する回折効率はほぼ0%で
ある。従つて、光束2はほとんど回折され、λ/
4板4を透過して円偏光となり、対物レンズ5に
よつて光デイスク6の情報記録面7にスポツトを
形成する。 On the other hand, examples in which a volume type diffraction grating is used in place of the prism type light splitter are described in Japanese Patent Application Laid-Open No. 155508/1982 and US Pat. No. 3,622,220. The structure of an optical head device using such a volume type diffraction grating is shown in FIG. In Figure 1,
A parallel light beam 2 emitted from a light source section 1 including a laser light source and a collimator lens is
The light is incident on the volume type diffraction grating 3 placed at an angle of 45°. Here, the light beam 2 is S-polarized light having a vibration plane in a direction perpendicular to the plane of the drawing. Moreover, the volume type diffraction grating 3 is
If the wavelength of the incident light is λ, the pitch is approximately λ/
1.414 and deflects the beam 2 with a diffraction angle of 90°. At this time, the diffraction effect for S-polarized light is approximately
At 100%, the diffraction efficiency for P-polarized light is almost 0%. Therefore, most of the light beam 2 is diffracted and λ/
The light passes through the four-plate 4 and becomes circularly polarized light, which forms a spot on the information recording surface 7 of the optical disk 6 by the objective lens 5.
情報記録面7には反射率等の変化によつて情報
が記録されており、反射光は前記情報に従つて光
量変調を受ける。この反射光は、レンズ5、λ/
4板4を透過してP偏光となり、回折格子3では
回折されずに光検出器8に入射し、前記情報が読
み取られる。 Information is recorded on the information recording surface 7 by changes in reflectance, etc., and the reflected light is modulated in light amount according to the information. This reflected light is transmitted through lens 5, λ/
The light passes through the four-plate 4 and becomes P-polarized light, which is not diffracted by the diffraction grating 3 and enters the photodetector 8, where the information is read.
しかしながら、第1図に示す構成では、体積型
回折格子の回折角がほぼ90゜に設定されている為、
光磁気記録媒体からの情報の読み取りには用いる
事が出来ない。その理由を以下に説明する。第1
図において、情報記録面7に磁気的に情報が記録
されている場合、λ/4板4は光路中から取り除
かれる。回折格子より入射するS偏光光束は、情
報記録面7の磁化方向が上向きか下向きかに応じ
て、逆方向に同一量だけ偏光面が回転(力−回
転)された光束として反射される。この力−回転
角は、角度にして1゜程度の微小な角度の為、反射
光は大部分S成分であり、夫々方向が異なり大き
さが等しいわずかなP成分を含むものとなる。回
折格子3は回折角が90゜である為、前記反射光の
S成分はほとんど光源部1の方向に回折されてし
まう。一方、力−回転によつて生じたP成分のみ
がそのまま透過して光検出器8に入射する。前述
のように磁化方向に応じたP成分は方向が全く逆
で大きさが同じ為、光検出器8の前にいかなる方
位角で検光子を設けようとも、これを透過する光
量は磁化方向によらず同一で、情報を読み取るこ
とは出来ない。このように光磁気記録媒体の情報
読取りには、適切な偏光特性を有する光分割器が
不可欠であるが、従来の構成では、このような光
分割器が実現できなかつた。 However, in the configuration shown in Figure 1, the diffraction angle of the volume type diffraction grating is set to approximately 90°, so
It cannot be used to read information from magneto-optical recording media. The reason for this will be explained below. 1st
In the figure, when information is magnetically recorded on the information recording surface 7, the λ/4 plate 4 is removed from the optical path. The S-polarized light flux incident from the diffraction grating is reflected as a light flux whose plane of polarization is rotated (force-rotated) by the same amount in the opposite direction depending on whether the magnetization direction of the information recording surface 7 is upward or downward. Since this force-rotation angle is a minute angle of about 1 degree, the reflected light is mostly an S component and contains a small P component of different directions and equal magnitudes. Since the diffraction grating 3 has a diffraction angle of 90 degrees, most of the S component of the reflected light is diffracted in the direction of the light source section 1. On the other hand, only the P component generated by the force-rotation is transmitted as it is and enters the photodetector 8. As mentioned above, the P component depending on the magnetization direction has completely opposite directions and the same magnitude, so no matter what azimuth angle the analyzer is installed in front of the photodetector 8, the amount of light transmitted through it will be in the magnetization direction. It is the same regardless of the location, and no information can be read from it. As described above, a light splitter having appropriate polarization characteristics is essential for reading information from a magneto-optical recording medium, but such a light splitter cannot be realized with conventional configurations.
また、従来の光ヘツド装置においては、入射光
と回折光とが体積型回折格子の内部で相互に90゜
の角をなしている。その為通常の形態では回折格
子の表面で入射光が全反射してしまい、第1図で
は示していないが現実には前述の米国特許明細書
に示される様に、直角プリズムの間に体積型回折
格子を置く構成をとらねばならず、回折格子本来
の小型・軽量の特長を充分に生かしきれなかつ
た。 Furthermore, in conventional optical head devices, the incident light and the diffracted light form an angle of 90° with each other inside the volume diffraction grating. Therefore, in the normal form, the incident light is totally reflected on the surface of the diffraction grating, and although it is not shown in Fig. 1, in reality, as shown in the above-mentioned US patent specification, a volume type structure is formed between the right angle prisms. This required a configuration in which the diffraction grating was placed, and it was not possible to take full advantage of the small and lightweight characteristics of the diffraction grating.
本発明の目的は、体積型回折格子を用いて、磁
気的に記録された情報を効率良く読み取る事の出
来る光ヘツド装置を提供する事にある。 An object of the present invention is to provide an optical head device that can efficiently read magnetically recorded information using a volume type diffraction grating.
本発明の上記目的は、光ヘツド装置の光分割器
に、回折角が22゜乃至80゜又は100゜乃至158゜の範囲
にある体積型回折格子を用いる事によつて達成さ
れる。 The above objects of the present invention are achieved by using a volume diffraction grating with a diffraction angle in the range of 22° to 80° or 100° to 158° in the light splitter of the optical head device.
以下、本発明の実施例を図面を用いて説明す
る。 Embodiments of the present invention will be described below with reference to the drawings.
第2図は、本発明に基づく光ヘツド装置の第1
の実施例を示す概略構成図である。半導体レーザ
11から出射した光はコリメータレンズ12によ
り平行光束となり、光分割器13に入射する。こ
の光分割器13は、2枚の平行平板14,16
と、その間に形成された体積型回折格子15とか
ら構成されている。また、半導体レーザ11から
の光は光分割器13に対してP偏光となる様に設
定されている。光分割器13を透過した直線偏光
(P偏光)は、対物レンズ18を通つて集束光束
となり、基板19を介して磁気的に情報が記録さ
れた記録面20に1μm前後のスポツトを形成す
る。ここで、記録面20で反射される反射光は、
記録された情報に応じて(即ち、磁化方向、変化
によつて)偏光面が逆方向に回転した光となつて
変調される。この反射光は、再び対物レンズ18
を通つて光分割器13に入射し、体積型回折格子
15によつて、22゜乃至80゜又は100゜乃至158゜の範
囲の所定の角度θで回折される。 FIG. 2 shows the first part of the optical head device according to the present invention.
FIG. 2 is a schematic configuration diagram showing an example. The light emitted from the semiconductor laser 11 is turned into a parallel beam by the collimator lens 12 and enters the light splitter 13 . This light splitter 13 consists of two parallel flat plates 14 and 16.
and a volume type diffraction grating 15 formed therebetween. Further, the light from the semiconductor laser 11 is set to become P-polarized light with respect to the light splitter 13. The linearly polarized light (P-polarized light) transmitted through the light splitter 13 passes through the objective lens 18 and becomes a focused beam, forming a spot of about 1 μm on the recording surface 20 on which information is magnetically recorded via the substrate 19. Here, the reflected light reflected by the recording surface 20 is
The light is modulated into light whose polarization plane is rotated in the opposite direction depending on the recorded information (ie, due to a change in the magnetization direction). This reflected light is returned to the objective lens 18
The light beam enters the light splitter 13 through the beam, and is diffracted by the volume diffraction grating 15 at a predetermined angle θ in the range of 22° to 80° or 100° to 158°.
つまり、体積型回折格子15が入射光26に対
して以下の式のブラツグ条件を満足するように設
定されている。 In other words, the volume diffraction grating 15 is set so that the incident light 26 satisfies the Bragg condition of the following equation.
λ=2ndcosθ0
λ:入射光の波長
n:体積型回折格子の平均屈折率
d:格子ピツチ
θ0:ブラツグ角
(θ0=θ/2 θ:回折角)
体積型回折格子15は、後で述べるように力−
回転成分(S偏光)に対して、入射光成分(P偏
光)より高い所定の回折効率を有する様に設定さ
れている為、回折光は見かけ上の力−回転角が増
加することになる。この回折光は、アナライザ2
1を通つて偏光面の回転が光量変化に変換され、
センサーレンズ22を介して光検出器23で検出
される。 λ=2ndcosθ 0 λ: Wavelength of incident light n: Average refractive index of volume type diffraction grating d: Grating pitch θ 0 : Bragg angle (θ 0 = θ/2 θ: diffraction angle) Volume type diffraction grating 15 will be explained later. Power as stated -
Since the rotational component (S-polarized light) is set to have a predetermined diffraction efficiency higher than that of the incident light component (P-polarized light), the apparent force-rotation angle of the diffracted light increases. This diffracted light is transmitted to the analyzer 2
1, the rotation of the polarization plane is converted into a change in light intensity,
It is detected by a photodetector 23 via a sensor lens 22.
尚、光ヘツド装置には記録面上のトラツクを常
にスポツトが正しく走査する様に制御するトラツ
キング制御や、対物レンズによる合焦位置を記録
面に一致させるフオーカシング制御が不可欠であ
るが、本実施例は従来公知の制御方法との組み合
せによつてこのような制御を行なうことが出来
る。例えば、センサーレンズ22をアナモフイツ
ク光学系とし、光検出器23に4分割光検出器を
用いると、記録面20上のスポツトの合焦状態に
応じて光検出器に入射する光の光量分布が変化
し、この変化を分割された受光面で検知する事に
よつて、フオーカスエラー信号が得られる。この
方法は、一般に非点収差法として良く知られてい
る。 Note that the optical head device requires tracking control so that the spot always scans the track on the recording surface correctly, and focusing control that aligns the focal position of the objective lens with the recording surface. Such control can be performed by combining with conventionally known control methods. For example, if the sensor lens 22 is an anamorphic optical system and the photodetector 23 is a 4-split photodetector, the light intensity distribution of the light incident on the photodetector changes depending on the focusing state of the spot on the recording surface 20. However, by detecting this change on the divided light-receiving surfaces, a focus error signal can be obtained. This method is generally well known as the astigmatism method.
第3図は、第2図示の実施例に用いる光分割器
13の部分断面図である。体積型回折格子15は
平行平板14及び16の間に挾まれ、屈折率の高
い層24と屈折率の低層25とから構成されてい
る。記録面からの入射光26は、回折格子15に
より回折されて回折光27となる。ここで回折格
子15が入射光26に対してブラツグ条件を大略
満足している場合には、回折光27は回折角θで
示すように所定の方向に大半のエネルギーが集中
する。また、この回折角θの設定によつてP偏光
及びS偏光の回折効率が変化する。本発明は、こ
の体積型回折格子の偏光特性を利用して、磁気的
に記録された情報を高いS/N比で読み取ろうと
するものである。 FIG. 3 is a partial cross-sectional view of the light splitter 13 used in the embodiment shown in the second figure. The volume diffraction grating 15 is sandwiched between parallel plates 14 and 16, and is composed of a layer 24 with a high refractive index and a layer 25 with a low refractive index. Incident light 26 from the recording surface is diffracted by the diffraction grating 15 and becomes diffracted light 27. If the diffraction grating 15 substantially satisfies the Bragg condition for the incident light 26, most of the energy of the diffracted light 27 will be concentrated in a predetermined direction as indicated by the diffraction angle θ. Furthermore, the diffraction efficiency of P-polarized light and S-polarized light changes depending on the setting of this diffraction angle θ. The present invention attempts to read magnetically recorded information with a high S/N ratio by utilizing the polarization characteristics of this volume type diffraction grating.
いま、P偏光で光磁気記録媒体の記録面に入射
し、カー回転を受けて反射された光が、体積型回
折格子で回折され検出されるとする。このとき、
記録面の磁気力−効果によつて生ずる力−回転成
分はS成分である為、体積型回折格子のS偏光に
対する回折効率が高い方が検出される信号S/N
比は向上する。また回折されるP偏光とS偏光の
比によつて、見かけ上の力−回転角が変化する。
そこで体積型回折格子S偏光に対する回折格子|
rs|2を100%として、P偏光に対する回折効率|
rp|2をいろいろと変化させ、検出される光磁気
信号のC/N比(信号の中心周波数におけるS/
N比)を求めた。その結果を第4図に示す。ここ
で軸はP偏光に対する回折効率を示し、縦軸は検
出信号のC/N比をピークに対する相対値でdB
(デシベル)表示した。情報の読み取りに適した
検出信号を得る為には、C/N比の低下は最大か
ら−6dB以内に抑える必要があり、許容される|
rp|2の範囲は0.03から0.86である。 Now, assume that P-polarized light that is incident on the recording surface of a magneto-optical recording medium, undergoes Kerr rotation, and is reflected, is diffracted by a volume type diffraction grating and detected. At this time,
Since the force-rotation component generated by the magnetic force-effect of the recording surface is the S component, the higher the diffraction efficiency of the volume type diffraction grating for S-polarized light, the higher the detected signal S/N.
The ratio will improve. Further, the apparent force-rotation angle changes depending on the ratio of the P-polarized light and the S-polarized light that are diffracted.
Therefore, volume type diffraction grating Diffraction grating for S-polarized light |
r s | Diffraction efficiency for P polarized light with 2 as 100% |
By varying r p | 2 , the C/N ratio of the detected magneto-optical signal (S/N ratio at the center frequency of the signal
N ratio) was calculated. The results are shown in FIG. Here, the axis shows the diffraction efficiency for P-polarized light, and the vertical axis shows the C/N ratio of the detection signal in dB relative to the peak.
(decibel) displayed. In order to obtain a detection signal suitable for reading information, the decrease in the C/N ratio must be suppressed to within -6 dB from the maximum, which is acceptable.
The range of r p | 2 is from 0.03 to 0.86.
体積型ホログラムの偏光依存性については、下
記の論文に詳細に述べられている。 The polarization dependence of volume holograms is described in detail in the paper below.
H.Kogelnik“Coupled Wave Theory for
Thick Hologram Grating”:Bell Syst.Tech.
J.48(1969)2909−2947
吸収のない体積位相ホログラムで、かつ、
noslant(基板表面に格子が垂直に立つている)で
ブラツグ角θ0入射の場合は、
そのS偏光での回折効率は、
ηs=Sin2(πn1d/λcosθ0)
=Sin2(κd/cosθ0) …(1)
ここで、κ=(πn1)/λである。 H.Kogelnik“Coupled Wave Theory for
Thick Hologram Grating”: Bell Syst.Tech.
J.48 (1969) 2909−2947 A volume phase hologram without absorption, and
In the case of noslant (the grating is perpendicular to the substrate surface) and a Bragg angle of incidence of θ 0 , the diffraction efficiency for S-polarized light is η s = Sin 2 (πn 1 d/λ cos θ 0 ) = Sin 2 (κd /cosθ 0 )...(1) Here, κ=(πn 1 )/λ.
つぎに、P偏光での回折効率は、上記(1)式のκ
をκ1と入れ換える事によつて、
ηp=Sin2(κ1d/cosθ0)
で与えられる。 Next, the diffraction efficiency for P-polarized light is expressed as κ in equation (1) above.
By replacing κ 1 with κ 1 , it is given by η p =Sin 2 (κ 1 d/cosθ 0 ).
また、noslant(φ=π/2)の場合、
κ1=−κcos2(θ0−φ)は、
κ1=κcos2θ0
となり、P偏光での回折効率は次式で表され
る。 Further, in the case of noslant (φ=π/2), κ 1 =−κcos2(θ 0 −φ) becomes κ 1 =κcos2θ 0 , and the diffraction efficiency for P-polarized light is expressed by the following equation.
ηp=Sin2(κdcos2θ0/cosθ0) …(2)
従つて、それぞれの回折効率の比(2)/(1)をとる
と、
ηp/ηs=Sin2(Acos2θ0)/Sin2(A)
ここで、A=κd/cosθ0である。 η p = Sin 2 (κdcos2θ 0 /cosθ 0 ) …(2) Therefore, taking the ratio (2)/(1) of each diffraction efficiency, η p /η s = Sin 2 (Acos2θ 0 )/Sin 2 (A) Here, A=κd/cosθ 0 .
この式に正弦級数(SinX=X−X3/3!+
X5/5!−…)の一次近似を用いて、
ηp/ηs=(Acos2θ0/A)2=cos22θ0…(3)
となり、回折効率の比はブラツグ入射角θ0の2倍
のcosの2乗で表される。 Add this formula to the sine series (SinX=X−X 3 /3!+
X 5/5 ! −…) using the first-order approximation, η p /η s = (Acos2θ 0 /A) 2 = cos 2 2θ 0 …(3), and the ratio of diffraction efficiency is the cos of twice the Bragg incident angle θ 0 . It is expressed as a square.
ところで、本願明細書では、回折角θとして、
第3図に示す様に入射光と回折光との成す角をと
つているために、θ0=θ/2である。 By the way, in this specification, as the diffraction angle θ,
Since the incident light and the diffracted light form an angle as shown in FIG. 3, θ 0 =θ/2.
これを上記(3)式に代入すると、 ηp/ηs=cos2θ となる。 Substituting this into the above equation (3) yields η p /η s = cos 2 θ.
以上のように、体積型回折格子におけるP偏光
とS偏光の回折効率の比は回折角θを用いて近似
的にcos2θで表わされる。θ=80゜或いはθ=100゜
とするとcos2θ=0.03であり、θ=22゜或いはθ=
158゜とすると、cos2θ=0.86である。従つて第4図
の結果から、磁気的情報の読み取りに光分割器と
して用いられる体積型回折格子は、回折角が22゜
乃至80゜又は100゜乃至158゜の範囲になくてはならな
い。 As described above, the ratio of the diffraction efficiencies of P-polarized light and S-polarized light in the volume diffraction grating is approximately expressed as cos 2 θ using the diffraction angle θ. If θ=80° or θ=100°, cos 2 θ=0.03, and θ=22° or θ=
If it is 158°, cos 2 θ=0.86. Therefore, from the results shown in FIG. 4, a volume diffraction grating used as a light splitter for reading magnetic information must have a diffraction angle in the range of 22° to 80° or 100° to 158°.
また、上記では回折角を光磁気読み取りの許容
範囲から求めたが、情報信号が良好に検出される
為には、第4図においてC/N比の低下は−3dB
以内である事が望ましい。このときのP偏光回折
効率は0.30〜0.70であり、前述と同様にcos2θ=
0.30よりθ=72゜,108゜,cos2θ=0.7よりθ=33゜,
147゜が求められる。従つて、磁気的情報の読み取
りには、回折角が33゜乃至72゜又は108゜乃至147゜の
体積型回折格子を用いる事が更に望ましい。 In addition, in the above, the diffraction angle was determined from the permissible range of magneto-optical reading, but in order to detect the information signal well, the decrease in the C/N ratio is -3 dB as shown in Figure 4.
It is desirable that it be within the range. The P-polarized light diffraction efficiency at this time is 0.30 to 0.70, and as above, cos 2 θ=
From 0.30, θ=72°, 108°, cos 2 θ=0.7, θ=33°,
147° is required. Therefore, for reading magnetic information, it is more desirable to use a volume diffraction grating with a diffraction angle of 33° to 72° or 108° to 147°.
第5図は、本発明に用いる体積型回折格子の作
製法の一例を示した図である。レーザ光源28か
ら出射した光束はミラー29で反射された後、ビ
ームスプリツタ30で分割される。分割された2
光束は各々ミラー31,41を介して顕微鏡対物
レンズ32,42とコリメータレンズ33,43
とより構成されるビームエクスパンダー系により
ビーム径が拡大され、平行光束34,44とな
る。これらの平行光束34及び44は、基板36
上に塗布された体積型ホログラム感材35に各々
異なる角度から入射し、干渉して三次元的な干渉
縞を形成する。このようにして体積型ホログラム
感材35に露光された干渉縞は、現像処理によつ
て屈折率変化の形で記録され、体積型回折格子を
形成する。ここに用いられるホログラム感材とし
ては、重クロム酸ゼラチン等、いかなるものでも
使用できる。 FIG. 5 is a diagram showing an example of a method for manufacturing a volume type diffraction grating used in the present invention. The light beam emitted from the laser light source 28 is reflected by a mirror 29 and then split by a beam splitter 30. divided 2
The light beams pass through mirrors 31 and 41 to microscope objective lenses 32 and 42 and collimator lenses 33 and 43, respectively.
The beam diameter is expanded by a beam expander system composed of the following, and becomes parallel light beams 34 and 44. These parallel light beams 34 and 44 are connected to the substrate 36
The light enters the volume hologram sensitive material 35 coated on top from different angles and interferes to form three-dimensional interference fringes. The interference fringes thus exposed to the volume hologram sensitive material 35 are recorded in the form of a change in refractive index through development processing, thereby forming a volume diffraction grating. Any hologram sensitive material can be used here, such as dichromate gelatin.
第6図は、本発明の光ヘツド装置の第2実施例
を示す概略構成図である。半導体レーザ51から
出射したP偏光はコリメータレンズ52により平
行光束となり、平行平板54,56及び体積型回
折格子55とから構成される光分割器53に入射
する。この光分割器53を透過した直線偏光(P
偏光)は、対物レンズ58によつて基板59上の
記録面60に径1μm前後のスポツトに集光され
る。磁気的に情報が記録された記録面60におい
て、情報に応じて偏光面が回転(力−回転)され
た反射光57は光分割器53に再び入射し、体積
型回折格子55によつて、22゜乃至80゜又は100゜乃
至158゜の範囲の所定の回折角で回折される。この
回折光22は、第1実施例と同様に見かけ上の力
−回転角が増加されており、平行平板54或いは
56の表面で全反射を繰り返しながら導波され、
光分割器53の端面に設けられた4分割光検出器
63に入射する。光検出器63の直前には検光子
61が設けられていて、光磁気信号を光量変化に
変換する。 FIG. 6 is a schematic diagram showing a second embodiment of the optical head device of the present invention. The P-polarized light emitted from the semiconductor laser 51 is turned into a parallel light beam by the collimator lens 52, and enters the light splitter 53 composed of parallel flat plates 54 and 56 and a volume type diffraction grating 55. The linearly polarized light (P
The polarized light is focused by an objective lens 58 onto a spot having a diameter of about 1 μm on a recording surface 60 on a substrate 59. On the recording surface 60 on which information is magnetically recorded, the reflected light 57 whose polarization plane has been rotated (force-rotated) according to the information enters the light splitter 53 again, and is reflected by the volume type diffraction grating 55. It is diffracted at a predetermined diffraction angle in the range of 22° to 80° or 100° to 158°. This diffracted light 22 has an increased apparent force-rotation angle as in the first embodiment, and is guided while repeating total reflection on the surface of the parallel plate 54 or 56.
The light enters a four-split photodetector 63 provided on the end face of the light splitter 53. An analyzer 61 is provided immediately in front of the photodetector 63, and converts the magneto-optical signal into a change in the amount of light.
第6図示の光分割器53を半導体レーザ側から
見た図を第7図に示す。本実施例の体積型回折格
子55は、格子が円錐形に形成されており、回折
光62を集光せしめるレンズ作用を有する。ま
た、4分割光検出器63は4つの受光面が紙面方
向に直列に配置されている。この光検出器63上
の光量分布は、前述の記録面上のスポツトの合焦
状態に応じて変化する。例えば、対物レンズ58
の焦点位置が記録面60に一致しているときに
は、反射光57は平行光となり、回折光62は第
7図の実線のようになつて、光検出器63に62
bに示す形状で入射する。また、対物レンズ58
が記録面に近ずきすぎた或いは遠ざかりすぎた場
合には、反射光57は発散光或いは集束光とな
り、回折光62は第7図において夫々一点鎖線或
いは破線のようになつて、光検出器63上で夫々
62c或いは62aに示す形状となる。このよう
な光束形状の変化を利用してフオーカスエラー信
号を検出する原理を以下に詳しく説明する。 FIG. 7 shows a view of the light splitter 53 shown in FIG. 6 from the semiconductor laser side. The volume type diffraction grating 55 of this embodiment has a conical grating, and has a lens function to condense the diffracted light 62. Further, the four-split photodetector 63 has four light-receiving surfaces arranged in series in the direction of the paper. The light intensity distribution on the photodetector 63 changes depending on the focusing state of the spot on the recording surface. For example, the objective lens 58
When the focal position of the beam coincides with the recording surface 60, the reflected light 57 becomes parallel light, and the diffracted light 62 becomes a solid line in FIG.
It is incident in the shape shown in b. In addition, the objective lens 58
When the light comes too close to or too far away from the recording surface, the reflected light 57 becomes a diverging light or a convergent light, and the diffracted light 62 becomes a dotted line or a broken line, respectively, in FIG. 63, the shape is shown as 62c or 62a, respectively. The principle of detecting a focus error signal using such a change in the shape of the light beam will be explained in detail below.
第8図a,b,cは4分割光検出器63を光の
入射側から見た図でbは合焦状態、a,cは焦点
外れ状態を示す。ここで、63a,63b,63
c,63dは夫々分割された受光面を示し、入射
光束の形状は上述のように、62a,62b,6
2cと変化する。受光面63a,63b,63
c,63dからの出力を夫々Ia,Ib,Ic,Idとす
ると、第9図aに示すような電気系で
(Ib+Ic)−(Ia+Id)
なる演算を行なう事によつて、差動増幅器64の
出力端子65には、第9図bに示す様なフオーカ
スエラー信号が得られる。第9図bにおいて横軸
は合焦位置を零としたときの対物レンズと記録面
との距離(フオーカス誤差)を示し、縦軸は信号
出力を示す。得られたフオーカスエラー信号に従
い、不図示のアクチユエータを介して対物レンズ
58或いは光ヘツド全体を入射光の光軸に沿つて
デイスクに対して動かすことにより、オートフオ
ーカスが可能となる。 Figures 8a, b, and c are views of the four-split photodetector 63 from the light incident side, with b showing the in-focus state and a and c showing the out-of-focus state. Here, 63a, 63b, 63
c and 63d indicate the divided light-receiving surfaces, and the shape of the incident light beam is as described above, 62a, 62b, 6
It changes to 2c. Light receiving surfaces 63a, 63b, 63
Letting the outputs from the differential amplifiers 63d and 63d be Ia, Ib, Ic, and Id, respectively, the differential amplifier 64 can be calculated by performing the calculation (Ib + Ic) - (Ia + Id) in the electrical system shown in Figure 9a. At the output terminal 65, a focus error signal as shown in FIG. 9b is obtained. In FIG. 9b, the horizontal axis shows the distance between the objective lens and the recording surface (focus error) when the in-focus position is zero, and the vertical axis shows the signal output. Autofocus is made possible by moving the objective lens 58 or the entire optical head relative to the disk along the optical axis of the incident light via an actuator (not shown) in accordance with the obtained focus error signal.
次に、第6図示の実施例におけるオートトラツ
キングの原理を説明する。第10図a,b,cの
ように情報担体の基板59に溝59aが形成され
ているとすると、対物レンズ58により、入射光
束はこの溝59aの近傍に集光される。ここでb
は、目的の溝の上にスポツトが生じている状態、
a,cは夫々溝に対してスポツトが右または左に
生じている状態を示す。この基板59上の記録面
60で反射される光束は溝59aでの回折或いは
散乱によるトラツキング情報を含む。第6図示の
4分割光検出器63で、前記反射光を受けると受
光面63a,63b,63c,63dで受ける光
量は、前述の第10図a,b,cの状態に応じ
て、夫々第11図a,b,cのように変化する。
従つて、第12図aに示すような電気系で、
(Ia+Ib)−(Ic+Id)
なる演算を行なう事によつて、差動増幅器66の
出力端子67には、第12図bに示すようなトラ
ツキングエラー信号が得られる。第12図bにお
いて、横軸はトラツキング誤差、縦軸は信号出力
を示す。得られたトラツキングエラー信号に従つ
て、不図示のトラツキングアクチユエータを駆動
し、対物レンズを光軸に垂直に移動させる等の方
法で、オートトラツキングが可能となる。尚、こ
こで基板59に予め案内トラツクとしての溝が形
成されている場合を説明したが、このような溝が
ない場合でも、記録面60の情報が記録されてい
る部分(記録トラツク)と、その他の部分とで
は、前述の磁気光学効果によつて検出子61を透
過する光量が異なり、記録トラツクとスポツトと
の位置関係に応じて光検出器63上の光量分布に
アンバランスが生じる。従つて、このような場合
でも、第12図aのように、4分割光検出器63
の各々の受光面の出力を演算することにより同様
にトラツキングエラー信号が得られる。 Next, the principle of auto-tracking in the embodiment shown in FIG. 6 will be explained. Assuming that a groove 59a is formed in the substrate 59 of the information carrier as shown in FIGS. 10a, b, and c, the incident light beam is focused near the groove 59a by the objective lens 58. Here b
In this case, a spot appears on the target groove,
Symbols a and c indicate that the spot occurs to the right or left of the groove, respectively. The light beam reflected by the recording surface 60 on the substrate 59 contains tracking information due to diffraction or scattering at the groove 59a. When the reflected light is received in the four-split photodetector 63 shown in FIG. It changes as shown in Figure 11 a, b, and c.
Therefore, by performing the calculation (Ia + Ib) - (Ic + Id) in the electrical system as shown in Figure 12a, the output terminal 67 of the differential amplifier 66 will have a signal as shown in Figure 12b. A tracking error signal is obtained. In FIG. 12b, the horizontal axis shows the tracking error and the vertical axis shows the signal output. Auto-tracking becomes possible by driving a tracking actuator (not shown) in accordance with the obtained tracking error signal and moving the objective lens perpendicular to the optical axis. Here, a case has been described in which a groove as a guide track is formed in advance on the substrate 59, but even if there is no such groove, a portion (recording track) on which information is recorded on the recording surface 60, The amount of light passing through the detector 61 differs from other parts due to the above-mentioned magneto-optic effect, and an imbalance occurs in the light amount distribution on the photodetector 63 depending on the positional relationship between the recording track and the spot. Therefore, even in such a case, as shown in FIG.
A tracking error signal can be similarly obtained by calculating the output of each light receiving surface.
また第7図に示した実施例においては、回折格
子55からの回折光は集束光となつて回折されて
いるが、このようにレンズ作用を生ずる回折格子
は例えば第3図のような構成において、格子を円
錐形に作製する事によつて実現できる。回折格子
55の作製に光学的手段を用いる場合には、第1
3図に示す様な光学系によつて、集束作用を持た
せることが出来る。第13図において、同一のレ
ーザ光源から発し、不図示の光学系によつて分割
された平行光束71と72は、夫々回転軸75を
共有する円錐ミラー73,74に回転軸75に平
行に入射する。各々の円錐ミラーで反射された2
つの光束は、回転軸75上に焦線を有する円錐波
面となり、基板76上のホログラム感材77に入
射する。このときに、感材面上の領域78に生ず
る干渉縞は、三次元的に円転軸75を回転中心と
した円錐形となる。従つて、このように露光され
た干渉縞を現像処理することにより、第7図に示
したような集束作用を持つ回折格子が形成され
る。 Further, in the embodiment shown in FIG. 7, the diffracted light from the diffraction grating 55 is diffracted as a focused light, but a diffraction grating that produces a lens effect in this way may be used in the configuration shown in FIG. 3, for example. This can be achieved by making the grid into a conical shape. When using optical means to produce the diffraction grating 55, the first
An optical system as shown in Figure 3 can provide a focusing effect. In FIG. 13, parallel light beams 71 and 72 emitted from the same laser light source and split by an optical system (not shown) are incident parallel to the rotation axis 75 into conical mirrors 73 and 74, respectively, which share the rotation axis 75. do. 2 reflected by each conical mirror
The two light beams form a conical wavefront having a focal line on the rotation axis 75 and are incident on the hologram sensitive material 77 on the substrate 76 . At this time, the interference fringes generated in the region 78 on the surface of the photosensitive material have a three-dimensional conical shape with the rotation axis 75 as the center of rotation. Therefore, by developing the interference fringes thus exposed, a diffraction grating having a focusing effect as shown in FIG. 7 is formed.
以上説明した様に、本発明は磁気的に記録され
た情報の読み取りに用いるものであるが、本発明
の光ヘツド装置をそのまま光磁気記録媒体への情
報の書き込みにも用いることが出来る。光磁気記
録媒体は、良く知られているように一方向に磁化
された磁性膜から成る記録層を有し、光の照射に
よつてキユーリー点まで加熱された部分の磁化の
方向が反転する事によつて情報が記録される。従
つて、前述の本発明の構成において光源からの光
束を記録情報に従つて変調可能とする事によつ
て、書き込み−読み取り共用の光ヘツド装置を実
現出来る。また、本発明は前述の実施例に限ら
ず、光分割器を用いたどのような構成の光ヘツド
装置にも適用が可能である。 As explained above, although the present invention is used for reading magnetically recorded information, the optical head device of the present invention can also be used as is for writing information to a magneto-optical recording medium. As is well known, a magneto-optical recording medium has a recording layer made of a magnetic film that is magnetized in one direction, and the direction of magnetization of the part heated to the Curie point by light irradiation is reversed. Information is recorded by. Therefore, in the configuration of the present invention described above, by making it possible to modulate the light beam from the light source in accordance with recorded information, it is possible to realize an optical head device that can be used for both writing and reading. Further, the present invention is not limited to the above-described embodiments, but can be applied to any optical head device using an optical splitter.
以上の説明から明らかなように、本発明は磁気
情報を読み取る光ヘツド装置において、光分割器
に所定の回折角を有する体積型回折格子を用いる
ことによつて、
(1) 読み取る情報信号のS/N比を向上させる。 As is clear from the above description, the present invention provides an optical head device for reading magnetic information, by using a volume type diffraction grating having a predetermined diffraction angle in the light splitter, (1) S of the information signal to be read. /N ratio is improved.
(2) 光分割器を平板型にし、光ヘツド装置の小
型、軽量化を可能にする。(2) The optical splitter is made into a flat plate type, making it possible to make the optical head device smaller and lighter.
等の効果を有するものである。It has the following effects.
第1図は従来の光ヘツド装置の構成を示す概略
図、第2図は本発明に基づく光ヘツド装置の第1
実施例を示す概略構成図、第3図は本発明に用い
る光分割器の部分断面図、第4図は本発明に用い
る回折格子のP偏光回折効率と検出信号のC/N
比との関係を示す図、第5図は第1実施例に用い
る体積型回折格子の作製法の一例を説明する図、
第6図は本発明の第2実施例の構成を示す概略
図、第7図は第6図示の光分割器を半導体レーザ
側から見た図、第8図a,b,cは夫々フオーカ
ス誤差による光検出器上の光量分布の変化を示す
図、第9図a,bは夫々フオーカス誤差検知の電
気系及びフオーカスエラ信号を示す図、第10図
a,b,cは夫々記録面における光スポツトの位
置変動を示す図、第11図a,b,cは夫々光検
出器上の光量変化を示す図、第12図a,bは
夫々トラツキング誤差検知の電気系及びトラツキ
ングエラー信号を示す図、第13図は、第2実施
例に用いる体積型回折格子の作製法の一例を示す
図である。
11……半導体レーザ、12……コリメータレ
ンズ、13……光分割器、14,16……平行平
板、15……体積型回折格子、18……対物レン
ズ、19……基板、20……記録面、21……検
光子、22……センサーレンズ、23……光検出
器。
FIG. 1 is a schematic diagram showing the configuration of a conventional optical head device, and FIG. 2 is a first diagram of the optical head device according to the present invention.
A schematic configuration diagram showing an embodiment, FIG. 3 is a partial cross-sectional view of a light splitter used in the present invention, and FIG. 4 shows the P-polarized light diffraction efficiency of the diffraction grating used in the present invention and the C/N of the detection signal.
FIG. 5 is a diagram illustrating an example of the method for manufacturing the volume type diffraction grating used in the first embodiment,
FIG. 6 is a schematic diagram showing the configuration of the second embodiment of the present invention, FIG. 7 is a diagram of the light splitter shown in FIG. 6 viewed from the semiconductor laser side, and FIG. 8 a, b, and c show focus errors. Figures 9a and 9b are diagrams showing the electrical system for focus error detection and the focus error signal, respectively. Figures 10a, b, and c are diagrams showing the light spot on the recording surface, respectively. Figures 11a, b, and c are diagrams showing changes in the amount of light on the photodetector, and Figures 12a and b are diagrams showing the electrical system for tracking error detection and the tracking error signal, respectively. , FIG. 13 is a diagram showing an example of a method for manufacturing a volume type diffraction grating used in the second example. 11... Semiconductor laser, 12... Collimator lens, 13... Light splitter, 14, 16... Parallel plate, 15... Volume type diffraction grating, 18... Objective lens, 19... Substrate, 20... Recording surface, 21...analyzer, 22...sensor lens, 23...photodetector.
Claims (1)
するとともに、前記入射光の光路中に配設された
光分割器により前記記録面からの反射光を光検出
器に導き、磁気光学効果を利用して前記情報を読
み取る光ヘツド装置において、前記光分割器は体
積型回折格子より成り、該回折格子による前記反
射光の回折角が22゜乃至80゜又は100゜乃至158゜の範
囲にある事を特徴とする光ヘツド装置。1. Light is incident on a recording surface on which information is magnetically recorded, and a light splitter placed in the optical path of the incident light guides the reflected light from the recording surface to a photodetector, producing a magneto-optical effect. In the optical head device that reads the information using An optical head device characterized by certain things.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59132294A JPS6111951A (en) | 1984-06-27 | 1984-06-27 | Optical head device |
US06/748,342 US4733065A (en) | 1984-06-27 | 1985-06-24 | Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom |
DE19853522849 DE3522849A1 (en) | 1984-06-27 | 1985-06-26 | OPTICAL HEAD |
FR8509716A FR2566953A1 (en) | 1984-06-27 | 1985-06-26 | Optical head device |
NL8501857A NL194898C (en) | 1984-06-27 | 1985-06-27 | Optical reader. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59132294A JPS6111951A (en) | 1984-06-27 | 1984-06-27 | Optical head device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6111951A JPS6111951A (en) | 1986-01-20 |
JPH0580736B2 true JPH0580736B2 (en) | 1993-11-10 |
Family
ID=15077921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59132294A Granted JPS6111951A (en) | 1984-06-27 | 1984-06-27 | Optical head device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6111951A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821174B2 (en) * | 1986-09-09 | 1996-03-04 | キヤノン電子株式会社 | Optical head device |
JPH07111784B2 (en) * | 1988-04-21 | 1995-11-29 | 三菱電機株式会社 | Optical pickup device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155508A (en) * | 1981-02-23 | 1982-09-25 | Xerox Corp | Polaroid beam splitter |
JPS58196640A (en) * | 1982-05-12 | 1983-11-16 | Olympus Optical Co Ltd | Magnetooptic recording and reproducing device |
-
1984
- 1984-06-27 JP JP59132294A patent/JPS6111951A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155508A (en) * | 1981-02-23 | 1982-09-25 | Xerox Corp | Polaroid beam splitter |
JPS58196640A (en) * | 1982-05-12 | 1983-11-16 | Olympus Optical Co Ltd | Magnetooptic recording and reproducing device |
Also Published As
Publication number | Publication date |
---|---|
JPS6111951A (en) | 1986-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03102647A (en) | Optical head | |
US6888786B2 (en) | Optical device and optical storage device | |
US5717675A (en) | Optical head | |
JPS6117103A (en) | Polarizing beam splitter | |
US5153860A (en) | Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals | |
US5119352A (en) | Magneto optic data storage read out apparatus and method | |
JPH0580736B2 (en) | ||
US6741528B1 (en) | Magneto-optical head device | |
JP2660140B2 (en) | Optical head device | |
JPS61233441A (en) | Optical head device | |
JP2702167B2 (en) | Optical pickup | |
JPS61237246A (en) | Optical pickup device | |
JPH083906B2 (en) | Optical head device | |
JPS61198457A (en) | Optical pickup | |
JPS6117232A (en) | Optical head device | |
JP2667962B2 (en) | Optical head device | |
JP3083894B2 (en) | Optical playback device | |
JPH08212584A (en) | Optical head | |
JP2502482B2 (en) | Optical head device | |
JP2502483B2 (en) | Optical head device | |
JPS63157341A (en) | Magneto-optical recording/reproducing head | |
JPS59113533A (en) | Optical information reader | |
JPS61289545A (en) | Optical head device | |
JPS63263635A (en) | Optical pickup device | |
JPH05151643A (en) | Magneto-optical detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |