JPS6117103A - Polarizing beam splitter - Google Patents

Polarizing beam splitter

Info

Publication number
JPS6117103A
JPS6117103A JP59138368A JP13836884A JPS6117103A JP S6117103 A JPS6117103 A JP S6117103A JP 59138368 A JP59138368 A JP 59138368A JP 13836884 A JP13836884 A JP 13836884A JP S6117103 A JPS6117103 A JP S6117103A
Authority
JP
Japan
Prior art keywords
light
beam splitter
polarizing beam
polarized light
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138368A
Other languages
Japanese (ja)
Inventor
Naosato Taniguchi
尚郷 谷口
Tetsuo Kuwayama
桑山 哲郎
Yasuo Nakamura
保夫 中村
Hiroaki Hoshi
星 宏明
Kiyonobu Endo
遠藤 清伸
Masaru Osawa
大 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Electronics Inc
Original Assignee
Canon Inc
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Electronics Inc filed Critical Canon Inc
Priority to JP59138368A priority Critical patent/JPS6117103A/en
Priority to US06/748,342 priority patent/US4733065A/en
Priority to DE19853522849 priority patent/DE3522849A1/en
Priority to FR8509716A priority patent/FR2566953A1/en
Priority to NL8501857A priority patent/NL194898C/en
Publication of JPS6117103A publication Critical patent/JPS6117103A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To make a polarizing beam splitter thin and lightweight and to reduce the production cost by using a relief-type diffraction grating provided with a reflecting film having the dependence upon polarized light. CONSTITUTION:One of transparent members 21 and 22 having almost the same refractive index has plural slopes at least, and a reflecting film 23 having the dependence upon polarized light is provided on the boundary surface between them to form the relief-type diffraction grating. The reflecting film 23 is so formed that about 100% P-polarized light is transmitted through the relfecting film 23 and about 100% S-polarized light is reflected on the reflecting film 23. Consequently, this polarizing beam splitter functions as a mere paralle plane plate for a P-plarized incident light 26 and the light 26 is almost transmitted through the polarizing beam splitter, but an S-polarized incident light 27 is almost diffracted to become a diffracted light 27'. This diffraction grating is produced with a thin and lightweight constitution and a low cost.

Description

【発明の詳細な説明】 本発明は、偏光ビームスプリッタに関し、特に情報記録
担体に光を照射し情報の記録又は再生を行なう光ヘツド
装置に用いるに適した偏光ビームスプリッタに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarizing beam splitter, and more particularly to a polarizing beam splitter suitable for use in an optical head device for recording or reproducing information by irradiating light onto an information recording carrier.

第1図(a)、  (b)は光ヘツド装置に用いられた
従来の偏光ビームスプリッタの機能を説明する図である
。(a)は、デジタルオーディオティスフ或いは光学式
ビデオディスク(7) a 出しに用いられたもので、
偏光ビームス・プリッタ1は直角プリズム2,3と、そ
の接合面に形成された偏光依存性を有する反射膜4とか
ら構成される。この反射膜4は、P偏光に対しほぼ10
0%の透過率を示し、S偏光に対してはほぼ100%の
反射率を示す、従って、例えばレーザ等の光源から出射
し不図示の光学系により平行光束とされた直線偏光(P
偏光)6は、偏光ビームスプリッタ1をほとんど透過し
、入/4板5を通って円偏光となり対物レンズ(不図示
)によって情報記録担体の記録面上に集光される。また
記録面で反射され、情報信号を含んだ反射光8は入/4
板を再び透過してS偏光となり、反射膜4でほとんど反
射して光束9となり光検出器に導かれて信号読出しに用
いられる。
FIGS. 1(a) and 1(b) are diagrams explaining the functions of a conventional polarizing beam splitter used in an optical head device. (a) is used to eject a digital audio disc or optical video disc (7) a.
The polarizing beam splitter 1 is composed of right-angle prisms 2 and 3, and a reflective film 4 having polarization dependence formed on the joint surfaces thereof. This reflective film 4 has approximately 10
It shows a transmittance of 0% and a reflectance of almost 100% for S-polarized light. Therefore, for example, linearly polarized light (P
Most of the polarized light) 6 passes through the polarizing beam splitter 1, passes through the input quarter plate 5, becomes circularly polarized light, and is focused onto the recording surface of the information recording carrier by an objective lens (not shown). In addition, the reflected light 8 that is reflected by the recording surface and contains the information signal enters at /4
The light passes through the plate again, becomes S-polarized light, is almost reflected by the reflective film 4, becomes a light beam 9, and is guided to a photodetector and used for signal readout.

一方、(b)に示す偏光ビームスプリッタ11は、磁気
的に記録された情報を磁気光学効果を用いて読出す為の
もので、やはり直角プリズム12.13と反射膜14と
から成る。ここで反射膜14はP偏光及びS偏光を適当
な比率で反射或いは透過する様に形成されている。例え
ば、偏光ビームスプリッタ11に入射するP偏光15は
、反射jlI 14によってエネルギーの30%が反射
されて光束17となり、残り70%の光束16は透過し
て対物レンズ(不図示)を介して光磁気記録媒体の記録
面に集光される。記録面の情報に応じて偏光面が回転(
カー回転)された反射光18は再び偏光ビームスプリン
タ11に入射する。ここでカー回転による変調成分はS
偏光であり、反射膜14でほぼ100%反射される。一
方、反射光18中のP偏光成分は70%が反射膜14を
透過し、残り30%のみが反射されて前記S偏光成分と
ともに光検出器に導かれる。このように入射光の成分(
P偏光)に比べ、変調成分(S偏光)を相対的に増加せ
しめる事によってカー回転角が見かけ上増加し、S/N
比の高い信号読出しが可能となる。
On the other hand, the polarizing beam splitter 11 shown in (b) is for reading out magnetically recorded information using the magneto-optic effect, and also consists of a right-angle prism 12, 13 and a reflective film 14. Here, the reflective film 14 is formed so as to reflect or transmit P-polarized light and S-polarized light at an appropriate ratio. For example, 30% of the energy of the P-polarized light 15 incident on the polarizing beam splitter 11 is reflected by the reflection jlI 14 to become a light beam 17, and the remaining 70% of the light beam 16 is transmitted through an objective lens (not shown). The light is focused on the recording surface of the magnetic recording medium. The plane of polarization rotates according to the information on the recording surface (
The reflected light 18 that has been subjected to Kerr rotation enters the polarization beam splinter 11 again. Here, the modulation component due to Kerr rotation is S
It is polarized light and is almost 100% reflected by the reflective film 14. On the other hand, 70% of the P-polarized light component in the reflected light 18 is transmitted through the reflective film 14, and only the remaining 30% is reflected and guided to the photodetector together with the S-polarized light component. In this way, the components of the incident light (
By relatively increasing the modulation component (S-polarized light) compared to P-polarized light, the Kerr rotation angle apparently increases, and the S/N
This makes it possible to read signals with a high ratio.

しかしながら、上述のような従来の偏光ビームスプリッ
タは、2個のプリズムの対面角を接合して作製する為、
複雑な加工や位置合せ調整が必要であり、低コスト化が
困難であるという欠点を有していた。また形状がほぼ立
方体である事から、光ヘツド装置等に用いる場合に、装
置の薄型化を妨げる要因となった。
However, since the conventional polarizing beam splitter as described above is manufactured by joining two prisms at their facing angles,
It has the disadvantage that it requires complicated processing and alignment adjustment, making it difficult to reduce costs. Furthermore, since it is approximately cubic in shape, when used in optical head devices, etc., it becomes a factor that prevents devices from being made thinner.

本発明の目的は、薄型・軽量で且つ低コストで作製出来
る偏光ビームスプリッタ廠提供することにある。
An object of the present invention is to provide a polarizing beam splitter factory that is thin, lightweight, and can be manufactured at low cost.

本発明の上記目的はほぼ同一の屈折率を有し、少なくと
も一方に複数の傾斜面を有する第1及び第2の透明部材
の境界面に偏光依存性のキな 反射膜を設け、レリーフ形回折格子を形成して成る偏光
ビームスプリッタにより達成される。
The above-mentioned object of the present invention is to provide a polarization-dependent strong reflective film on the interface between first and second transparent members having substantially the same refractive index and a plurality of inclined surfaces on at least one side, and to provide relief-type diffraction. This is achieved by a polarizing beam splitter formed by a grating.

以下、本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明による偏光ビームスプリッタを説明する
図で、(a)は構成を模式的に表わ析 し、(b)は(a)における回折格子の部分Aを拡大し
て示したものである。ここでほぼ同一の屈折率を有する
透明部材21及び22ば、少なくと′も一方が複数の傾
斜面を有しており、これらの境界面に偏光依存性の反射
膜23が設けられ、レリーフ形回折格子を形成している
。更に透明部材21.22は、平行平板24及び25に
挟まれるように支持されているが、この平行平板24.
25は必ずしも必要ではない。
FIG. 2 is a diagram explaining the polarizing beam splitter according to the present invention, in which (a) schematically represents and analyzes the configuration, and (b) shows an enlarged view of part A of the diffraction grating in (a). It is. Here, at least one of the transparent members 21 and 22 having substantially the same refractive index has a plurality of sloped surfaces, and a polarization-dependent reflective film 23 is provided on the boundary surface of these to form a relief shape. It forms a diffraction grating. Further, the transparent members 21 and 22 are supported so as to be sandwiched between the parallel plates 24 and 25.
25 is not necessarily necessary.

反射膜23は、P偏光に対しほぼ100%の透過率を示
し、S偏光に一対してはほぼ100%の反射率を示す様
に構成されている。従ってP偏光の入射光26に対して
は、この偏光ビームス孜 されて回折光27′となる。
The reflective film 23 is configured to exhibit approximately 100% transmittance for P-polarized light and approximately 100% reflectance for S-polarized light. Therefore, the incident light 26 of P polarization is deflected into this polarized beam and becomes diffracted light 27'.

析 実施例においては一しリーフ形回軛格子を第2図(b)
に示す。ピンチd=207im、深さΔ=10ILm、
傾き角α=400の三角形状とし析 た。この例の場合には、回折光のエネルギーはとんと反
射膜23の特性によって決まる。
In the analysis example, a one-leaf circular lattice is used as shown in Fig. 2(b).
Shown below. Pinch d=207im, depth Δ=10ILm,
It was analyzed as a triangular shape with an inclination angle α=400. In this example, the energy of the diffracted light is determined by the characteristics of the reflective film 23.

従って、反射膜23を第1図(b)に示した従来例の反
射膜14と同様に形成する事により、本発明の構成にお
いても光磁気記録の読取りに最適な偏光特性を有するビ
ームスプリフタが得スト等のレリーフ型の感光材料に、
同一のレーザ光源から分割された光束を重ね合せて得ら
れる干渉縞を露・光し、現像処理する或いは透明部材か
ら成る基板を機械的に直接切削する等の方法で簡単に作
製できる。また切削によって母型を加工し、インジェク
ション、コンプレッション、薄層コピー等の方法で、格
子パターンをプラスチック等の透明部材に転写する事に
よって、生産性が良く、安価に作製する事ができる。こ
の際、例えば前記複数の傾斜面は、一方の透明部材上に
形成され、反射膜を設けた後、他方の透明部材によって
埋め合わされる。また、両方の透明部材にそれぞれ凹凸
の対応した複数の傾斜面を形成し、反射膜形成後、これ
らを接合して、偏光ビームスプッタとしても良t、s 
Therefore, by forming the reflective film 23 in the same manner as the conventional reflective film 14 shown in FIG. For relief type photosensitive materials such as
It can be easily produced by exposing and developing interference fringes obtained by superimposing light beams split from the same laser light source, or by directly mechanically cutting a substrate made of a transparent member. In addition, by processing the matrix by cutting and transferring the grid pattern to a transparent material such as plastic by a method such as injection, compression, or thin layer copying, it can be manufactured with good productivity and at low cost. In this case, for example, the plurality of inclined surfaces are formed on one transparent member, provided with a reflective film, and then offset by the other transparent member. In addition, by forming a plurality of inclined surfaces corresponding to the unevenness on both transparent members, and then joining these after forming a reflective film, it can be used as a polarizing beam splitter.
.

私によって得られる。このような誘電体多層膜は、文献
(久保田広著「波動光学JP236゜1971年2月2
日岩波書店発行)などでも知られており、例えば低屈折
率の物質から成る層と高屈折率の物質から成る層を交互
に蒸着することにより、S偏光に高い反射率を示し、P
偏光に低い反射率を示す。この際、各層の厚さdは、層
を構成する物質の屈折率をn、光の入射角をθ、使用波
長入とするとnd  cosθ=入/4から決定される
Got by me. Such a dielectric multilayer film is described in the literature (Hiroshi Kubota, "Wave Optics JP 236, February 2, 1971").
For example, by alternately depositing layers of a material with a low refractive index and a layer of a material with a high refractive index, it exhibits a high reflectance for S-polarized light.
Shows low reflectance for polarized light. At this time, the thickness d of each layer is determined from nd cos θ=incident/4, where n is the refractive index of the material constituting the layer, θ is the incident angle of light, and is the wavelength used.

1.38)及び高屈折率のZnS (屈折率nH=2、
30 )を交互に各々4層及び5層積層し、合計9層か
ら成る反射膜を形成した。第3図において、破線31は
P偏光に対する透過率ItP+2を示し実線32はS偏
光に対する透過率1ts12を示す。従って、使用波長
の存する長波長域ではP偏光に対する100%近い透過
率が得られる。また、特に図示しないが、S偏光に対す
る反射率1r512は、使用波長域でほぼ100%近い
値が得られる。−力木発明の偏光ビームスプリッタを光
磁気記録の読取りに用いる場合には、S偏光に対する反
射率1rs12がほぼ100%で且つ、P偏光に対する
反射率1rP12を30%程度の適当な値とする必要が
あるが、このような偏光ビームヌプリツタも、反射膜の
設計変更によって同様に実現が可能である。
1.38) and high refractive index ZnS (refractive index nH=2,
30) were alternately stacked in four and five layers, respectively, to form a reflective film consisting of a total of nine layers. In FIG. 3, a broken line 31 indicates a transmittance ItP+2 for P-polarized light, and a solid line 32 indicates a transmittance 1ts12 for S-polarized light. Therefore, near 100% transmittance for P-polarized light can be obtained in the long wavelength range where the wavelength used is present. Although not particularly shown, the reflectance 1r512 for S-polarized light has a value close to 100% in the wavelength range used. - When using the polarizing beam splitter invented by Rikiki for reading magneto-optical recording, it is necessary to set the reflectance 1rs12 for S-polarized light to approximately 100% and the reflectance 1rP12 for P-polarized light to an appropriate value of about 30%. However, such a polarizing beam nullifier can be similarly realized by changing the design of the reflective film.

第4図に、本発明の偏光ビームスプリ・ンタを用いて構
成した光ヘツド装置の例を示す。半導体レーザ41から
出射した光(P偏光)は、コリメータレンズ42により
平行光束となり、本発明の偏光ピームスプIルンタ43
に入射する。
FIG. 4 shows an example of an optical head device constructed using the polarizing beam splitter of the present invention. The light (P-polarized light) emitted from the semiconductor laser 41 becomes a parallel beam of light by the collimator lens 42, and is converted into a parallel beam by the polarization beam sputterer 43 of the present invention.
incident on .

この偏光ビームスプリッタ43は、2枚の平行平板44
.47に挟持された透明部材45及び46から成る。こ
の透明部材45と46の一部の境界には、複数の傾斜面
が形成され、またこの境界に、P偏光をほぼ100%透
過し、S偏でいる。前記入射光は偏光ビームスプリッタ
43をほとんど透過し、入/4板48で円偏光となり対
物レンズ49によって情報記録担体のノ、(板50を介
して記録面51にスポットを形成する。
This polarizing beam splitter 43 consists of two parallel flat plates 44
.. It consists of transparent members 45 and 46 sandwiched by 47. A plurality of inclined surfaces are formed at a part of the boundary between the transparent members 45 and 46, and approximately 100% of the P-polarized light is transmitted through this boundary, and the light is S-polarized. Most of the incident light passes through the polarizing beam splitter 43, becomes circularly polarized by the input quarter plate 48, and forms a spot on the recording surface 51 of the information recording carrier (via the plate 50) by the objective lens 49.

記録面51には反射率等の変化によって情報が記録され
ており1反射光は前記情報に従って光量変調を受ける。
Information is recorded on the recording surface 51 by changes in reflectance, etc., and one reflected light beam is modulated in light amount according to the information.

この反射光は、対物レンズ49、入/4板48を再び透
過してS偏光となれ、センサーレンズ52を介して光検
出器8に入射し、前記情報が読み取られる。
This reflected light passes through the objective lens 49 and the input/quarter plate 48 again, becomes S-polarized light, enters the photodetector 8 via the sensor lens 52, and the information is read.

尚、光ヘツド装置には記録面上のトラックを常しこスポ
ットが正しく走査する様に制御するトラッキング制御や
、対物レンズによる合焦位置を記録面に一致させるフォ
ーカシング制御が不可欠であるか、木実施例は従来公知
の制御方法との組み合せによってこのような制御を行な
うことが出来る。例えば、センサーレンズ52をアナモ
フィ・ンク光学系とし、光検出器53に4分割光検出器
を用いると、記録面51上のスポットの合焦状態に応じ
て光検出器に入射する光の光量分布が変化し、この変化
を分割された受光面で検知する事によって、フォーカス
エラー信号が得られる。この方法は、一般に非点収差法
として良く知られている。
It should be noted that tracking control, which controls the track on the recording surface so that the spot always scans correctly, and focusing control, which aligns the focus position of the objective lens with the recording surface, are essential for optical head devices. The embodiment can perform such control by combining with a conventionally known control method. For example, if the sensor lens 52 is an anamorphic optical system and the photodetector 53 is a 4-split photodetector, the light intensity distribution of the light incident on the photodetector will depend on the focused state of the spot on the recording surface 51. changes, and by detecting this change on the divided light-receiving surfaces, a focus error signal can be obtained. This method is generally well known as the astigmatism method.

第5図は、本発明の偏光ビームスプリッタを光磁気記録
の光ヘツド装置に用いた他の構成例ら を示す。半導体レーザ61か外出針したP偏光は、コリ
メータ笑レンズ62により平行光束となり、本発明に基
づいて構成された偏光ビームスプリッタ63に入“射す
る。この偏光ビームスプリッタ63は、2枚の平行平板
に挟持された透明部材65及び66から成り、これらの
一部の境界面には偏光依存性の反射膜68が設けられて
、レリーフ形の回腓格子を形成している。
FIG. 5 shows other configuration examples in which the polarizing beam splitter of the present invention is used in an optical head device for magneto-optical recording. The P-polarized light emitted from the semiconductor laser 61 is turned into a parallel beam by the collimator lens 62, and is incident on the polarizing beam splitter 63 constructed based on the present invention. The transparent member 65 and 66 are sandwiched between the transparent members 65 and 66, and a polarization-dependent reflective film 68 is provided on a part of their boundary surface to form a relief-shaped circular grating.

この反射膜68は、S偏光に対する反射率がほぼ100
%で、P偏光に対する反射率が30%の特性を有してい
る。従って、入射光(P偏光)は、その70%が偏光ビ
ームスプリッタ63を透過し、対物レンズ69を通って
集束光束となり、基板70を介して磁気的に情報が記録
された記録面71に径1gm前後のスポットを形成する
。記録面71で反射される反射光は、記録された情報に
応じて(即ち、磁化方向の変化によって)偏光面が逆方
向に回転した光となって変調される。この反射光は、再
び対物述のように、カー回転成分(S偏光)が入射光は
、平行平板64或いは67の表面で全反射を繰り返しな
がら導波され、偏光ビームスプリッタ63の端面に設け
られた4分割光検出器75に入射する。光検出器75の
直前には検光子74が設けられていて、光磁気信号を光
量変化に変換する。
This reflective film 68 has a reflectance of approximately 100 for S-polarized light.
%, and the reflectance for P-polarized light is 30%. Therefore, 70% of the incident light (P-polarized light) passes through the polarizing beam splitter 63, passes through the objective lens 69, becomes a convergent light beam, and passes through the substrate 70 onto the recording surface 71 on which information is magnetically recorded. A spot of around 1 gm is formed. The reflected light reflected by the recording surface 71 is modulated into light whose polarization plane is rotated in the opposite direction according to the recorded information (that is, due to a change in the magnetization direction). As described in the objective description again, this reflected light has a Kerr rotation component (S-polarized light).The incident light is guided while repeating total reflection on the surface of the parallel plate 64 or 67, and is guided at the end face of the polarizing beam splitter 63. The light enters a four-split photodetector 75. An analyzer 74 is provided immediately in front of the photodetector 75, and converts the magneto-optical signal into a change in the amount of light.

第5図示の偏光ビームスプリッタ63を半導73を集束
せしめるレンズ作用を有すv6また、4分割光検出器7
5は、4つの受光面が紙面方向に直列に配置されている
。この光検出器75上の光量分布は、前述の記録面上の
スポ・ントの合焦状態に応じて変化する。例えば、対物
レンズ69の焦点位置が記録面71に一致しているとき
には、反射光72は平行光となり、回折 析光73は第6図の実線のようになって、光検出器75
に73bに示す形状で入射する。また、対物レンズ69
が記録面に近すきすぎた或いは遠ざかりすぎた場合には
、反射光72は発散光或いは集束光となり、回翼光73
は第6図において夫々一点鎖線或いは破線のようになっ
て、光検出器75上で夫々73c或いは73aに示す形
状となる。このような光束形状の変化を利用してフォー
カスエラー信号を検出する原理を以下に詳しく説明する
The polarizing beam splitter 63 shown in FIG.
5, four light-receiving surfaces are arranged in series in the direction of the paper. The light intensity distribution on the photodetector 75 changes depending on the focused state of the spot on the recording surface. For example, when the focal position of the objective lens 69 coincides with the recording surface 71, the reflected light 72 becomes parallel light, and the diffracted light 73 becomes a solid line in FIG.
It is incident in the shape shown in 73b. In addition, the objective lens 69
If the light 72 is too close to or too far from the recording surface, the reflected light 72 becomes a diverging light or a convergent light, and the rotating light 73
In FIG. 6, they are shown as dashed lines or broken lines, respectively, and take the shape shown as 73c or 73a, respectively, on the photodetector 75. The principle of detecting a focus error signal using such a change in the shape of the light beam will be explained in detail below.

第7図(a)、(b)、(c)は4分割光検出器75を
光の入射側から見た図で(b)は合焦状fm、(a)、
(c)は焦点外れ状態ヲ示す。ここで、75a、’75
b、75c、75dは夫々分割された受光面を示し、入
射光束の形状は上述のように、73a、73b、73c
と変化する。受光面75a、75b、75c。
FIGS. 7(a), (b), and (c) are views of the 4-split photodetector 75 viewed from the light incident side, and (b) shows the focused state fm, (a),
(c) shows an out-of-focus state. Here, 75a, '75
b, 75c, and 75d indicate the divided light-receiving surfaces, and the shape of the incident light beam is as described above at 73a, 73b, and 73c.
and changes. Light receiving surfaces 75a, 75b, 75c.

75dから出力を夫々Ia、Ib、Ic、Iciとする
と、第8図(a)に示すような電気系で(Ib+Ic)
−(Ia+Id) なる演算を行なう事によって、差動増幅器77の出力端
子78には、第8図(b)に示す様なフォーカスエラー
信号が得られる。第8図(b)において横軸は合焦位置
を零としたときの対物レンズと記録面との距離(フォー
カス誤差)を示し、縦軸は信号出力を示す。得られたフ
ォーカスエラー信号に従い、不図示のアクチュエータを
介して対物レンズ69或いは光ヘツド全体を入射光の光
軸に沿ってディスクに対して動かすことにより、オート
フォーカスが可能となる。
Letting the outputs from 75d be Ia, Ib, Ic, and Ici, respectively, the electrical system as shown in Figure 8(a) is (Ib+Ic).
By performing the calculation -(Ia+Id), a focus error signal as shown in FIG. 8(b) is obtained at the output terminal 78 of the differential amplifier 77. In FIG. 8(b), the horizontal axis shows the distance (focus error) between the objective lens and the recording surface when the in-focus position is zero, and the vertical axis shows the signal output. Autofocus is made possible by moving the objective lens 69 or the entire optical head relative to the disk along the optical axis of the incident light via an actuator (not shown) in accordance with the obtained focus error signal.

次に、第5図示の実施例におけるオートトラッキングの
原理を説明する。第9図(a)。
Next, the principle of auto-tracking in the embodiment shown in FIG. 5 will be explained. Figure 9(a).

(b、)、(C)のように情報担体の基板70に溝70
aが形成されているとすると、対物レンズ69により、
入射光束はこの溝70aの近傍に集光される。ここで(
b)は、目的の溝の上にスポットが生じている状態、(
a)、(C)は夫々溝に対してスポットが右または左に
生じは散乱によるトラッキング情報を含む。第5図示の
4分割光検出器75で 前記反射光を受けると、受光面
75a、75b、75c、75dで受ける光量は、前述
の第9図(a)、(b)。
A groove 70 is formed in the substrate 70 of the information carrier as shown in (b,) and (C).
If a is formed, the objective lens 69
The incident light beam is focused near this groove 70a. here(
b) is a state where a spot is generated on the target groove, (
In a) and (C), if the spot occurs to the right or left of the groove, tracking information is included due to scattering. When the reflected light is received by the 4-split photodetector 75 shown in FIG. 5, the amount of light received by the light receiving surfaces 75a, 75b, 75c, and 75d is as shown in FIGS. 9(a) and 9(b).

(c)の状態に応じて、夫々第1O図(a)。FIG. 1O(a), respectively, depending on the state of (c).

(b)、(c)のように変化する。従って、第111g
(a)に示すような電気系で、(Ia十Ib)   (
Ic+Ic1)なる演算を行なう事によって、差動増幅
器79の出力端子80には、第11図(b)に示すよう
なトラッキングエラー信号が得られる。第11図(b)
において、横軸はトラッキング誤差、縦軸は信号出力を
示す。得られたトラッキングエラー信号に従って、不図
示のトラッキングアクチュエータを駆動し、対物レンズ
を光軸に垂pに移動させる等の方法で、オート)ラッキ
ングが可能となる。尚、ここで基板70に予め案内トラ
ックとしての溝が形成されている場合を説明したか、こ
のような溝がない場合でも、記録面71の情報が記録さ
れている部分(記録トラック)と、その他の部分とでは
、前述の磁気光学効果によって検光子74を透過する光
量が異なり、記録トラックとスポットとの位置関係に応
じて光検出器75上の光量分布にアンバランスが生じる
。従って、このような場合でも第11図(a)のように
4分割光検出器75の各々の受光面の出力を演算するこ
とにより同様にトラッキングエラー信号が得られる。
It changes as shown in (b) and (c). Therefore, No. 111g
In the electrical system shown in (a), (Ia + Ib) (
By performing the calculation Ic+Ic1), a tracking error signal as shown in FIG. 11(b) is obtained at the output terminal 80 of the differential amplifier 79. Figure 11(b)
, the horizontal axis shows the tracking error and the vertical axis shows the signal output. Auto) racking is possible by driving a tracking actuator (not shown) in accordance with the obtained tracking error signal and moving the objective lens perpendicularly to the optical axis. Here, we have explained the case where grooves as guide tracks are formed in advance on the substrate 70, but even if there is no such groove, the part (recording track) on the recording surface 71 where information is recorded, In other parts, the amount of light passing through the analyzer 74 differs due to the above-mentioned magneto-optic effect, and an imbalance occurs in the light amount distribution on the photodetector 75 depending on the positional relationship between the recording track and the spot. Therefore, even in such a case, a tracking error signal can be similarly obtained by calculating the output of each light receiving surface of the four-split photodetector 75 as shown in FIG. 11(a).

桁 折 林格子は例えば第12図のように、透明部材用いる場合
には、第13図に示す様な光学系によって、集束作用を
持たせることが出来る。第13図において、同一のレー
ザ光源から発し、不図示の光学系によって分割された平
行光束81と82は、夫々回転軸85を共有する円錐ミ
ラー83.84に回転軸85に平行に入射する。各々の
円錐ミラーで反射された2つの光束は、回転軸85上に
焦線を有する円錐波面となり、基板86上のホログラム
感材87に入射する。このときに、感材面上の領域88
に生ずる干渉縞は、三次元的に円転軸85を回転中心と
した円錐形となる。従って、このように露光される。
For example, when a transparent member is used for the folded lattice as shown in FIG. 12, a focusing effect can be provided by an optical system as shown in FIG. 13. In FIG. 13, parallel light beams 81 and 82 emitted from the same laser light source and split by an optical system (not shown) enter parallel to the rotation axis 85 into conical mirrors 83 and 84 that share the rotation axis 85, respectively. The two light beams reflected by each conical mirror become a conical wavefront having a focal line on the rotation axis 85 and are incident on the hologram sensitive material 87 on the substrate 86 . At this time, the area 88 on the photosensitive material surface
The interference fringes generated in this case have a three-dimensional conical shape with the rotation axis 85 as the center of rotation. Therefore, it is exposed in this way.

以上説明したように、本発明は偏光依存性の折 反射膜を設けたレリーフ形回娯格子を利用する事によっ
て、偏光ビームスプリッタを薄型化、軽睦化し、作製コ
ストを低減する等の効果を得るものである。
As explained above, the present invention utilizes a relief-type diffraction grating provided with a polarization-dependent fold-reflection film, thereby making a polarizing beam splitter thinner and lighter, and achieving effects such as reducing manufacturing costs. It's something you get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は夫々従来の偏光ビームスプリッ
タの機能を説明する図、 第2図(a)、(b)は夫々本発明の偏光ビームスプリ
ッタの構成を示す図、 第3図は本発明の実施例における反射膜の分光透過特性
を示す図、 第4図及び第5図は夫々本発明の偏光ビームスプリッタ
を光へ・ンド装置に用いた構成例を示す概略図、 第6図は第5図の偏光ビームスプリッタを半導体レーザ
側から見た図、 第7図(a)、(b)、(c)は夫々フォーカス誤差に
よる光検出器上の光量分布の変化を示す図、 第8図(’a)、’(b)は夫々フォーカス誤差検知の
電気系及びフォーカスエラー信号を示す図。 第9図(a)、(b)、(c)は夫々記録面における光
スポットの位置変動を示す図、第10図(a)、(b)
、(c)は夫々光検出器上の光量変化を示す図、 第11図(a)、(b)は夫々トラッキング誤差検知の
電気系及びトラッキングエラー信号部材の一面の形状を
示す斜視図、 第13図は第12図示の傾斜面の作製法の一例を説明す
る図である。
FIGS. 1(a) and (b) are diagrams each illustrating the functions of a conventional polarizing beam splitter. FIGS. 2(a) and (b) are diagrams respectively illustrating the configuration of the polarizing beam splitter of the present invention. 4 and 5 are schematic diagrams showing an example of a configuration in which the polarizing beam splitter of the present invention is used in an optical receiver, respectively. Figure 6 is a diagram of the polarizing beam splitter in Figure 5 viewed from the semiconductor laser side, and Figures 7 (a), (b), and (c) are diagrams showing changes in the light amount distribution on the photodetector due to focus errors, respectively. FIGS. 8(a) and 8(b) are diagrams showing an electrical system for focus error detection and a focus error signal, respectively. FIGS. 9(a), (b), and (c) are diagrams showing the positional fluctuations of the light spot on the recording surface, and FIGS. 10(a) and (b), respectively.
, (c) are diagrams showing changes in the amount of light on the photodetector, respectively. Figures 11 (a) and (b) are perspective views showing the electrical system for tracking error detection and the shape of one side of the tracking error signal member, respectively. FIG. 13 is a diagram illustrating an example of a method for manufacturing the inclined surface shown in FIG. 12.

Claims (1)

【特許請求の範囲】[Claims] (1)ほぼ同一の屈折率を有し、少なくも一方に複数の
傾斜面を有する第1及び第2の透明部材の境界面に偏光
依存性の反射膜を設け、レリーフ形回折格子を形成して
成る偏光ビームスプリッタ。
(1) A polarization-dependent reflective film is provided on the interface between first and second transparent members having substantially the same refractive index and having a plurality of inclined surfaces on at least one side to form a relief-type diffraction grating. A polarizing beam splitter consisting of:
JP59138368A 1984-06-27 1984-07-04 Polarizing beam splitter Pending JPS6117103A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59138368A JPS6117103A (en) 1984-07-04 1984-07-04 Polarizing beam splitter
US06/748,342 US4733065A (en) 1984-06-27 1985-06-24 Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom
DE19853522849 DE3522849A1 (en) 1984-06-27 1985-06-26 OPTICAL HEAD
FR8509716A FR2566953A1 (en) 1984-06-27 1985-06-26 Optical head device
NL8501857A NL194898C (en) 1984-06-27 1985-06-27 Optical reader.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138368A JPS6117103A (en) 1984-07-04 1984-07-04 Polarizing beam splitter

Publications (1)

Publication Number Publication Date
JPS6117103A true JPS6117103A (en) 1986-01-25

Family

ID=15220296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138368A Pending JPS6117103A (en) 1984-06-27 1984-07-04 Polarizing beam splitter

Country Status (1)

Country Link
JP (1) JPS6117103A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262705A (en) * 1985-05-17 1986-11-20 Fujitsu Ltd Polarizing element
JPS6390204U (en) * 1986-12-01 1988-06-11
JPH03132603A (en) * 1989-10-18 1991-06-06 Matsushita Electric Ind Co Ltd Polarizer
WO1994001794A1 (en) * 1992-07-14 1994-01-20 Seiko Epson Corporation Polarizing element and optical element, and optical head
US5422756A (en) * 1992-05-18 1995-06-06 Minnesota Mining And Manufacturing Company Backlighting system using a retroreflecting polarizer
US5559634A (en) * 1991-06-13 1996-09-24 Minnesota Mining And Manufacturing Company Retroreflecting polarizer
WO2000008496A1 (en) * 1998-08-07 2000-02-17 Shojiro Kawakami Polarizer
WO2004086136A1 (en) * 2003-03-27 2004-10-07 Hitachi, Ltd. Optical unit and projection type image display unit using it
JP4843819B2 (en) * 2003-10-07 2011-12-21 ナルックス株式会社 Polarizing element and optical system including polarizing element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101922A (en) * 1979-01-31 1980-08-04 Canon Inc Light splitter
JPS57155508A (en) * 1981-02-23 1982-09-25 Xerox Corp Polaroid beam splitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101922A (en) * 1979-01-31 1980-08-04 Canon Inc Light splitter
JPS57155508A (en) * 1981-02-23 1982-09-25 Xerox Corp Polaroid beam splitter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262705A (en) * 1985-05-17 1986-11-20 Fujitsu Ltd Polarizing element
JPS6390204U (en) * 1986-12-01 1988-06-11
JPH03132603A (en) * 1989-10-18 1991-06-06 Matsushita Electric Ind Co Ltd Polarizer
US5061050A (en) * 1989-10-18 1991-10-29 Matsushita Electric Industrial Co., Ltd. Polarizer
US5559634A (en) * 1991-06-13 1996-09-24 Minnesota Mining And Manufacturing Company Retroreflecting polarizer
US5422756A (en) * 1992-05-18 1995-06-06 Minnesota Mining And Manufacturing Company Backlighting system using a retroreflecting polarizer
WO1994001794A1 (en) * 1992-07-14 1994-01-20 Seiko Epson Corporation Polarizing element and optical element, and optical head
US5825022A (en) * 1992-07-14 1998-10-20 Seiko Epson Corporation Polarizer, including thin polarizing film, optical element with polarizer, optical head with polarizer and methods and apparatus for forming same
WO2000008496A1 (en) * 1998-08-07 2000-02-17 Shojiro Kawakami Polarizer
US6977774B1 (en) 1998-08-07 2005-12-20 Autocloning Technology, Ltd. Polarizer
WO2004086136A1 (en) * 2003-03-27 2004-10-07 Hitachi, Ltd. Optical unit and projection type image display unit using it
US7241015B2 (en) 2003-03-27 2007-07-10 Hitachi, Ltd. Optical unit and projection type image display unit using it
JP4843819B2 (en) * 2003-10-07 2011-12-21 ナルックス株式会社 Polarizing element and optical system including polarizing element

Similar Documents

Publication Publication Date Title
US6947213B2 (en) Diffractive optical element that polarizes light and an optical pickup using the same
US4733065A (en) Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom
JPS6117103A (en) Polarizing beam splitter
US6266313B1 (en) Optical pickup for recording or reproducing system
JP2618957B2 (en) Polarizing optical element
KR100215792B1 (en) Polarizing beam splitter and optical pick up device using it for different type optical disk
JP2660140B2 (en) Optical head device
JPH0721866B2 (en) Optical head device
KR0170521B1 (en) A beam circulation device of optical pickup system
JP2578203B2 (en) Light head
JP2667962B2 (en) Optical head device
JPS6111951A (en) Optical head device
KR0135859B1 (en) Optical head
JPS61237246A (en) Optical pickup device
JP2502482B2 (en) Optical head device
JP2502483B2 (en) Optical head device
JP2502484B2 (en) Optical head device
JPS6117232A (en) Optical head device
JPH02141942A (en) Optical pickup device
JPH0120498B2 (en)
JPS61233442A (en) Optical head device
JPH06338076A (en) Optical pickup
JPH01243257A (en) Optical pickup
JPH0684226A (en) Optical pickup device
JPH03192303A (en) Optical element