JPS61233383A - Photomagnetic resonance magnetometer - Google Patents

Photomagnetic resonance magnetometer

Info

Publication number
JPS61233383A
JPS61233383A JP7477485A JP7477485A JPS61233383A JP S61233383 A JPS61233383 A JP S61233383A JP 7477485 A JP7477485 A JP 7477485A JP 7477485 A JP7477485 A JP 7477485A JP S61233383 A JPS61233383 A JP S61233383A
Authority
JP
Japan
Prior art keywords
absorption cell
photodetector
lamp
frequency
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7477485A
Other languages
Japanese (ja)
Inventor
Naoyuki Tojo
東條 尚幸
Makoto Kikuchi
誠 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7477485A priority Critical patent/JPS61233383A/en
Publication of JPS61233383A publication Critical patent/JPS61233383A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping

Abstract

PURPOSE:To reduce the noise accompanied with the variance of the luminance of a light source by setting an absorbing cell in a luminance variance detecting part consisting of a lens, a circular polarizing plate, and a photodetector. CONSTITUTION:An absorbing cell 17 is set additionally in a luminance variance detecting part 16. The cell 17 does not cause magnetic resonance. The cell 17 has the same conditions as a photomagnetic resonance part 19 except it, and the light emitted from a helium lamp 1 is received by a photodetector 16. Consequently, not only the variance of the luminance of the lamp 1 but also that of the absorbing cell 5 is detected by the photodetector 16 of the cell 17. In the output of a photodetector 7 of the resonance part 19, variances of luminance of the lamp 1 and the absorbing cell 5 are detected besides an absorption signal of light due to magnetic resonance. Signals detected by detectors 16 and 17 are cancelled by a differential amplifier 8 to erase the electric noise due to the variance of luminance, thereby reducing considerably the noise due to variances of luminance of the lamp 1 and the cell 5 to improve the measurement precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は原子の磁気共鳴吸収を光学的に検出し、磁気
共鳴周波数が磁界の強さに比例することを利用して磁界
の測定を行う光磁気共鳴磁力計の改良に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention optically detects the magnetic resonance absorption of atoms and measures the magnetic field by utilizing the fact that the magnetic resonance frequency is proportional to the strength of the magnetic field. This paper concerns improvements to optical magnetic resonance magnetometers.

〔従来の技術〕[Conventional technology]

第2図及び第3図によって従来のヘリウム周波数追尾型
光磁気共鳴磁力計について簡単に説明する。第2図は従
来の改良型光磁気共鳴磁力計の一実施例を示したもので
Lり、(1+Bヘリウムランプ。
A conventional helium frequency tracking type optical magnetic resonance magnetometer will be briefly explained with reference to FIGS. 2 and 3. FIG. 2 shows an example of a conventional improved optical magnetic resonance magnetometer using a 1+B helium lamp.

(2)はランプ励起用電極、+31 、 [+41はレ
ンズ、 141 、αりは円偏光板、(5)は吸収セル
、(61は吸収セル励起用電極、 (71、a[iは光
検出器、(8)は差動型の増幅器。
(2) is the lamp excitation electrode, +31, [+41 is the lens, 141, α is the circularly polarizing plate, (5) is the absorption cell, (61 is the absorption cell excitation electrode, (71, a[i is the photodetection (8) is a differential type amplifier.

(9)は位相検波器、α叱1圧制御発振器、αυはバッ
ファ抵抗器、α2はRFコイル、(I3は高周波発振器
である。
(9) is a phase detector, αυ is a one-pressure controlled oscillator, αυ is a buffer resistor, α2 is an RF coil, and (I3 is a high-frequency oscillator).

なお、ここではこの発明に関連しない構成品については
省略しである。
Note that components not related to this invention are omitted here.

光磁気共鳴磁力形は一般にはヘリウムランプ(1)。The optical magnetic resonance type is generally a helium lamp (1).

レンズ(31,円偏光板(4)、吸収セル(5)、光検
出器(7)。
Lens (31, circularly polarizing plate (4), absorption cell (5), photodetector (7).

差動型の増幅器(8)1位相検波器(9)、電圧制御発
掘器αQ、バッファ抵抗器αml、RFコイルα3.高
周波発振器(13とで構成されるが、上記ヘリウムラン
プ(11で生じた光強度変化に伴う雑音を低減させるた
めに0例えば特開昭45ゝ−34071号公報に記載の
ように上記ヘリウムランプ(ll’i共用し、レンズQ
41 。
Differential amplifier (8), 1-phase detector (9), voltage control detector αQ, buffer resistor αml, RF coil α3. The high frequency oscillator (13) is configured with a high frequency oscillator (13), but in order to reduce the noise caused by the change in light intensity caused by the helium lamp (11), the helium lamp (11) is ll'i shared, lens Q
41.

円偏光板r19.光検出器αeで構成される輝度変化検
出1Q11を新たに追加しここで検出した電気信号金利
用して上記ヘリウムランプ+11で発生した光強度変化
を電気的に相殺するようにした改良型の光磁気共鳴磁力
計があった。
Circularly polarizing plate r19. An improved type of light that newly adds a brightness change detection 1Q11 consisting of a photodetector αe and uses the electric signal gold detected here to electrically offset the light intensity change generated by the helium lamp +11. There was a magnetic resonance magnetometer.

まずこの光磁気共鳴磁力計の輝度変化検出部αaを除い
た部分(以後この部分を光磁気共鳴部α9と呼ぶ)につ
いて説明する。ヘリウムランプ(1)は高周波発振器a
3からランプ励起用電極(2)ヲ経て印加される数10
 MH2の高周波電圧によって放電し。
First, the portion of this magneto-optical resonance magnetometer excluding the brightness change detection section αa (hereinafter this portion will be referred to as the magneto-optical resonance section α9) will be explained. Helium lamp (1) is a high frequency oscillator a
The number 10 applied from 3 to the lamp excitation electrode (2)
Discharged by the high frequency voltage of MH2.

ヘリウム原子特有の波[1,08μの光を発生する。Generates light with a wavelength of 1.08μ, which is unique to helium atoms.

この光はレンズ(3)によって平行光線にされ円偏光板
(4)で円偏光に変えられて吸収セル(5)に照射され
るが、この吸収セル(5)は高周波発振器a3から数1
0MHzの高周波電圧がセル励起用電極(6)金倉して
印加されてグロー放電状態にされている。吸収セル(5
)全透過した光は光検出器(7)で電気信号に変換され
、ついで差動型の増幅器(8)で増幅された後1位相検
波器(9)で位相検波されである誤差信号を生じる。こ
の誤差信号で電圧制御発振器Qlの発振周波数が制御さ
れ出力がバッファ抵抗器(lll’i介してRFコイル
aaに流れ、高周波磁界H1が発生して吸収セル(5)
に印加される。ここで吸収セル(5)には励起状態での
ライフタイム(Lif tins)が非常に短いH6′
原子が封入されているものとする。
This light is made into parallel light beams by a lens (3), changed into circularly polarized light by a circularly polarizing plate (4), and irradiated onto an absorption cell (5).
A high frequency voltage of 0 MHz is applied to the cell excitation electrode (6) to create a glow discharge state. Absorption cell (5
) The completely transmitted light is converted into an electrical signal by a photodetector (7), then amplified by a differential amplifier (8), and then phase detected by a single phase detector (9) to generate an error signal. . The oscillation frequency of the voltage controlled oscillator Ql is controlled by this error signal, and the output flows to the RF coil aa through the buffer resistor (ll'i), generating a high frequency magnetic field H1 and moving it to the absorption cell (5).
is applied to Here, the absorption cell (5) contains H6', which has a very short lifetime (Lif tins) in the excited state.
Assume that atoms are encapsulated.

このヘリウム原子の運動を第3図の関連エネルギーレベ
ル図を便って説明する。
This movement of helium atoms will be explained with reference to the related energy level diagram in FIG.

まず吸収セル(5)にはあらかじめ数10MHzの高周
波電圧によってグロー放電されヘリウム原子のエネルギ
ーは23S1の準安定状態にある。この準安定状態のヘ
リウム原子はヘリウムランプ+11から波長1.08μ
の光(Do〜D2)が照射されているのでこれを吸収し
て励起状態の25PO,1,2のエネルギーを持つよう
になるが、励起状態の埒砧は短く、約10−8秒でエネ
ルギーを失って再び23S1  の準安定状態にもどる
。また光磁気共鳴sa9が静8界中にある場合には吸収
セル15+中のヘリウム原子は原子自身の持つ磁気モー
メントが靜磁界の力を受けて静磁界のまわ9t−ラーモ
アの才筆運動と呼ばれる回転運動を行うのでエネルギー
に変位を生じ、第3図に示す複数のゼーマンサブレベル
(Zeman8ubbvel)が生じる。このような静
磁界による原子エネルギーの変化tゼーマン効果、また
原子の磁気モーメントの才筆運動の周波数tラーモア周
波数といい、いずれも靜磁界の強さに比例している。
First, the absorption cell (5) is preliminarily glow-discharged by a high frequency voltage of several tens of MHz, and the energy of helium atoms is in a metastable state of 23S1. Helium atoms in this metastable state have a wavelength of 1.08μ from a helium lamp +11.
Since the light (Do~D2) of and returns to the metastable state of 23S1. In addition, when the optical magnetic resonance sa9 is in the static 8 field, the magnetic moment of the helium atoms in the absorption cell 15+ is affected by the force of the static magnetic field, and the motion is called 9t-Larmour's motion around the static magnetic field. Since the rotational movement is performed, a displacement occurs in energy, and a plurality of Zeeman sublevels (Zeman8ubbvel) shown in FIG. 3 are generated. The change in atomic energy caused by such a static magnetic field is called the Zeeman effect, and the frequency of the atomic movement of the magnetic moment of the atom is called the Larmor frequency, both of which are proportional to the strength of the static magnetic field.

そこで靜磁界中のヘリウム原子に靜磁界に平行方向から
ヘリウムランプ+11の発する1、08μの元を円偏光
板(4)によって円偏光にして照射すると、ヘリウム原
子は光を吸収して励起状態2”0,1.2のエネルギー
を持つようになるが、この際に円偏光の効果によって励
起状態内でゼーマンサブレベルの辿択が行われ、ある特
定のゼーマンサブレベルのエネルギーを持つようになる
。この後、短時間でエネルギーを失って準安定状WM2
81のエネルギーにもどるが、このときはゼーマンサブ
レベルの辿択注は保存され2s81のゼーマンサブレベ
ル内でゼーマンサブレベル毎に原子の数が異なる偏分布
ができる。
Therefore, when a helium atom in a quiet magnetic field is irradiated with a 1.08μ element emitted by a helium lamp +11 from a direction parallel to the quiet magnetic field, the helium atom absorbs the light and enters the excited state 2. ``It will have an energy of 0, 1.2, but at this time, the Zeeman sublevel is traced within the excited state due to the effect of circular polarization, and it will have an energy of a certain Zeeman sublevel.'' After this, it loses energy in a short time and becomes metastable WM2.
We return to the energy of 81, but at this time, the trace selection note of the Zeeman sublevel is preserved, and within the Zeeman sublevel of 2s81, a biased distribution in which the number of atoms differs for each Zeeman sublevel is created.

この偏分布状態に25S1のゼーマンサブレベル間のエ
ネルギー差に等しいエネルギーを持つ*i1i波。
The *i1i wave has energy equal to the energy difference between the Zeeman sublevels of 25S1 in this unevenly distributed state.

すなわちラーモア周波数の高周波磁界を靜磁界に直角方
向に加えると、高周波磁界と原子の磁気モーメントの間
で磁気共鳴が生じてエネルギーの交換が起こシ、上記の
偏分布は解消される。つまシヘリウム原子は準安定状態
25S1の3本のゼーマンサブレベルにそれぞれほぼ等
しい数の原子カ分布する初期状態にもどるわけである。
That is, when a high-frequency magnetic field at the Larmor frequency is applied in a direction perpendicular to the static magnetic field, magnetic resonance occurs between the high-frequency magnetic field and the magnetic moment of the atoms, causing energy exchange, and the above-mentioned uneven distribution is eliminated. In other words, the schihelium atoms return to the initial state in which approximately equal numbers of atoms are distributed in each of the three Zeeman sublevels of the metastable state 25S1.

以上のプロセス即ちヘリウム原子の2s81→2sPO
,1,2→2581のエネルギー変化は1.08μの光
が継続して照射されているので高周波磁界の周波数がラ
ーモア周波数に一致する毎にくり返されるが光磁気共鳴
部a9の電子回路系すなわち光検出器(7)。
The above process, 2s81 → 2sPO of helium atoms
, 1, 2 → 2581 is repeated every time the frequency of the high-frequency magnetic field matches the Larmor frequency because the 1.08 μ light is continuously irradiated, but the electronic circuit system of the optical magnetic resonance section a9, ie. Photodetector (7).

差動型の増幅器(8)1位相検波器(91、11E圧制
御発振器[11、バッファ抵抗αυ、RFコイルa湯は
靜−界に平行方向の光が上記プロセスの間に吸収されそ
の結果、吸収セルを透過する光が減少することを利用し
て常に高周波磁界の周波数をラーモア周波数に一致する
よう制御するものである。このとき高周波磁界と原子の
定数及び靜磁界の間に次式の関係が成立する。
Differential type amplifier (8) 1-phase detector (91, 11E pressure-controlled oscillator [11, buffer resistor αυ, RF coil a) The light parallel to the field is absorbed during the above process, and as a result, The frequency of the high-frequency magnetic field is always controlled to match the Larmor frequency by utilizing the decrease in the light transmitted through the absorption cell.At this time, the relationship between the high-frequency magnetic field, the atomic constant, and the static magnetic field is expressed by the following equation. holds true.

ω=ω0麿rHo       −(tlω :高周波
磁界の角周波数 ω0:原子のラーモア周波数 r :原子の磁気回転比(定数) Ho:静磁界の強さ このように光磁気共鳴部uIIa、靜磁界の強さHQに
比例したラーモア周波数にロックオン(Lock−On
)し、このときの高周波磁界の周波数、即ち電圧制御発
振器αlの発振周波数はラーモア周波数に一致している
ので、これを計測すれば靜磁界の強さHOt正確に測定
することができる。しかしながら光検出器(7)の受光
する光のうち磁気共鳴による吸収すなわち吸収信号は全
体の0.1%にしかすぎないので光磁気共鳴部a場だけ
ではヘリウムランプ(1)の輝度が変動するとその変動
分が光検出器(7)に現れ吸収信号の信号対雑音比が下
がり計測精度が悪くなるという欠点があった。そこで第
2図に示すように光磁気共鳴部119で使用しているレ
ンズ(3)9円偏光板(4)1元検知器(7)とそれぞ
れ同一のレンズ(1:l 。
ω = ω0 rHo - (tlω: Angular frequency of high-frequency magnetic field ω0: Larmor frequency of the atom r: Magnetic rotation ratio (constant) of the atom Ho: Strength of the static magnetic field Thus, the optical magnetic resonance part uIIa, the strength of the static magnetic field Lock-on to Larmor frequency proportional to HQ
) However, since the frequency of the high-frequency magnetic field at this time, that is, the oscillation frequency of the voltage controlled oscillator αl, matches the Larmor frequency, by measuring this, the strength of the silent magnetic field HOt can be accurately measured. However, of the light received by the photodetector (7), absorption due to magnetic resonance, that is, the absorption signal, accounts for only 0.1% of the total, so the brightness of the helium lamp (1) will fluctuate due to the optical magnetic resonance field a alone. This fluctuation appears on the photodetector (7), which lowers the signal-to-noise ratio of the absorption signal and deteriorates measurement accuracy. Therefore, as shown in FIG. 2, the same lenses (1:l) as the lens (3), 9-circularly polarizing plate (4), and 1-element detector (7) used in the magneto-optical resonance section 119 are used.

円偏光板(I5.光検出器側を光軸方向に同一位置に配
置した輝度変化検出部α8を新たに追加し、ここで検出
したヘリウムランプ(1)の輝度変化と光磁気共鳴部a
Sで生じたヘリウムランプ(1)の輝度変化を差動型の
増幅器(8)で電気的に相殺することによって輝度変化
に伴う雑音を減少させていた。
A circularly polarizing plate (I5. A brightness change detection unit α8 with the photodetector side placed at the same position in the optical axis direction is newly added, and the brightness change of the helium lamp (1) detected here and the optical magnetic resonance part a
By electrically canceling out changes in the brightness of the helium lamp (1) caused by S using a differential amplifier (8), noise accompanying changes in brightness is reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光源の輝度変化はランプの点灯状態だけでなく吸収セル
のグロー放電の状態によっても変化するが従来の改良屋
元磁気共鳴磁力計ではランプの輝度変化は相殺できるも
のの輝度変化検出部に吸収セルの輝度変化を検出する機
能がないため吸収セルの輝度変化は相殺することは不可
能であり、それ故輝度変化に伴う雑音を十分に減少させ
ることができないという問題点があった。この発明はこ
のような問題点を解決するためになされたもので光源の
輝度変化に伴う雑音を減少させて測定精度を向上させる
ことを目的としている。
Changes in the brightness of the light source vary not only depending on the lighting state of the lamp but also on the glow discharge state of the absorption cell. In the conventional improved outdoor magnetic resonance magnetometer, although the change in lamp brightness can be canceled out, the change in brightness of the absorption cell is not detected in the brightness change detection section. Since there is no function to detect changes in brightness, it is impossible to cancel out changes in the brightness of the absorption cell, and therefore there is a problem in that noise accompanying changes in brightness cannot be sufficiently reduced. The present invention was made to solve these problems, and aims to improve measurement accuracy by reducing noise caused by changes in brightness of a light source.

〔問題点を解決するための手段〕[Means for solving problems]

レンズ、円偏光板、光検出器で構成される従来の輝度変
化検出部に吸収セルを追加する。すなわち光磁気共鳴奮
起こさせないためにRFコイルを除いた他は光磁気共鳴
部と同一のレンズ、円偏光板、吸収セル、光検出器を光
軸方向に光磁気共鳴部と同一の配置にし、かつ上記吸収
セルを磁気共鳴を起こさせていない他は高周波電圧によ
って点灯させて光磁気共鳴部とほぼ同一の発光状態を作
シ出すことによってランプの輝度変化だけでなく吸収セ
ルの輝度変化も検出し、検出した電気信号t−便って光
磁気共鳴部で生じた輝度変化全電気的に相殺し、輝度変
化に伴う雑音を減少させる。
An absorption cell is added to the conventional brightness change detection section, which consists of a lens, a circularly polarizing plate, and a photodetector. That is, in order to avoid stimulating optical magnetic resonance, the lenses, circularly polarizing plates, absorption cells, and photodetectors that are the same as those of the optical magnetic resonance section except for the RF coil are arranged in the same direction as the optical magnetic resonance section in the optical axis direction. In addition, by lighting the above-mentioned absorption cell with a high-frequency voltage to create a light emission state that is almost the same as that of the optical magnetic resonance section, except that magnetic resonance is not caused, not only changes in the brightness of the lamp but also changes in the brightness of the absorption cell are detected. Then, the detected electrical signal t-electronically cancels out the brightness change occurring in the magneto-optical resonance section, thereby reducing noise accompanying the brightness change.

〔作用〕[Effect]

従来はランプの輝度変化だけを検出して輝度変化に伴う
雑音を低減させていたのに対してこの発明では従来の輝
度変化検出部に吸収セルを新たに追加し、ffi気共鳴
を起こさせないことを除いて光磁気共鳴部の光学系とほ
ぼ同一の状態で動作させた状態でヘリウムランプの輝度
変化と吸収セルの輝度変化を光検出器で検出してこの検
出した電気信号を便って光磁気共鳴部で発生したヘリウ
ムランプ及び吸収セルの輝度変化を電気的に打消すこと
によシ輝度変化に伴う雑音を減少させるので。
Conventionally, only lamp brightness changes were detected to reduce the noise associated with brightness changes, but in this invention, an absorption cell is newly added to the conventional brightness change detection section to prevent FFI resonance from occurring. The optical system of the magneto-optical resonance section is operated under almost the same conditions as the optical system, except for By electrically canceling out the brightness changes of the helium lamp and absorption cells generated in the magnetic resonance section, the noise associated with brightness changes is reduced.

輝度変化に伴う雑音をより一層低減させることができる
Noise accompanying brightness changes can be further reduced.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示すものである。 FIG. 1 shows an embodiment of the present invention.

aωは光磁気共鳴部αlで使用している吸収セル(5)
と同−の吸収セルであり、レンズ036円偏光板I。
aω is the absorption cell (5) used in the optical magnetic resonance section αl
This is the same absorption cell as the lens 036 circularly polarizing plate I.

光検出器−で構成される従来の輝度変化検出部員に上記
吸収セルa?)t−新たに追加し、光軸方向におけるこ
れら部品の配置が光磁気共鳴部lllの光学部品と同一
になるようにしである。また上記吸収セルαηには磁気
共St−起こさせないために高周波電界を印加してない
ことを除けば、吸収セル励起用電極(6)を経由して上
記高周波発振器Q3の出力である高周波電圧が印加され
てお夛磁気共鳴が起きていないことを除いては光磁気部
a9の吸収セル(5)と同じグロー放電の動作状態にさ
れ、ここで発光する光がヘリウムランプ(1)の光と一
緒に光検出器αeで受光される。光検出器(Ieは上記
ヘリウムランプ+11及び吸収セルaηの輝度変化を検
出し差動型の増幅器(8)の一方の入力となシ他方の入
力である光検出器(7)で検出された光の吸収信号との
差が差動型の増幅器(8)の出力として位相検波器(9
)に送られる。
The above-mentioned absorption cell a? ) T-A new addition is made so that the arrangement of these parts in the optical axis direction is the same as the optical parts of the optical magnetic resonance section 11. Furthermore, except that no high-frequency electric field is applied to the absorption cell αη to prevent magnetic resonance from occurring, the high-frequency voltage that is the output of the high-frequency oscillator Q3 is transmitted via the absorption cell excitation electrode (6). The operating state of the glow discharge is the same as that of the absorption cell (5) of the magneto-optical section a9, except that no magnetic resonance occurs due to the applied light, and the light emitted here is the same as the light of the helium lamp (1). The light is also received by the photodetector αe. The photodetector (Ie detects the luminance change of the helium lamp +11 and the absorption cell aη, and is one input of the differential amplifier (8). The photodetector (7) is the other input. The difference between the optical absorption signal and the optical absorption signal is detected by the phase detector (9) as the output of the differential amplifier (8).
) will be sent to.

ここで光磁気共鳴部0のヘリウムランプ(1)および吸
収セル(5)はそれぞれランプ励起用電極(2)、吸収
セル励起用電極(6)に高周波発振器(13の出力であ
る高周波電圧が印加されて発光しているのでこの高周波
発振器Q3の出力が変化すると上記ヘリウムランプ(1
)、吸収セル(5)は輝度変化をする。つまシミ源電圧
の変動あるいは外部からの振動によって高周波発振器0
の出力が変動するとヘリウムランプ(1)及び吸収セル
(5)の輝度が変動する。また、ヘリウムランプ(1)
及び吸収セル+5)は−稲の放電管であるので温度等の
外的要因によって放電状態が変化し輝度が変わる。
Here, in the helium lamp (1) and absorption cell (5) of the optical magnetic resonance section 0, a high frequency voltage, which is the output of a high frequency oscillator (13), is applied to the lamp excitation electrode (2) and the absorption cell excitation electrode (6), respectively. Therefore, when the output of this high frequency oscillator Q3 changes, the helium lamp (1
), the absorption cell (5) changes in brightness. High frequency oscillator 0 due to fluctuations in the power source voltage or external vibrations.
When the output of the helium lamp (1) and the absorption cell (5) fluctuate, the brightness of the helium lamp (1) and the absorption cell (5) fluctuate. Also, helium lamp (1)
Since the absorption cell +5) is a -rice discharge tube, the discharge state changes depending on external factors such as temperature, and the brightness changes.

このとき輝度変化検出部員は従来と違って吸収セルaη
が追加され、磁気共鳴を起こしていない他は光磁気共鳴
部aSと同じ条件で発光した光が光検出器aeに受光さ
れているので、従来のようにヘリウムランプ(1)の輝
度変化だけでな(吸収セル(5)の輝度変化も吸収セル
aηの輝度変化光検知器aeで検出することによってほ
ぼ同一の状態で検出できる。
At this time, the brightness change detection member uses the absorption cell aη, unlike in the past.
is added, and the light emitted under the same conditions as the magneto-optical resonance section aS, except that it does not cause magnetic resonance, is received by the photodetector ae, so unlike the conventional method, only the brightness change of the helium lamp (1) can be detected. (The brightness change of the absorption cell (5) can also be detected in almost the same state by detecting it with the brightness change photodetector ae of the absorption cell aη.

光磁気共鳴部aSの光検出器(7)の出力には、磁気共
鳴による光の吸収信号の他に上記ヘリウムランプ(11
及び吸収セル(51の輝度変化が雑音として現われてい
るのでこれら光検出器(7)、αeで検出された信号を
差動盤の増幅器(8)で相殺させることによシ輝度変化
による電気雑音を打消すことが可能となシ上記ヘリウム
ランプ(1)及び吸収セル(5)の輝度変化による雑音
を大幅に低減することができる。
The output of the photodetector (7) of the optical magnetic resonance unit aS includes the helium lamp (11) in addition to the light absorption signal due to magnetic resonance.
Since changes in the brightness of the absorption cells (51 and 51) appear as noise, by canceling the signals detected by the photodetector (7) and αe with the amplifier (8) of the differential board, electrical noise due to changes in brightness can be eliminated. It is possible to significantly reduce noise caused by changes in brightness of the helium lamp (1) and absorption cell (5).

以上述べたごとくこの発明の光磁気共鳴磁力計によれば
ランプの輝度変化だけでなく吸収セルの輝度変化に伴う
雑音も低減できるので光磁気共鳴磁力計の高感度性を損
うことなく磁界を測定する装ff!ct−提供すること
ができる。
As described above, according to the magneto-optical resonance magnetometer of the present invention, it is possible to reduce not only the brightness changes of the lamp but also the noise accompanying the brightness changes of the absorption cell. Equipment to measure! ct- can be provided.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、1!源変動や振動。 As explained above, this invention is 1! Source fluctuations and vibrations.

温度等の外的要因によって変動していたヘリウムランプ
や吸収セルの輝度変化を従来はヘリウムランプの輝度変
化だけを検出し、この輝度変化に伴う雑音を低減してい
たのをヘリウムランプだけでなく吸収セルの輝度変化も
検出し、これら輝度変化による雑音を低減させるように
しているので電源変動や振動等の外的要因の影響をさら
に受けにくくするという効果がある。
Conventionally, changes in the brightness of helium lamps and absorption cells, which fluctuated due to external factors such as temperature, were detected only by changes in the brightness of the helium lamp, and the noise associated with these changes in brightness was reduced. Changes in the brightness of the absorption cells are also detected, and noise caused by these changes in brightness is reduced, which has the effect of making the sensor even less susceptible to external factors such as power fluctuations and vibrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、@2図は従
来の改良型光磁気共%磁力計の構成の一実施例を示す図
、@3図はヘリウム原子のエネルギーレベルについて示
した図である。 図中、(1)はヘリウムランプ、(2)はランプ励起用
電極、 13+ 、 +14はレンズ、 14+ 、 
[9は円偏光板、 +51 。 aηは吸収セル、(61は吸収セル励起用電極、 (7
1、(llleは光検出器、(8)は差動型の増幅器、
(9)は位相検波器、霞は電圧制御発振器、αυはバッ
ファ抵抗器。 a2はRFコイル、(13は高周波発振器、αaは輝度
変化検出部、 a!Jは光磁気共鳴部である。 なお図中、同一あるいは相当部分には同一符号を付して
示しである。
Figure 1 is a block diagram showing an embodiment of the present invention, Figure @2 is a diagram showing an example of the configuration of a conventional improved magneto-optical co-% magnetometer, and Figure @3 is a diagram showing the energy level of helium atoms. This is a diagram. In the figure, (1) is a helium lamp, (2) is a lamp excitation electrode, 13+, +14 is a lens, 14+,
[9 is a circularly polarizing plate, +51. aη is an absorption cell, (61 is an electrode for excitation of the absorption cell, (7
1, (lle is a photodetector, (8) is a differential amplifier,
(9) is a phase detector, Kasumi is a voltage controlled oscillator, and αυ is a buffer resistor. a2 is an RF coil, (13 is a high-frequency oscillator, αa is a brightness change detection section, and a!J is an optical magnetic resonance section. In the figure, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 光磁気共鳴の光学的検出に利用する光Mを発生するラン
プと磁気共鳴を生じさせる物質を内蔵した吸収セルと、
上記ランプと吸収セルを放電発光させる高周波発振器と
、上記吸収セルに高周波磁界を印加して磁気共鳴を生じ
させるためのRFコイルと、上記吸収セルにおける磁気
共鳴の結果生じる光線の吸収を検出し、電気信号に変換
する光検出器と、上記光検出器の電気信号を増幅する増
幅器と、上記増幅器の出力を位相検波し誤差信号を発生
する位相検波器と、上記誤差信号で発振周波数を制御し
ラーモア周波数に等しい周波数の高周波電圧を発生する
電圧制御発振器と、上記高周波電圧を電流に変換してR
Fコイルに印加し高周波磁界を発生させるバッファ抵抗
器とからなる光磁気共鳴磁力計において、輝度変化検出
用の吸収セル、光検出器を新たに追加し、上記吸収セル
には高周波磁界を印加しないことにより磁気共鳴が生じ
ないようにして、上記ランプ及び吸収セルの輝度変化を
上記追加した光検出器で検出し、この電気信号を上記光
検出器の電気信号から減算することによつてランプ及び
吸収セルの輝度変化に伴う雑音を相殺することを特徴と
する光磁気共鳴磁力計。
an absorption cell containing a lamp that generates light M used for optical detection of optical magnetic resonance and a substance that generates magnetic resonance;
a high-frequency oscillator that causes the lamp and the absorption cell to discharge and emit light; an RF coil that applies a high-frequency magnetic field to the absorption cell to generate magnetic resonance; and detecting absorption of light rays resulting from magnetic resonance in the absorption cell; A photodetector that converts into an electrical signal, an amplifier that amplifies the electrical signal of the photodetector, a phase detector that detects the phase of the output of the amplifier and generates an error signal, and controls the oscillation frequency with the error signal. A voltage controlled oscillator that generates a high frequency voltage with a frequency equal to the Larmor frequency, and a voltage controlled oscillator that converts the high frequency voltage into a current and generates a
In a magneto-optical resonance magnetometer consisting of a buffer resistor that is applied to the F coil to generate a high-frequency magnetic field, an absorption cell and a photodetector for detecting brightness changes are newly added, and the high-frequency magnetic field is not applied to the absorption cell. By detecting the luminance changes of the lamp and absorption cell with the added photodetector and subtracting this electrical signal from the electrical signal of the photodetector, the lamp and absorption cell are An optical magnetic resonance magnetometer characterized by canceling out noise caused by changes in brightness of an absorption cell.
JP7477485A 1985-04-09 1985-04-09 Photomagnetic resonance magnetometer Pending JPS61233383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7477485A JPS61233383A (en) 1985-04-09 1985-04-09 Photomagnetic resonance magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7477485A JPS61233383A (en) 1985-04-09 1985-04-09 Photomagnetic resonance magnetometer

Publications (1)

Publication Number Publication Date
JPS61233383A true JPS61233383A (en) 1986-10-17

Family

ID=13556968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7477485A Pending JPS61233383A (en) 1985-04-09 1985-04-09 Photomagnetic resonance magnetometer

Country Status (1)

Country Link
JP (1) JPS61233383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143669A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Magnetic field measuring device
KR20160104569A (en) * 2015-02-26 2016-09-05 지멘스 악티엔게젤샤프트 Transmitter device for a magnetic resonance scanner
US10215816B2 (en) 2013-12-03 2019-02-26 Hitachi, Ltd. Magnetic field measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215816B2 (en) 2013-12-03 2019-02-26 Hitachi, Ltd. Magnetic field measuring apparatus
JP2015143669A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Magnetic field measuring device
KR20160104569A (en) * 2015-02-26 2016-09-05 지멘스 악티엔게젤샤프트 Transmitter device for a magnetic resonance scanner
CN105929349A (en) * 2015-02-26 2016-09-07 西门子公司 Transmitter Device For Magnetic Resonance Scanner
US10338169B2 (en) 2015-02-26 2019-07-02 Siemens Aktiengesellschaft Transmitter device for a magnetic resonance scanner

Similar Documents

Publication Publication Date Title
US7656154B2 (en) Magnetic field measurement system and optical pumping magnetometer
US20100259256A1 (en) Apparatus with ambient magnetic field correction
Bigelow et al. Accurate optical measurement of nuclear polarization in optically pumped 3He gas
JP2017173329A (en) Optical pump beam control in sensor system
CN111220934A (en) Gradient detection system based on pulse pumping magnetometer
GB1161501A (en) Measuring Weak Magnetic Fields by Compensation to Zero
US7202751B2 (en) Optically pumped frequency standard with reduces AC stark shift
JPS61233383A (en) Photomagnetic resonance magnetometer
US4209746A (en) Magnetic field gradient measuring device
Iacopini et al. On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field
JP2744728B2 (en) Gas concentration measuring method and its measuring device
US3187251A (en) Quantum oscillators
US6359917B1 (en) Detection method and detector for generating a detection signal that quantifies a resonant interaction between a quantum absorber and incident electro-magnetic radiation
GB1209637A (en) Device for measuring the intensity of magnetic fields
Slocum et al. Nd: LNA laser optical pumping of 4He: Application to space magnetometers
JPS61275673A (en) Photomagnetic resonance magnetometer
US3725775A (en) Self-oscillating helium magnetometer
CA3085048A1 (en) Optically pumped magnetometer and resonant cell for a probe light
JPS6255578A (en) Photomagnetic resonance magnetometer
SU532831A1 (en) Quantum magnetometer with optical orientation of metastable helium atoms
US3246254A (en) Atomic stabilized frequency source
JPS63158480A (en) Optical magnetic resonance magnetometer
JPS6123980A (en) Optomagnetic resonance magnetometer
US3628130A (en) METHOD AND APPARATUS FOR MEASURING THE ALIGNMENT OF METASTABLE He ATOMS BY DETECTION OF SCATTERED RESONANCE RADIATION
RU2158932C2 (en) Method for receiving signals from optical pumping magnetometers and optical pumping magnetometer