JPS6123980A - Optomagnetic resonance magnetometer - Google Patents

Optomagnetic resonance magnetometer

Info

Publication number
JPS6123980A
JPS6123980A JP14486484A JP14486484A JPS6123980A JP S6123980 A JPS6123980 A JP S6123980A JP 14486484 A JP14486484 A JP 14486484A JP 14486484 A JP14486484 A JP 14486484A JP S6123980 A JPS6123980 A JP S6123980A
Authority
JP
Japan
Prior art keywords
frequency
lamp
oscillator
magnetic field
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14486484A
Other languages
Japanese (ja)
Inventor
Takashi Fujisawa
藤沢 峻
Naoyuki Tojo
東條 尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14486484A priority Critical patent/JPS6123980A/en
Publication of JPS6123980A publication Critical patent/JPS6123980A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping

Abstract

PURPOSE:To measure a magnetic field without spoiling the high sensitivity of a magnetometer by detecting voltage variation at the output terminal of a high frequency oscillator, and adding this to a photodetection signal and canceling a noise accompanying variation in the brightness of a helium lamp. CONSTITUTION:The output of the high frequency oscillator 12 is applied to the helium lamp 1 through an exciting coil 11 and the lamp 1 turns on. At this time, the output terminal voltage of the oscillator 12 varies according to variation in the discharge state of the lamp 1. The brihtness variation of the lamp 1 appears as a noise in a photodetection signal outputted by an amplifier 6 and is inputted to a differential amplifier 15. Further, variation in the output terminal voltage of the oscillator 12 is level-detected 3 and inputted to the differential amplifier 15 through a voltage regulator 14. Therefore, the noise component in the output of the amplifier 6 is canceled by variation in the output terminal voltage of the oscillator 12 at the output of the amplifier 15 and a high frequency magnetic field H1 by the output of a VCO8 is applied to an absorbing cell 4 without deterioration in the discriminating performance of a phase detector 7, thereby measuring accurately the intensity H0 of a static magnetic field.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、原子の磁気共鳴吸収を光学的に検出し、磁
気共鳴周波数が磁界の強さに比例することを利用して磁
界の測定を行う光磁気共鳴磁力計の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention optically detects magnetic resonance absorption of atoms and measures magnetic fields by utilizing the fact that the magnetic resonance frequency is proportional to the strength of the magnetic field. Concerning improvements in optical magnetic resonance magnetometers.

〔従来技術〕[Prior art]

第1図及び第2図によって従来のヘリウム周波数追尾型
光磁気共鳴磁力計について簡単に訝、明する。
A brief explanation of the conventional helium frequency tracking type optical magnetic resonance magnetometer will be explained with reference to FIGS. 1 and 2.

第1図において、(1)はヘリウムランプ、(2)はレ
ンズ、(3)は円偏光板、(4)は吸収セル、(5)は
光検知器、(6)は増幅器、(7)は位相検波器、(8
)は電圧制御発振器、(9)はバッファ抵抗器、0■は
RFコイル。
In Figure 1, (1) is a helium lamp, (2) is a lens, (3) is a circularly polarizing plate, (4) is an absorption cell, (5) is a photodetector, (6) is an amplifier, and (7) is a helium lamp. is a phase detector, (8
) is a voltage controlled oscillator, (9) is a buffer resistor, and 0■ is an RF coil.

OIlは励起コイル、 a21は高周波発振器である。OIl is an excitation coil, and a21 is a high frequency oscillator.

なお1本文ではこの発明に関連しない搗成品については
省略しである。
Note that, in the main text, polished products that are not related to this invention are omitted.

この光磁気共鳴磁力計においてはヘリウムランプ(1+
は高周波発振器nzから励起コイルαυを経て印加され
る数10MHzの高周波電磁界によって無電極放電し、
ヘリウム原子特有の波長1.08μの光を発生する。こ
の光はレンズ(2)によって平行光線にされ9円偏光版
(3)で円偏光に変えられて吸収セル(4)に照射され
る。吸収セル(4)を透過した光は光検知器(5)で電
気信号に変換され、ついで増幅器(6)で増幅された後
1位相検波器(力で位相検波されて、ある誤差信号を生
じる。この誤差信号で電圧制御発振器(8)の発振周波
数が制御され、出力がバッファ抵抗器(9)を介してR
FコイルHに流れ、高周波磁界H1が発生して、吸収セ
ル(4)に印加される。
In this optical magnetic resonance magnetometer, a helium lamp (1+
is electrodeless discharged by a high frequency electromagnetic field of several tens of MHz applied from a high frequency oscillator nz via an excitation coil αυ,
Generates light with a wavelength of 1.08 μ, which is unique to helium atoms. This light is made into parallel light by a lens (2), converted into circularly polarized light by a 9-circularly polarizing plate (3), and irradiated onto an absorption cell (4). The light transmitted through the absorption cell (4) is converted into an electrical signal by a photodetector (5), then amplified by an amplifier (6), and then phase-detected by a phase detector (power) to produce an error signal. The oscillation frequency of the voltage controlled oscillator (8) is controlled by this error signal, and the output is connected to R via the buffer resistor (9).
Flowing through the F coil H, a high frequency magnetic field H1 is generated and applied to the absorption cell (4).

ここで、吸収セル(4)には励起状態でのライフタイム
(Life Time )が非常に短いH8′原子が封
入されているとする。このヘリウム原子の運動を第2図
に示す関連エネルギーレベル図を使って説明する。まず
吸収セル(4)にはあらかじめ数10 MH2の弱い高
周波電界が加えられており、高周波励起によってヘリウ
ム原子のエネルギーは23S1の準安定状態にある。こ
の準安定状態のヘリウム原子はヘリウムランプ(1)か
ら波長108μの光(Do〜D2)が照射ネれているの
で、これを吸収して励起状態の23F0.1.2のエネ
ルギーを持つようになるが、励起状態の寿命は短く、約
10−8秒でエネルギーを失って再び23S1の準安定
状態にもどる。ぼた、第1図に示す系が静磁界中にある
場合には吸収セル(4)中のヘリウム原子は原子自身の
持つ磁気モーメントが静磁界の力を受けて静磁界のまわ
りをラーモアの茅葺運動と呼ばれる回転運動を行うので
エネルギーに変位を生じ、第2図に示す複数のゼーマン
ザブレベル(Zeeman 5ublevel)が生じ
る。このよ5な静磁界による原子エネルギーの変化をゼ
ーマン効果、また原子の磁気モーメントの茅葺運動の周
波数をラーモア周波数とい(・、いずれも静磁界の強さ
に比例している。そこで静磁界中のヘリウム原子に静磁
界に平行方向からヘリウムランプ(11の発する1、0
8μの光を円偏光板(3)によって円偏光にして照射す
ると1.ヘリウム原子は光を吸収して励起状態2’PO
,1,2のエネルギーを持つようになるが、この際に円
偏光の効果によって励起状態内でゼーマンザブレベルの
選択が行われ、ある特定のゼーマンザブレベルのエネル
ギーを持つようになる。この後、短時間でエネルギーを
失って準安定状態26S1のエネルギーにもどるが、こ
のときはゼーマンサブレベルの選択性は保存され+ ”
”1のゼーマンザブレベル内でゼーマンザブレベル毎に
原子の数が異なる偏分布ができる。
Here, it is assumed that the absorption cell (4) contains H8' atoms, which have a very short lifetime in an excited state. The motion of helium atoms will be explained using the related energy level diagram shown in FIG. First, a weak high frequency electric field of several tens of MH2 is applied in advance to the absorption cell (4), and the energy of the helium atoms is in a metastable state of 23S1 due to the high frequency excitation. The helium atoms in this metastable state are irradiated with light with a wavelength of 108μ (Do~D2) from the helium lamp (1), so they absorb this and have the energy of 23F0.1.2 in the excited state. However, the lifetime of the excited state is short, and it loses energy in about 10-8 seconds and returns to the metastable state of 23S1. However, when the system shown in Figure 1 is in a static magnetic field, the helium atoms in the absorption cell (4) will move around the static magnetic field like Larmor's grass due to the magnetic moment of the atom itself being affected by the force of the static magnetic field. Since it performs a rotational movement called a rotational movement, a displacement occurs in energy, and a plurality of Zeeman 5ublevels as shown in FIG. 2 are generated. This change in atomic energy due to a static magnetic field is called the Zeeman effect, and the frequency of the thatching motion of the magnetic moment of an atom is called the Larmor frequency (both are proportional to the strength of the static magnetic field. Helium lamp (11 emitted 1,0
When 8μ light is circularly polarized by a circularly polarizing plate (3) and irradiated, 1. Helium atoms absorb light and enter the excited state 2'PO
, 1, and 2, but at this time, the effect of circular polarization selects the Zeeman Sub level within the excited state, and it comes to have energy at a certain Zeeman Sub level. After this, it loses energy in a short time and returns to the energy of the metastable state 26S1, but at this time the Zeeman sublevel selectivity is preserved.
``Within one Zeeman Sub level, there is a biased distribution in which the number of atoms differs for each Zeeman Sub level.

この偏分布状態に2381のゼーマンザブレベル間のエ
ネルギー差に等しいエネルギーを持つ電磁波すなわちラ
ーモア周波数の高周波磁界を静磁界に直角方向に加える
と、高周波磁界と原子の磁気モーメントの間で磁気共鳴
が生じてエネルギーの変換が起り、上記の偏分布は解消
される。つまりヘリウム原子は準安定状態23S1の3
本のゼーマンザブレベルにそれぞれほぼ等しい数の原子
が分布する初期状態にもどるわけである。
When an electromagnetic wave with an energy equal to the energy difference between the Zeeman-Zab levels of 2381, that is, a high-frequency magnetic field at the Larmor frequency, is applied to this unevenly distributed state in a direction perpendicular to the static magnetic field, magnetic resonance occurs between the high-frequency magnetic field and the magnetic moment of the atoms. As a result, energy conversion occurs, and the above-mentioned uneven distribution is eliminated. In other words, the helium atom is in the metastable state 23S1 3
This returns to the initial state in which the number of atoms is approximately equal to the Zeeman-sub level of the book.

以上のプロセス、即ちヘリウム原子の23S1→26ア
Q、1,2→23S1のエネルギー変化は1.08μの
光が継続して照射されているので高周波磁界の周波数が
ラーモア周波数に一致する毎にくり返される。第1図の
系は静磁界に平行方向の光が、上記プロセスの間に吸収
され、その結果、吸収セルを透過する光が減少すること
を利用して常に高周波磁界の周波数をラーモア周波数に
一致するよう制御するものである。このとき高周波磁界
と原子の定数及び静磁界の間に(1)式の関係が成立す
る。
The above process, that is, the energy change of the helium atom from 23S1 → 26AQ, 1,2 → 23S1, occurs every time the frequency of the high-frequency magnetic field matches the Larmor frequency because the 1.08μ light is continuously irradiated. returned. The system shown in Figure 1 uses the fact that light parallel to the static magnetic field is absorbed during the above process, and as a result, the light that passes through the absorption cell is reduced, so that the frequency of the high-frequency magnetic field always matches the Larmor frequency. It is controlled so that At this time, the relationship of equation (1) is established between the high frequency magnetic field, the atomic constant, and the static magnetic field.

ω=ω0 = rho  ・・・・il+ω:高周波磁
界の角周波数 ω0:原子のラーモア周波数 r:原子の磁気回転比(定数) Ho:静磁界の強さ このようにして第1図の系は静磁界の強aHoに比例し
たラーモア周波数にロックオン(Lock−on)し、
このときの高周波磁界の周波数、即ち電圧制御発振器(
8)の発振周波数はラーモア周波数に一致しているので
、これを計測すれは静磁界の強さHOをft#に測定す
ることができる。
ω = ω0 = rho ... il + ω: Angular frequency of high-frequency magnetic field ω0: Larmor frequency of atoms r: Magnetic rotation ratio (constant) of atoms Ho: Strength of static magnetic field In this way, the system in Figure 1 becomes static. Lock-on to the Larmor frequency proportional to the strength of the magnetic field aHo,
The frequency of the high-frequency magnetic field at this time, that is, the voltage-controlled oscillator (
Since the oscillation frequency of 8) matches the Larmor frequency, by measuring this, the static magnetic field strength HO can be measured in ft#.

この従来の光磁気共鳴磁力計は極めて高感度で。This conventional optical magnetic resonance magnetometer has extremely high sensitivity.

微小な磁界変動を測定できるほか1周囲磁界の全磁力を
連続して濁定できる等数多くの特徴を持つものである。
It has many features such as being able to measure minute magnetic field fluctuations and continuously determining the total magnetic force of one surrounding magnetic field.

しかしながら、従来の光磁気共鳴磁力計は光検知器(5
)の受光する光のうち磁力共鳴による光の吸収分、即ち
吸収信号は01%程度にしかすぎないので、ヘリウムラ
ンプ(1)の輝度が変動するとその変動が光検知器(5
)に現われ、吸収信号の信号対雑音比が悪化して位相検
波器(7)の弁別性能が低下し、結局高感度性が損なわ
れると(・う欠点があった。
However, the conventional optical magnetic resonance magnetometer uses a photodetector (5
), the amount of light absorbed by magnetic resonance, that is, the absorption signal, is only about 0.1%, so when the brightness of the helium lamp (1) fluctuates, the fluctuation is reflected in the light detector
), the signal-to-noise ratio of the absorbed signal deteriorates, the discrimination performance of the phase detector (7) deteriorates, and high sensitivity is ultimately impaired.

〔発明の概泉〕[Outline of invention]

この発明はかかる欠点を改善する目的でなされたもので
、高周波発振器の出力変化とヘリウムランプの輝度変化
が互いに関連していることを利用し、高周波発振器の出
力変化を検出して光検出器の出力に加算し、ヘリウムラ
ンプの輝度変化に伴う雑音を低減した光磁気共鳴磁力計
を提供しようとするものである。
This invention was made with the purpose of improving this drawback, and utilizes the fact that the output change of the high frequency oscillator and the brightness change of the helium lamp are related to each other, and detects the output change of the high frequency oscillator, and detects the output change of the high frequency oscillator. The present invention aims to provide an optical magnetic resonance magnetometer that adds to the output and reduces noise accompanying changes in brightness of a helium lamp.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示すものであり。 FIG. 3 shows an embodiment of the present invention.

0はレベル検出回路、α勾は電圧調整器、01は差動増
幅器である。この糸においては、高周波発振器(12の
出力端電圧はレベル検出器θmで検出、整流され、さし
に電圧調整器04・で適当に分圧されたあと差動増幅器
+151の一方の入力となり、仙方の入力である光の吸
収信号との差が差動増幅器a9の出力どして位相検波器
(力に送られる。このようにして増幅器(6)の出力信
号かり高周波発振器Q2の出力端電圧の変動に比例した
電圧が除かれる。
0 is a level detection circuit, α gradient is a voltage regulator, and 01 is a differential amplifier. In this thread, the output terminal voltage of the high frequency oscillator (12) is detected and rectified by the level detector θm, and after being appropriately divided by the voltage regulator 04, it becomes one input of the differential amplifier +151. The difference between the optical absorption signal and the input optical signal is sent to the phase detector (power) through the output of the differential amplifier a9.In this way, the output signal of the amplifier (6) is used as the output terminal of the high frequency oscillator Q2. A voltage proportional to the voltage variation is removed.

ここで、高周波発振器0?の出力は励起コイルaI)に
よってヘリウムランプ+11に印加され、ヘリウムラン
プ(1)を無電極放電により発光させて(・るので。
Here, high frequency oscillator 0? The output of is applied to the helium lamp +11 by the excitation coil aI), causing the helium lamp (1) to emit light by electrodeless discharge.

出力か変化するとヘリウムランプ(11の輝度も変化す
る。つまり、電源電圧の変動等の要因によって高周波発
振器0?の出力か変動すればヘリウムランプ(1)の輝
度が変動する。
When the output changes, the brightness of the helium lamp (11) also changes.In other words, if the output of the high frequency oscillator 0? changes due to factors such as changes in the power supply voltage, the brightness of the helium lamp (1) changes.

又、ヘリウムランプ(1)は放電管であるので撮動ある
いは温度等の外的要因によって放電状態が微小に変化し
、輝度が変わる。このとき放電状態の変化はヘリウムラ
ンプ+11の電気的インピーダンス変化を伴うので、ヘ
リウムランプ(1)、励起コイルat+及び高周波発振
器aZの間のインピーダンス不整合が生じ、高周波電力
の一部がヘリウムランプ+11で反射きれて高周波発振
器O2の出力端電圧が変化する。
Further, since the helium lamp (1) is a discharge tube, the discharge state changes minutely due to external factors such as photography or temperature, and the brightness changes. At this time, the change in the discharge state is accompanied by a change in the electrical impedance of the helium lamp +11, so an impedance mismatch occurs between the helium lamp (1), the excitation coil at+, and the high-frequency oscillator aZ, and a part of the high-frequency power is transferred to the helium lamp +11. The output terminal voltage of the high frequency oscillator O2 changes as it is reflected.

このようにヘリウムランプ(1)の輝度変化は必ず高周
波発振器O2の出力端電圧の変化として現われ。
In this way, a change in the brightness of the helium lamp (1) always appears as a change in the output terminal voltage of the high frequency oscillator O2.

しかも、はぼ比例していることを実験により確かめた。Moreover, it was confirmed through experiments that they are almost proportional.

一方、増幅器(61の出力、即ち光の吸収信号[はヘリ
ウムランプ+11の輝度変化が雑音として現われている
ので、電圧調整器+141の分圧比を適当に調整すγL
n増幅器(6)の出力信号からヘリウムランプ(1)の
輝度変化による雑音を大幅に低減することが可能となる
On the other hand, since the output of the amplifier (61), that is, the light absorption signal [, changes in the brightness of the helium lamp +11 appear as noise, the voltage division ratio of the voltage regulator +141 should be adjusted appropriately.
It becomes possible to significantly reduce noise caused by changes in brightness of the helium lamp (1) from the output signal of the n-amplifier (6).

以上述べたごとく、この発明の光磁気共鳴磁力計によれ
ば、ラングの輝度変化に伴う雑音を低減できるので、光
磁気共鳴磁力計の高感度性を損うことなく磁界を測定す
る装置を提供することができる。
As described above, according to the magneto-optical resonance magnetometer of the present invention, it is possible to reduce the noise associated with changes in the luminance of the rungs, thereby providing a device that measures magnetic fields without impairing the high sensitivity of the magneto-optical resonance magnetometer. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヘリウム光磁気共鳴磁力計の構成を示す
図、第2図はヘリウム光磁気共鳴磁力計の原理を説明す
るだめのエネルギーレベル図、第3図は本発明の磁力計
の一実施例を示す構成図である。 図中(1)ハヘリウムランプ、 (21flレンズ、(
3)は円偏光板、(4)は吸収セル、(5)は光検知器
、(6)は増幅器、(7)は位相検波器、(8)は電圧
制御発振器、(9)はバッファ抵抗器、00)はRFコ
イル、 Qllは励起コイル、 i+21は高周波発振
器、031はレベル検出/整流回路、 1141に電圧
調整器、(1つは差動増幅器である。 なお1図中同一あるいは相当部分には同一符号を付して
示しである。
Fig. 1 is a diagram showing the configuration of a conventional helium optical magnetic resonance magnetometer, Fig. 2 is an energy level diagram for explaining the principle of a helium optical magnetic resonance magnetometer, and Fig. 3 is an illustration of the magnetometer of the present invention. FIG. 2 is a configuration diagram showing an example. In the figure (1) hahelium lamp, (21fl lens, (
3) is a circularly polarizing plate, (4) is an absorption cell, (5) is a photodetector, (6) is an amplifier, (7) is a phase detector, (8) is a voltage controlled oscillator, and (9) is a buffer resistor. 00) is an RF coil, Qll is an excitation coil, i+21 is a high frequency oscillator, 031 is a level detection/rectification circuit, 1141 is a voltage regulator, (one is a differential amplifier. Note that the same or equivalent parts in Figure 1 are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 磁気共鳴の光学的検出に利用する光線を発生するランプ
と、ランプを放電発光させる高周波発振器と、磁気共鳴
を生じさせる物質を内蔵した吸収セルと、上記吸収セル
に高周波磁界を印加して磁気共鳴を生じさせるためのR
Fコイルと、上記吸収セルにおける磁気共鳴の結果生じ
る光線の吸収を検出し、電気信号に変換する光検知器と
、上記光検知器の電気信号を増幅する増幅器と、上記増
幅器の出力を位相検波し、誤差信号を発生する位相検波
器と、上記誤差信号で発振周波数を制御し、ラーモア周
波数に等しい周波数の高周波電圧を発生する電圧制御発
振器と、上記高周波電圧を電流に変換してRFコイルに
印加し、高周波磁界を発生させるバッファ抵抗器とから
なる光磁気共鳴磁力計において、高周波発振器の出力端
での電圧変化を検出し、これを光検知器の電気信号に加
算もしくは減算することによつてランプの輝度変化に伴
う雑音を相殺する手段を設けたことを特徴とする光磁気
共鳴磁力計。
A lamp that generates a light beam used for optical detection of magnetic resonance, a high-frequency oscillator that causes the lamp to discharge and emit light, an absorption cell containing a substance that generates magnetic resonance, and a high-frequency magnetic field applied to the absorption cell to generate magnetic resonance. R to produce
an F coil, a photodetector that detects the absorption of the light beam resulting from magnetic resonance in the absorption cell and converts it into an electrical signal, an amplifier that amplifies the electrical signal of the photodetector, and a phase detector that detects the output of the amplifier. a phase detector that generates an error signal, a voltage controlled oscillator that controls the oscillation frequency with the error signal and generates a high frequency voltage with a frequency equal to the Larmor frequency, and converts the high frequency voltage into a current and supplies it to the RF coil. In an optical magnetic resonance magnetometer, which consists of a buffer resistor that generates a high-frequency magnetic field, the voltage change at the output end of the high-frequency oscillator is detected, and this is added or subtracted from the electrical signal of the photodetector. An optical magnetic resonance magnetometer, characterized in that it is provided with means for canceling out noise accompanying changes in brightness of a lamp.
JP14486484A 1984-07-12 1984-07-12 Optomagnetic resonance magnetometer Pending JPS6123980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14486484A JPS6123980A (en) 1984-07-12 1984-07-12 Optomagnetic resonance magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14486484A JPS6123980A (en) 1984-07-12 1984-07-12 Optomagnetic resonance magnetometer

Publications (1)

Publication Number Publication Date
JPS6123980A true JPS6123980A (en) 1986-02-01

Family

ID=15372166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14486484A Pending JPS6123980A (en) 1984-07-12 1984-07-12 Optomagnetic resonance magnetometer

Country Status (1)

Country Link
JP (1) JPS6123980A (en)

Similar Documents

Publication Publication Date Title
JP5443380B2 (en) Equipment with environmental magnetic field correction
US6831522B2 (en) Method of minimizing the short-term frequency instability of laser-pumped atomic clocks
Gilbert et al. Atomic-beam measurement of parity nonconservation in cesium
US11802899B2 (en) Apparatus and method for measuring microwave electric field at continuous frequencies based on alternating current (AC) Stark effect of Rydberg atoms
JP2017173329A (en) Optical pump beam control in sensor system
CN112098737A (en) Method and device for measuring microwave electric field intensity
US4806864A (en) Laser-pumped helium magnetometer
GB881424A (en) Optical absorption monitoring of oriented or aligned quantum systems
Ye et al. Ultrastable optical frequency reference at 1.064/spl mu/m using a C/sub 2/HD molecular overtone transition
US8154349B2 (en) Atomic clock regulated by a static field and two oscillating fields
Bigelow et al. Accurate optical measurement of nuclear polarization in optically pumped 3He gas
US8183942B2 (en) Atomic clock operating with helium 3
US4403190A (en) Magnetic resonance gyroscope with spectral control
CA2136145A1 (en) Coupled radio frequency field and light polarization magnetometer
US4825260A (en) Apparatus and method using amplification cells for ring laser gyroscope cavity length control
US3873908A (en) Self-oscillating optically pumped magnetometer having automatic phase correction
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JPS6123980A (en) Optomagnetic resonance magnetometer
US6359917B1 (en) Detection method and detector for generating a detection signal that quantifies a resonant interaction between a quantum absorber and incident electro-magnetic radiation
Groeger et al. Design and performance of laser-pumped Cs-magnetometers for the planned UCN EDM experiment at PSI
Yang et al. Detection by cycling transition in an optically pumped cesium beam frequency standard
JPS61233383A (en) Photomagnetic resonance magnetometer
JPH0744297B2 (en) Frequency control method and apparatus for frequency standard of atomic beam or molecular beam
CA3085048A1 (en) Optically pumped magnetometer and resonant cell for a probe light
Ezekiel et al. New opportunities in fiber-optic sensors