JPS6255578A - Photomagnetic resonance magnetometer - Google Patents

Photomagnetic resonance magnetometer

Info

Publication number
JPS6255578A
JPS6255578A JP19565185A JP19565185A JPS6255578A JP S6255578 A JPS6255578 A JP S6255578A JP 19565185 A JP19565185 A JP 19565185A JP 19565185 A JP19565185 A JP 19565185A JP S6255578 A JPS6255578 A JP S6255578A
Authority
JP
Japan
Prior art keywords
brightness
frequency
changes
signal
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19565185A
Other languages
Japanese (ja)
Inventor
Naoyuki Tojo
東條 尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19565185A priority Critical patent/JPS6255578A/en
Publication of JPS6255578A publication Critical patent/JPS6255578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher measuring accuracy, by providing a photo detector for detecting changes in brightness slantly behind a helium lamp to reduce noises accompanying changes in the brightness of light source. CONSTITUTION:A photo detector 14 for detecting changes in brightness detects changes in the brightness of a helium lamp 1 converted it into an electric signal without intercepting a light incident into an absorption cell 5. After division in the voltage with a voltage adjustor 15, the detected signal is applied to a differential amplifier 16 as input and the difference from an absorption signal of light detected with a photo detector 7 for detecting magnetic resonance as another input is sent to a phase detector 9 as output of the amplifier 16. Thus, even when the photo detector 7 receives changes in brightness of the helium lamp 1 as noise in overlap besides the absorption signal of the light by a magnetic resonance, the level of the signal detected with the photo detector 14 is adjusted with a voltage adjustor 15 and then, the signal is offset with an output signal of the photo detector 7 with the differential amplifier 16. This can cancel electron noises thereby reducing noises due to changes in the brightness of the helium lamp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は原子の磁気共鳴吸収を光学的に検出し磁気共
鳴周波数が磁界の強さに比例することを利用して磁界の
測定を行う光磁気共鳴磁力計の改良に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an optical system that optically detects magnetic resonance absorption of atoms and measures magnetic fields by utilizing the fact that the magnetic resonance frequency is proportional to the strength of the magnetic field. This paper concerns improvements to magnetic resonance magnetometers.

〔従来の技術〕[Conventional technology]

セシウムやヘリウム等の特定の物質の原子は周囲磁界の
強さに比例するエネルギーの変化を受けるので、このエ
ネルギー変化を特定の光と高周波磁界を用いて検出し、
光の強度変化が最大となるように高周波磁界の周波数を
追尾させる方式の磁力計があるがここでは一実施例とし
て第2図及び第3図によってヘリウム原子を利用した従
来のヘリウム周波数追尾型光磁気共鳴磁力計について簡
単に説明する。第2図は従来の光磁気共鳴磁力計の一実
施例を示したものであり、(1)はヘリウムランプ、(
2)はランプ励起用電極、(3)はレンズ、(4)は円
偏光板、(5)は吸収セル、 +61id吸収セル励起
用電極、(7)は光検出器、(8)は増幅器、(9)は
位相検波器。
Atoms of certain substances such as cesium and helium undergo a change in energy that is proportional to the strength of the surrounding magnetic field, so this energy change is detected using specific light and a high-frequency magnetic field.
There is a magnetometer that tracks the frequency of a high-frequency magnetic field so that the change in intensity of light is maximized. A brief explanation of the magnetic resonance magnetometer will be provided. Figure 2 shows an example of a conventional optical magnetic resonance magnetometer, in which (1) is a helium lamp, (1) is a helium lamp;
2) is a lamp excitation electrode, (3) is a lens, (4) is a circularly polarizing plate, (5) is an absorption cell, +61id absorption cell excitation electrode, (7) is a photodetector, (8) is an amplifier, (9) is a phase detector.

Olは電圧制御発掘器、αυはバッファ抵抗器、σ2は
RPコイル、 13は高周波発振器である。
Ol is a voltage control excavator, αυ is a buffer resistor, σ2 is an RP coil, and 13 is a high frequency oscillator.

尚1本文ではこの発明に関連しない構成品については省
略しである。
In the main text, components not related to this invention are omitted.

この光磁気共鳴磁力計においてヘリウムランプは高周波
発振器a3からランプ励起用電極(2)を経て印加され
る数10 MHzの高周波電圧によって放電し、−・リ
ウム原子特有の波長1.08μの光を発生する。この光
はレンズ(3)によって平行光線にされ円偏光板(4)
で円偏光に変えられて吸収セル(5)に照射されるが、
この吸収セル(5)は高周波発振器αJから数10MH
2の高周波電圧が吸収セル励起用電極(6)を介して印
加されてグロー放電状態にされている。
In this optical magnetic resonance magnetometer, the helium lamp is discharged by a high frequency voltage of several tens of MHz applied from the high frequency oscillator a3 through the lamp excitation electrode (2), and generates light with a wavelength of 1.08 μ, which is unique to -.lium atoms. do. This light is made into parallel light beams by a lens (3) and a circularly polarizing plate (4)
The light is converted into circularly polarized light and irradiated onto the absorption cell (5),
This absorption cell (5) is several tens of MHz from the high frequency oscillator αJ.
A high frequency voltage of 2 is applied via the absorption cell excitation electrode (6) to create a glow discharge state.

吸収セル(5)を透過した光は光検出器(7)で電気信
号に変換され、ついで増幅器(8)で増幅された後位相
検波器(9)で位相検波されて誤差信号を生じる。この
誤差信号で電圧制御発掘器Qlの発振周波数が制御され
出力バッファ抵抗器0υを介してRFコイルα3に流れ
、高周波磁界H1が発生して吸収セル(5)に印加され
る。
The light transmitted through the absorption cell (5) is converted into an electrical signal by a photodetector (7), then amplified by an amplifier (8), and then phase detected by a phase detector (9) to generate an error signal. This error signal controls the oscillation frequency of the voltage-controlled excavator Ql and flows through the output buffer resistor 0υ to the RF coil α3, generating a high-frequency magnetic field H1 and applying it to the absorption cell (5).

ここで吸収セル(5)には励起状態でのライフタイム(
1ife time )が非常に短いHθ原子が封入さ
れているものとする。
Here, the absorption cell (5) has a lifetime (
It is assumed that Hθ atoms having a very short 1life time are enclosed.

このヘリウム原子の運動を第3図の関連エネルギーレベ
ル図を使って説明する。
This motion of helium atoms will be explained using the related energy level diagram in FIG.

まず吸収セル(5)にはあらかじめ数10 MHHの高
周波電圧によってグロー放電されヘリウム原子のエネル
ギー112S1の準安定状態にある。この準安定状態の
ヘリウム原子はヘリウムラング+1+からの波長1.0
8μの光(Do=D2)が照射されているのでこれを吸
収して励起状態の2PO,+、2のエネルギーを持つよ
うになるが、励起状態の寿命は短く。
First, the absorption cell (5) is glow-discharged in advance by a high frequency voltage of several tens of MHH and is in a metastable state with the energy of helium atoms of 112S1. The helium atom in this metastable state has a wavelength of 1.0 from helium rung +1+.
Since it is irradiated with 8μ light (Do=D2), it absorbs this and becomes excited state with energy of 2PO,+,2, but the life of the excited state is short.

約10 秒でエネルギーを失なって再び2 Eliの準
安定状態にもどる。また第2図に示す系が靜磁界中にあ
る場合は吸収セル(5)中のヘリウム原子は原子自身の
持つ磁気モーメントが靜磁界の力を受けて静磁界のまわ
シをラーモア才差運動と呼ばれる回転運動を行うのでエ
ネルギー変化を生じ、第3図に示す複数のゼーマンサブ
レベル(ZemanSublevel )が生じる。こ
のよ5な静磁界による原子エネルギー変化をゼーマン効
果、また原子の磁気モーメントの7差運動の周波数をラ
ーモア周波数といい、いずれも静磁界の強さに比例して
いる。
It loses energy in about 10 seconds and returns to the metastable state of 2 Eli. In addition, when the system shown in Figure 2 is in a quiet magnetic field, the helium atoms in the absorption cell (5) undergo Larmor precession due to the magnetic moment of the atoms themselves being affected by the force of the quiet magnetic field. Since it performs a so-called rotational movement, energy changes occur, and a plurality of Zeman sublevels shown in FIG. 3 are generated. The change in atomic energy caused by such a static magnetic field is called the Zeeman effect, and the frequency of the 7-difference motion of the magnetic moments of atoms is called the Larmor frequency, both of which are proportional to the strength of the static magnetic field.

そこで靜磁界中のヘリウム原子に靜磁界に平行方向から
ヘリウムランプ(1)の発する1、08μの光を円偏光
板(4)によって円偏光して照射するとヘリウム原子は
光を吸収して励起状態2F0,1.2のエネルギーを持
つようになる。この後、短時間でエネルギーを失って準
安定状態2 slのエネルギーにもどるが、このときは
ゼーマンサブレベルの選択性は保存され2 Slのゼー
マンサブレベル内でゼーマンサブレベル毎に原子の数が
異なる偏分布ができる。
Therefore, when a helium atom in a quiet magnetic field is irradiated with 1.08μ light emitted from a helium lamp (1) from a direction parallel to the quiet magnetic field and circularly polarized by a circularly polarizing plate (4), the helium atoms absorb the light and enter an excited state. It will have an energy of 2F0,1.2. After this, the energy is lost in a short time and returns to the energy of the metastable state 2 sl, but at this time the selectivity of the Zeeman sublevel is preserved and the number of atoms per Zeeman sublevel within the Zeeman sublevel of 2 sl increases. Different skewed distributions are possible.

この偏分布状態に28iのゼーマンサブレベル間のエネ
ルギー差に等しいエネルギーを持つ電磁波、すなわちラ
ーモア周波数の高周波磁界を静磁界に直角方向に加える
と高周波磁界と原子の磁気モーメントの間で磁気共鳴が
生じてエネルギー変換が起こり上記の偏分布は解消され
る。つまυヘリウム原子は準安定状態2 Slの3本の
ゼーマンサブレベルにそれぞれほぼ等しい数の原子が分
布する初期状態にもどるわけで心る。
When an electromagnetic wave with energy equal to the energy difference between the Zeeman sublevels of 28i, that is, a high-frequency magnetic field at the Larmor frequency, is applied to this uneven distribution state in a direction perpendicular to the static magnetic field, magnetic resonance occurs between the high-frequency magnetic field and the magnetic moment of the atoms. As a result, energy conversion occurs and the above uneven distribution is eliminated. Finally, υ helium atoms return to the initial state in which roughly equal numbers of atoms are distributed in each of the three Zeeman sublevels of metastable state 2 Sl.

以上のプロセス、即ちヘリウム原子の2 S1→2 P
o 12−+ 2131のエネルギー変化は1.08μ
の光が縦続して照射されているので高周波磁界の周波数
がラーモア周波数に一致する毎にくり返されるが光検出
器(7)、増幅器(8)1位相検波器(9+、 !圧制
御発振器QQ、バッファ抵抗器αυ、RFコイルα2の
電子回路系は、靜磁界に平行方向の光が上記プロセスの
間に吸収され、その結果、吸収セルを透過する光が減少
することを利用して常に高周波磁界の周波数をラーモア
周波数に一致するように制御するものである。このとき
高周波磁界と原子の定数及び靜磁界の間に次の関係が成
立する。
The above process, that is, 2 S1 → 2 P of helium atom
The energy change of o 12-+ 2131 is 1.08μ
Since the light is irradiated in series, it is repeated every time the frequency of the high-frequency magnetic field matches the Larmor frequency, but the photodetector (7), amplifier (8), 1-phase detector (9+, !pressure-controlled oscillator QQ) , buffer resistor αυ, and RF coil α2, the electronic circuit system always maintains a high frequency by taking advantage of the fact that light parallel to the silent magnetic field is absorbed during the above process, and as a result, the light transmitted through the absorption cell is reduced. The frequency of the magnetic field is controlled to match the Larmor frequency.At this time, the following relationship holds between the high frequency magnetic field, the atomic constant, and the static magnetic field.

ω−ωO−rHo          ・・−・・・(
1)ω:高周波磁界の角周波数 ωo二原子のラーモア周波数 γ:原子の磁気回転比(定数) Ho:靜磁界の強さ このようにして第2図の系は靜磁界の強さMOに比例し
たラーモア周波数にロックオン(Lock on)し、
このときの高周波磁界の周波数、即ち電圧制御発振器Q
(Iの発振周波数はラーモア周波数に一致しているので
、これを計測すれば靜磁界の強さHOを正確に測定する
ことができる。しかしながら。
ω-ωO-rHo ・・・-・・・(
1) ω: Angular frequency of high-frequency magnetic field ωo Larmor frequency of two atoms γ: Magnetic rotation ratio of atoms (constant) Ho: Strength of static magnetic field In this way, the system in Figure 2 is proportional to the strength MO of static magnetic field. Lock on to the Larmor frequency,
The frequency of the high-frequency magnetic field at this time, that is, the voltage-controlled oscillator Q
(The oscillation frequency of I coincides with the Larmor frequency, so if this is measured, the strength of the static magnetic field HO can be accurately measured. However.

光検出器(5)の受光する光のうち磁気共鳴による吸収
、即ち吸収信号は0.1チ程度にしかすぎないのでヘリ
ウムラング(11の輝度が変動するとその変動が光検出
器(5(に現われ、吸収信号の信号対雑音比が下がって
計測精度が悪くなるという欠点があったO 〔発明が解決しようとする問題点〕 従来の光磁気共鳴磁力計ではヘリウムランプの輝度変化
を検出する機能がないため、ヘリウムランプの輝度変化
に伴う雑音を減少させることができないという問題点が
あった。この発明はこのような問題点を解決するために
なされたもので光源の輝度変化に伴う雑音を減少させて
測定精度を向上させることを目的としている。
Of the light received by the photodetector (5), the absorption due to magnetic resonance, that is, the absorption signal is only about 0.1 inch. [Problems to be solved by the invention] Conventional optical magnetic resonance magnetometers lack the ability to detect changes in the brightness of helium lamps. Therefore, there was a problem in that it was not possible to reduce the noise caused by changes in the brightness of the helium lamp.This invention was made to solve this problem. The purpose is to reduce this and improve measurement accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

ヘリウムランプの斜め後方(吸収セル寄り)に輝度変化
検出用光検出器を配置して吸収セルへ入射する光を遮ら
ないようにした状態でヘリウムランプの輝度変化を検出
し、検出した電気信号を使ってもう一方の磁気共鳴検出
用の光検出器に現れる光源の輝度変化を電気的に相殺さ
せ、ヘリウムランプの輝度変化に伴う雑音を減少させる
A photodetector for detecting brightness changes is placed diagonally behind the helium lamp (closer to the absorption cell) to detect changes in the brightness of the helium lamp without blocking the light entering the absorption cell, and the detected electrical signal is transmitted. It is used to electrically cancel out changes in the brightness of the light source that appear on the other photodetector for magnetic resonance detection, thereby reducing noise associated with changes in the brightness of the helium lamp.

〔作用〕[Effect]

従来はヘリウムランプの輝度変化を検出する機能がない
ために磁気共鳴を検出する光検出器にはヘリウムランプ
の輝度変化がそのまま電気信号として検出され、これが
計測精度を悪化させる原因になっていたが、ヘリウムラ
ンプの斜め後方に新たに輝度変化検出用光検出器を配置
することによって磁気共鳴系へ向うヘリウムランプの光
を遮ることなくランプの輝度変化を検出し、ここで検出
した電気信号を使ってヘリウムランプの輝度変化を電気
的に打消すことにより輝度変化に伴う雑音を減少するこ
とができる。また、ヘリウムランプの近(に輝度変化検
出用光検出器を追加し、電子回路系の一部を変更するだ
けで済むという長所がある。
Conventionally, there was no function to detect changes in the brightness of a helium lamp, so the photodetector that detects magnetic resonance detected changes in the brightness of a helium lamp as an electrical signal, which caused measurement accuracy to deteriorate. By placing a new photodetector for detecting brightness changes diagonally behind the helium lamp, changes in lamp brightness can be detected without blocking the light from the helium lamp heading toward the magnetic resonance system, and the electrical signals detected here can be used to detect changes in the brightness of the lamp. By electrically canceling out changes in the brightness of the helium lamp, it is possible to reduce noise associated with changes in brightness. Another advantage is that it only requires adding a photodetector for detecting changes in brightness near the helium lamp and changing part of the electronic circuit system.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示したものであり、a4
)は輝度変化検出用光検出器、αSは電圧調節器、αe
は差動増幅器であり、上記輝度変化検出用光検出器Iは
上記吸収セル(5)に入射する光を遮らないようにヘリ
ウムランプ(1)の斜め後方に配置されている。
FIG. 1 shows an embodiment of the present invention.
) is a photodetector for detecting brightness changes, αS is a voltage regulator, αe
is a differential amplifier, and the photodetector I for detecting brightness changes is placed diagonally behind the helium lamp (1) so as not to block the light incident on the absorption cell (5).

このような構成において輝度変化検出用光検出器α41
U吸収セル(5)に入射する光を遮ることなくヘリウム
ランプ[1)の輝度変化を検出して電気信号に変換する
。ここで検出されたヘリウムランプの輝度変化信号は上
記電圧調節器a9で適当に分圧されたあと差動増幅器の
一方の人力となり他方の入力である磁気共鳴検出用の光
検出器(7)で検出された光の吸収信号との差が差動増
幅器の出力として位相検波器+9)に送られる。
In such a configuration, the photodetector α41 for detecting brightness changes
Changes in the brightness of the helium lamp [1] are detected and converted into electrical signals without blocking the light incident on the U absorption cell (5). The brightness change signal of the helium lamp detected here is divided into voltages appropriately by the voltage regulator a9, and then becomes the manual power of one side of the differential amplifier and is input to the photodetector (7) for magnetic resonance detection, which is the input of the other side. The difference between the detected light and the absorption signal is sent to the phase detector +9) as the output of the differential amplifier.

ここでヘリウムラング(1)はランプ励起用電極(2)
に高周波発振器0の出力である高周波電圧が印加されて
発光しているのでこの高周波発振器の出力が変動すると
上記ヘリウムランプ(りの輝度が変動する。またヘリウ
ムランプ+11は放電管であるので振動あるいは温度等
の外的要因によって放電状態が微少に変化し、輝度が変
わる。
Here, the helium rung (1) is the lamp excitation electrode (2).
A high-frequency voltage, which is the output of high-frequency oscillator 0, is applied to the oscillator 0 to emit light, so if the output of this high-frequency oscillator changes, the brightness of the helium lamp changes.Also, since the helium lamp +11 is a discharge tube, it may cause vibrations or The discharge state changes slightly due to external factors such as temperature, and the brightness changes.

このときヘリウムランプ+1+の斜め後方に配置してい
る輝度変化検出用光検出器α憂がヘリウムランプ(11
の輝度変化を電気信号として検出する。それ故磁気共鳴
検出用の光検出器(7)に磁気共鳴による光の吸収信号
の他に上記ヘリウムランプ(11の輝度変化が雑音とし
て重畳しても上記輝度変化検出用光検出器a4で検出さ
れた信号を電圧調節器αSでレベル調節した後、この信
号と上記光検出器(7)の出力信号を差動増幅器αeで
相殺させることにより上記電気雑音を打消せるのでヘリ
ウムランプの輝度変化による雑音を低減させることがで
きる。
At this time, the photodetector α for detecting brightness changes placed diagonally behind the helium lamp (11)
Detects changes in brightness as electrical signals. Therefore, even if the brightness change of the helium lamp (11) is superimposed as noise in addition to the absorption signal of light due to magnetic resonance, the photodetector (7) for detecting magnetic resonance detects it by the photodetector a4 for detecting brightness change. After level-adjusting the level of the detected signal using the voltage regulator αS, this signal and the output signal of the photodetector (7) are canceled by the differential amplifier αe, thereby canceling out the electrical noise. Noise can be reduced.

以上述べたごとくこの発明の光磁気共鳴磁力計によれば
磁気共鳴系で生じたヘリウムランプの輝度変化を検出し
これを低減させるので光磁気共鳴の高感度性を損うこと
な(磁界を測定する装置を提供することができる。
As described above, the optical magnetic resonance magnetometer of the present invention detects and reduces the brightness change of the helium lamp that occurs in the magnetic resonance system, so it does not impair the high sensitivity of optical magnetic resonance (measuring the magnetic field). It is possible to provide a device for

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおシ、ヘリラムランプの斜め
後方に輝度変化検出用光検出器を設けることによって吸
収セルに入射する光を遮ることなくヘリウムランプの輝
度変化を検出することが可能となり、従って磁気共鳴の
検出信号に伺ら悪影響を与えることなくヘリウムランプ
の輝度変化に伴う雑音を低減させることができる。それ
故、温度、振動等の外的要因や電源変動の影響を受けに
くくするという効果がある。
As described above, this invention makes it possible to detect changes in the brightness of the helium lamp without blocking the light incident on the absorption cell by providing a photodetector for detecting changes in brightness diagonally behind the helium lamp. It is possible to reduce the noise associated with changes in the brightness of the helium lamp without adversely affecting the resonance detection signal. Therefore, it has the effect of making it less susceptible to external factors such as temperature and vibration, and fluctuations in power supply.

また、乙の発明の装置実現には従来の光磁気共鳴磁力計
のヘリウムランプのわきに輝度変化検出用光検出器を追
加し、電子回路系を若干変更するだけで済み、構造上の
大幅な変更をする必要がないという利点がある。
In addition, in order to realize the device of B's invention, it is only necessary to add a photodetector for detecting brightness changes to the side of the helium lamp of the conventional optical magnetic resonance magnetometer, and to slightly change the electronic circuit system. The advantage is that no changes need to be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図は従
来の光磁気共鳴磁力計の構成の一実施例を示す図、第3
図はヘリウム原子のエネルギーレベルについて示した図
である0図中、(1)はヘリウムランプ、(2)はラン
プ励起用電極、(3)はレンズ。 (4)は円偏光板、(5)は吸収セル、(6)は吸収セ
ル励起用電極、(7)は光検出器、(8)は増幅器、(
9)は位相検波器、αlは電圧制御発振器、αυはバッ
ファ抵抗器。 αりはRFコイル、0は高周波発振器、α荀は輝度変化
検出用光検出器、四は電圧調節器、αeは差動増幅器で
ある。 なお2図中同一あるいは相当部分には同一符号を付して
示しである。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an embodiment of the structure of a conventional optical magnetic resonance magnetometer, and FIG.
The figure shows the energy level of helium atoms. In the figure, (1) is a helium lamp, (2) is an electrode for exciting the lamp, and (3) is a lens. (4) is a circularly polarizing plate, (5) is an absorption cell, (6) is an absorption cell excitation electrode, (7) is a photodetector, (8) is an amplifier, (
9) is a phase detector, αl is a voltage controlled oscillator, and αυ is a buffer resistor. α is an RF coil, 0 is a high-frequency oscillator, α is a photodetector for detecting a change in brightness, 4 is a voltage regulator, and αe is a differential amplifier. Note that the same or corresponding parts in the two figures are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 光磁気共鳴の光学的検出に利用する光線を発生するラン
プと、磁気共鳴を生じさせる物質を内蔵した吸収セルと
、上記ランプ及び吸収セルを放電発光させる高周波発振
器と、上記吸収セルに高周波磁界を印加して磁気共鳴を
生じさせるためのRFコイルと、上記吸収セルにおける
磁気共鳴の結果生じる光線の吸収を検出し電気信号に変
換する光検出器と、上記光検出器の電気信号を増幅する
増幅器と、上記増幅器の出力を位相検波し誤差信号を発
生する位相検波器と、上記誤差信号で発振周波数を制御
しラーモア周波数に等しい周波数の高周波電圧を発生さ
せる電圧制御発振器と、上記高周波電圧を電流に変換し
てRFコイルに印加し高周波磁界を発生させるバッファ
抵抗器とからなる光磁気共鳴磁力計において、上記ラン
プの近くに光検出器を新たに追加して上記ランプの輝度
変化を上記追加した光検出器で検出し、この電気雑音を
上記磁気共鳴検出用の光検出器の電気信号から減算する
ことによってランプの輝度変化に伴う雑音を相殺するこ
とを特徴とする光磁気共鳴磁力計。
A lamp that generates a light beam used for optical detection of optical magnetic resonance, an absorption cell containing a substance that causes magnetic resonance, a high-frequency oscillator that causes the lamp and the absorption cell to discharge and emit light, and a high-frequency magnetic field that applies a high-frequency magnetic field to the absorption cell. an RF coil for applying an RF signal to generate magnetic resonance; a photodetector for detecting absorption of the light beam resulting from the magnetic resonance in the absorption cell and converting it into an electrical signal; and an amplifier for amplifying the electrical signal of the photodetector. a phase detector that detects the phase of the output of the amplifier and generates an error signal; a voltage-controlled oscillator that controls the oscillation frequency using the error signal and generates a high-frequency voltage with a frequency equal to the Larmor frequency; In the magneto-optical resonance magnetometer, which consists of a buffer resistor that converts into RF and applies it to an RF coil to generate a high-frequency magnetic field, a new photodetector is added near the lamp to detect changes in the brightness of the lamp. 1. An optical magnetic resonance magnetometer, characterized in that noise accompanying changes in brightness of a lamp is canceled out by detecting the electrical noise with a photodetector and subtracting this electrical noise from the electrical signal of the photodetector for magnetic resonance detection.
JP19565185A 1985-09-04 1985-09-04 Photomagnetic resonance magnetometer Pending JPS6255578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19565185A JPS6255578A (en) 1985-09-04 1985-09-04 Photomagnetic resonance magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19565185A JPS6255578A (en) 1985-09-04 1985-09-04 Photomagnetic resonance magnetometer

Publications (1)

Publication Number Publication Date
JPS6255578A true JPS6255578A (en) 1987-03-11

Family

ID=16344714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19565185A Pending JPS6255578A (en) 1985-09-04 1985-09-04 Photomagnetic resonance magnetometer

Country Status (1)

Country Link
JP (1) JPS6255578A (en)

Similar Documents

Publication Publication Date Title
JP5443380B2 (en) Equipment with environmental magnetic field correction
US6831522B2 (en) Method of minimizing the short-term frequency instability of laser-pumped atomic clocks
US7102451B2 (en) Method and system for operating an atomic clock with alternating-polarization light
Gilbert et al. Atomic-beam measurement of parity nonconservation in cesium
Tsigutkin et al. Observation of a large atomic parity violation effect in ytterbium
Schmidt-Kaler et al. High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium
US8154349B2 (en) Atomic clock regulated by a static field and two oscillating fields
CN112098737A (en) Method and device for measuring microwave electric field intensity
GB881424A (en) Optical absorption monitoring of oriented or aligned quantum systems
Bigelow et al. Accurate optical measurement of nuclear polarization in optically pumped 3He gas
JP2017173329A (en) Optical pump beam control in sensor system
US8183942B2 (en) Atomic clock operating with helium 3
US4425653A (en) Atomic beam device using optical pumping
US3187251A (en) Quantum oscillators
JPS6255578A (en) Photomagnetic resonance magnetometer
US6359917B1 (en) Detection method and detector for generating a detection signal that quantifies a resonant interaction between a quantum absorber and incident electro-magnetic radiation
JPS61233383A (en) Photomagnetic resonance magnetometer
JPS61275673A (en) Photomagnetic resonance magnetometer
Yang et al. Detection by cycling transition in an optically pumped cesium beam frequency standard
RU2158932C2 (en) Method for receiving signals from optical pumping magnetometers and optical pumping magnetometer
CN112098736A (en) Method for measuring phase of microwave electric field
Ezekiel et al. New opportunities in fiber-optic sensors
US3725775A (en) Self-oscillating helium magnetometer
JPS6123980A (en) Optomagnetic resonance magnetometer
Stephens et al. Zeeman modulated atomic absorption spectroscopy