JPS63158480A - Optical magnetic resonance magnetometer - Google Patents

Optical magnetic resonance magnetometer

Info

Publication number
JPS63158480A
JPS63158480A JP30715886A JP30715886A JPS63158480A JP S63158480 A JPS63158480 A JP S63158480A JP 30715886 A JP30715886 A JP 30715886A JP 30715886 A JP30715886 A JP 30715886A JP S63158480 A JPS63158480 A JP S63158480A
Authority
JP
Japan
Prior art keywords
magnetic resonance
frequency
signal
absorption
absorption cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30715886A
Other languages
Japanese (ja)
Inventor
Naoyuki Tojo
東條 尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30715886A priority Critical patent/JPS63158480A/en
Publication of JPS63158480A publication Critical patent/JPS63158480A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce the change in brightness generated in a light source, by a method wherein a high frequency magnetic field is applied to an absorption cell for a definite period or is not applied thereto to alternately perform non- magnetic resonance operation and magnetic resonance operation and the measuring signals of both operations are set off by a differential amplifier. CONSTITUTION:The second sample holding circuit 17 almost continuously measures the change in the brightness of a lamp or absorbing cell when no magnetic resonance is generated and the first sample holding circuit 16 almost continuously measures the absorption signal at the time of magnetic resonance and the change in the brightness of a light source appearing in a state superposed to said signal. A differential amplifier 18 respectively inputs the output signals SIG, NOIS of the above mentioned first and second sample holding circuits, 16, 17 at the positive and negative input terminals thereof and sets off the detect signals observed at the times of magnetic resonance operation and non-magnetic resonance operation to reduce the change in the brightness of the light source superposed to the absorption signal at the time of magnetic resonance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は原子の磁気共鳴吸収を光学的に検出し磁気共
鳴周波数が磁界の強さに比例することを利用して磁界の
測定を行う光磁気共鳴磁力計の改良に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an optical system that optically detects magnetic resonance absorption of atoms and measures magnetic fields by utilizing the fact that the magnetic resonance frequency is proportional to the strength of the magnetic field. This paper concerns improvements to magnetic resonance magnetometers.

〔従来の技術〕[Conventional technology]

セシウムやヘリウム等の特定の物質の原子は周囲磁界の
強さに比例するエネルギーの変化を受けるので、このエ
ネルギー変化を特定の光と高周波磁界を用いて検出し、
光の強度変化が最大となるように高周波磁界の周波数を
追尾させる方式の磁力計があるがここでは、一実施例と
して第4図及び第5図によってヘリウム原子を利用した
従来のヘリウム周波数追尾型光磁気共鳴磁力計について
簡単に説明する。第4図は従来の光磁気共鳴磁力計の一
実施例を示したものであシ、(1)はヘリウムランプ、
(2)はランプ励起用電極、(3Iはレンズ、(4)は
円偏光板、(5)は吸収セル、(6)は吸収セル励起用
電極、 (71ti光検出器、(8)は増幅器、(9)
は位相検波器、αat−S電圧制御発振器、aυはバッ
ファ抵抗器。
Atoms of certain substances such as cesium and helium undergo a change in energy that is proportional to the strength of the surrounding magnetic field, so this energy change is detected using specific light and a high-frequency magnetic field.
There is a magnetometer that tracks the frequency of a high-frequency magnetic field so that the change in light intensity is maximized, but here, as an example, we will introduce a conventional helium frequency tracking type using helium atoms as shown in Figures 4 and 5. The optical magnetic resonance magnetometer will be briefly explained. Figure 4 shows an example of a conventional optical magnetic resonance magnetometer, in which (1) shows a helium lamp;
(2) is the lamp excitation electrode, (3I is the lens, (4) is the circularly polarizing plate, (5) is the absorption cell, (6) is the absorption cell excitation electrode, (71ti photodetector, (8) is the amplifier , (9)
is a phase detector, αat-S voltage controlled oscillator, and aυ is a buffer resistor.

α2はRFコイル、(I3は高周波発振器である。α2 is an RF coil (I3 is a high frequency oscillator).

なお0本文ではこの発明に関連しない構成品については
省略しである。
Note that components not related to this invention are omitted in the main text.

この光磁気共鳴磁力計においては、ヘリウムランプ(1
)は高周波発振器α3からランプ励起用電極(2)を経
て印加される数10MH2の高周波電圧によって放電し
、ヘリウム原子特有の波長1.08μの光を発生する。
In this optical magnetic resonance magnetometer, a helium lamp (1
) is discharged by a high-frequency voltage of several tens of MH2 applied from a high-frequency oscillator α3 via the lamp excitation electrode (2), and generates light with a wavelength of 1.08μ, which is unique to helium atoms.

この光はレンズ(3)によって平行光線にされ円偏光板
(4)で円偏光に変えられて吸収セル(5)に照射され
るが、この吸収セル(5)は高周波発振器α3から数1
0 MH2の高周波電圧が吸収セル励起用電極+6)を
介して印加されてグロー放電状態にされている。吸収セ
ル(5)を透過した光は光検出器(7)で電気信号に変
換され、ついで増幅器(8)で増幅された後1位相検波
器(9)で位相検波されて誤差信号を生じる。この誤差
信号で電圧制御発振器αGの発振周波数が制御され出力
がバッファ抵抗器0υを介してRFコイル鰺に流れ、高
周波磁界H1が発生して吸収セル(5)に印加される。
This light is made into parallel light by the lens (3), changed into circularly polarized light by the circularly polarizing plate (4), and irradiated onto the absorption cell (5).
A high frequency voltage of 0 MH2 is applied via the absorption cell excitation electrode +6) to create a glow discharge state. The light transmitted through the absorption cell (5) is converted into an electrical signal by a photodetector (7), then amplified by an amplifier (8), and then phase detected by a 1-phase detector (9) to generate an error signal. The oscillation frequency of the voltage controlled oscillator αG is controlled by this error signal, the output flows to the RF coil via the buffer resistor 0υ, and a high frequency magnetic field H1 is generated and applied to the absorption cell (5).

ここで吸収セル(51K fl励起状態でのライフタイ
ム(Life Time)が非常に短いHe原子が封入
されているものとする。
Here, it is assumed that an absorption cell (51K fl) encapsulates He atoms having a very short lifetime in an excited state.

このヘリウム原子の運動を第5図の関連エネルギーレベ
ル図を使って説明する。まず吸収セル(5)Kはあらか
じめ数10MH2の高周波電圧によってグロー放電され
ヘリウム原子のエネルギーは25S1の準安定状態にあ
る。この準安定状態のヘリウム原子はヘリウムランプ(
1)からの波長1.08μの光(Do〜D2)が照射さ
れているのでこれを吸収して励起状態の2’P0.1.
2のエネルギーを持つようKなるが、励起状態の寿命は
短く、約10 秒でエネルギーを失って再び23S1の
準安定状態にもどる。また第4図に示す系が静磁界中に
ある場合には吸収セル(5)中のヘリウム原子は原子自
身のもつ磁気モーメントが靜磁界の力を受けて静磁界の
まわりをラーモアの1差運動と呼ばれる回転運動を行う
ので゛エネルギーに変位を生じ、第5図に示す複数のゼ
ーマンサブレベル(Zeeman 5ublevel)
が生じる。このような静磁界による原子エネルギーの変
化をゼーマン効果、tた原子の磁気モーメントの1差運
動の周波数をラーモア周波数といい。
This motion of helium atoms will be explained using the related energy level diagram in FIG. First, the absorption cell (5) K is glow-discharged in advance by a high frequency voltage of several tens of MH2, and the energy of helium atoms is in a metastable state of 25S1. Helium atoms in this metastable state are exposed to helium lamps (
Since the light (Do~D2) with a wavelength of 1.08μ from 1) is irradiated, it is absorbed and the excited state 2'P0.1.
However, the lifetime of the excited state is short, and it loses energy in about 10 seconds and returns to the metastable state of 23S1. Furthermore, when the system shown in Fig. 4 is in a static magnetic field, the helium atoms in the absorption cell (5) undergo Larmor's one-difference motion around the static magnetic field due to the force of the static magnetic field. Since it performs a rotational movement called ``energy,'' it causes a displacement in energy, and multiple Zeeman sublevels (Zeeman 5ublevels) shown in Figure 5 are generated.
occurs. Such a change in atomic energy due to a static magnetic field is called the Zeeman effect, and the frequency of one difference in motion of the magnetic moment of an atom is called the Larmor frequency.

いずれも静磁界の強さに比例している。Both are proportional to the strength of the static magnetic field.

そこで静磁界中のヘリウム原子に静磁界に平行方向から
ヘリウムランプ(1)の発する1、08μの光を円偏光
板(4)Kよって円偏光にして照射するとヘリウム原子
は光を吸収して励起状態2 po、 1.2のエネルギ
ーを持つようになるが、この際に円偏光の効果によって
励起状態内でゼーマンサブレベルの選択が行われ、ある
特定のゼーマンサブレベルのエネルギーを持つようにな
る。この後、短時間でエネルギーを失って準安定状態2
81 のエネルギーにもどるが、このときはゼーマンサ
ブレベルの選択性は保存され、2S1のゼーマンサブレ
ベル内でゼーマンサブレベル毎に原子の数が異なる偏分
布ができる。この偏分布状態に281  のゼーマンサ
ブレベル間のエネルギー差に等しいエネルギーを持つ電
磁波、すなわちラーモア周波数の高周波磁界を静磁界に
直角方向に加えると、高周波磁界と原子の磁気モーメン
トの間で磁気共鳴が生じてエネルギー変換が起シ、上記
の偏分布は解消される。りまシヘリウム原子は準安定状
態28103本のゼーマンサブレベルにそれぞれほぼ等
しい数の原子が分布する初期状態にもどるわけである。
Therefore, when the helium atoms in the static magnetic field are irradiated with 1.08μ light emitted from the helium lamp (1) from a direction parallel to the static magnetic field and converted into circularly polarized light by the circular polarizer (4) K, the helium atoms absorb the light and become excited. State 2 po, it will have an energy of 1.2, but at this time, the effect of circular polarization selects the Zeeman sublevel within the excited state, and it will have the energy of a certain Zeeman sublevel. . After this, it loses energy in a short time and enters a metastable state 2.
81 energy, but in this case, the selectivity of the Zeeman sublevel is preserved, and a biased distribution in which the number of atoms differs for each Zeeman sublevel is created within the Zeeman sublevel of 2S1. When an electromagnetic wave with an energy equal to the energy difference between the Zeeman sublevels of 281, that is, a high-frequency magnetic field at the Larmor frequency, is applied to this unevenly distributed state in a direction perpendicular to the static magnetic field, magnetic resonance occurs between the high-frequency magnetic field and the magnetic moment of the atoms. As a result, energy conversion occurs, and the above-mentioned uneven distribution is eliminated. The helium atoms return to the initial state in which nearly equal numbers of atoms are distributed in each of the 28103 Zeeman sublevels in a metastable state.

以上のプロセス、即ちヘリウム原子の238.→2Po
、1.2−+281のエネルギー変化は1.08μO光
が継続して照射されているので高周波磁界の周波数がラ
ーモア周波数に一致する毎にくシ返されるが第4図の系
は靜磁界に平行方向の光が、上記プロセスの間に吸収さ
れ、その結果、吸収セルを透過する光が減少することを
利用して常に高周波磁界の周波数をラーモア周波数に一
致するよう制御するものである。このとき高周波磁界と
原子の定数及び靜磁界の間に(1)式の関係式が成立す
る。
The above process, i.e. 238. →2Po
, 1.2-+281 energy changes are repeated every time the frequency of the high-frequency magnetic field matches the Larmor frequency because the 1.08 μO light is continuously irradiated, but the system in Figure 4 is parallel to the static magnetic field. The frequency of the high-frequency magnetic field is always controlled to match the Larmor frequency by taking advantage of the fact that light in the same direction is absorbed during the above process, and as a result, the light transmitted through the absorption cell is reduced. At this time, the relational expression (1) is established between the high-frequency magnetic field, the atomic constant, and the static magnetic field.

ω=ωO= rH(3・・・・・・0・(11ω 二高
周波磁界の角周波数 ω0 :原子のラーモア周波数 γ :原子の磁気回転比(定数) Ho:靜磁界の強さ このようにして第4図の系は静磁界の強さHOに比例し
たラーモア周波数にロックオン(Lock−on)L、
、このときの高周波磁界の周波数、即ち電圧制御発振器
aQの発振周波数はラーモア周波数に一致しているので
、これを計測すれば靜磁界の強さH,を正確に測定する
ことができる。
ω=ωO= rH(3...0・(11ω) Angular frequency of two high-frequency magnetic fields ω0: Larmor frequency of the atom γ: Magnetic rotation ratio of the atom (constant) Ho: Strength of the silent magnetic field In this way The system in Figure 4 locks on to the Larmor frequency, which is proportional to the static magnetic field strength HO.
Since the frequency of the high-frequency magnetic field at this time, that is, the oscillation frequency of the voltage controlled oscillator aQ, matches the Larmor frequency, by measuring this, the strength H of the silent magnetic field can be accurately measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光磁気共鳴磁力計はヘリウムランプ(1)及び吸
収セル(5)の輝度が変動すると、その変動分が光検出
器(7)K現われ、吸収信号の信号対雑音比が下がシ計
測精度が悪くなるという欠点があった。
In a conventional optical magnetic resonance magnetometer, when the brightness of the helium lamp (1) and the absorption cell (5) fluctuate, the fluctuation appears on the photodetector (7) K, and the signal-to-noise ratio of the absorption signal decreases. The drawback was that the accuracy deteriorated.

この発明はこのような問題点を解決するためになされた
もので光源の輝度変化に伴う雑音を減少させて測定精度
を向上させることを目的としている。
The present invention was made to solve these problems, and aims to improve measurement accuracy by reducing noise caused by changes in brightness of a light source.

〔問題点を解決するための手段〕[Means for solving problems]

従来の光磁気共鳴磁力計に高周波電流を切、断して吸収
セルに高周波磁界を加えたり加えなかったシするための
アナログスイッチと、このアナログスイッチの開閉動作
に同期して交互にサンプリングホールドを行う二つのサ
ンプリングホールドと上記アナログスイッチや二つのサ
ンプリングホールドを制御するための切替信号発生器及
びこの二つのサンプリングホールドの出力を相殺させる
ための差動増幅器を追加し、一定周期毎に上記吸収セル
に高周波磁界を印加して非磁気共鳴動作と磁気共鳴動作
を交互に行わせ、これに同期して光検出器の出力を上記
二つのサンプルホールドで交互にサンプリング、ホール
ドすることによってランプ及び吸収セルの輝度変化や磁
気共鳴の吸収信号とこれに重畳して現われる上記光源の
輝度変化をほぼ連続的に計測する。次にこの二糧の計測
信号を上記差動増幅器によって相殺させることによって
上記吸収信号に重畳しているう/プ及び吸収セルの輝度
変化を除去し、光源の輝度変化に伴う雑音を減少させる
A conventional magneto-optical resonance magnetometer has an analog switch that cuts off the high-frequency current to apply or not apply a high-frequency magnetic field to the absorption cell, and a sampling hold that alternately synchronizes with the opening/closing operation of this analog switch. A switching signal generator for controlling the two sampling holds and the above analog switch, a switching signal generator for controlling the two sampling holds, and a differential amplifier for canceling the outputs of these two sampling holds are added, and the above absorption cell is activated at regular intervals. A high-frequency magnetic field is applied to the lamp and absorption cells to alternately perform non-magnetic resonance operation and magnetic resonance operation, and in synchronization with this, the output of the photodetector is alternately sampled and held in the two sample holds described above. The brightness change of the light source and the magnetic resonance absorption signal and the brightness change of the light source that appears superimposed thereon are almost continuously measured. Next, by canceling these two measurement signals using the differential amplifier, changes in brightness of the dip and absorption cell superimposed on the absorption signal are removed, and noise accompanying changes in brightness of the light source is reduced.

〔作用〕[Effect]

従来はランプや吸収セルで生ずる輝度変化が雑音成分と
なって現われていたが、この発明では吸収セルに高周波
磁界を一定周期毎に印加することによって非磁気共鳴動
作と磁気共鳴動作を交互に行わせ、これに同期して光検
出器の出力を二つのサンプルホールドで交互にサンプリ
ング、ホールドすることによってランプ及び吸収セルの
輝度変化と、磁気共鳴の吸収信号及びこれに重畳する上
記光源の輝度変化をほぼ連続的に計測する。そのため上
記二つのサンプルホールドの出力にはほぼ同一の条件で
光源の輝度変化が現われるのでこれらの信号を差動増幅
器を用いて相殺されることにより上記光源の輝度変化分
を打消すことが可能となり、光源の輝度変化に伴う雑音
を大幅に減少させることができる。
Conventionally, changes in brightness caused by lamps and absorption cells appeared as noise components, but in this invention, by applying a high-frequency magnetic field to the absorption cell at regular intervals, non-magnetic resonance operation and magnetic resonance operation can be performed alternately. In synchronization with this, the output of the photodetector is alternately sampled and held by two sample holds, thereby producing changes in the brightness of the lamp and absorption cell, as well as changes in the brightness of the magnetic resonance absorption signal and the light source superimposed thereon. is measured almost continuously. Therefore, since changes in the brightness of the light source appear in the outputs of the two sample holds mentioned above under almost the same conditions, by canceling these signals using a differential amplifier, it is possible to cancel out the changes in the brightness of the light source. , noise associated with changes in brightness of the light source can be significantly reduced.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示したものであり、第2
図はこの発明の切替信号発生器の切替信号の波形を示し
たものである。第1図中aat:を切替信号発生器、a
!9はアナログスイッチ、αet−!第1のサンプルホ
ールド、Q?lt:を第2のサンプルホールド。
FIG. 1 shows one embodiment of this invention, and FIG.
The figure shows the waveform of the switching signal of the switching signal generator of the present invention. In Fig. 1, aat: switching signal generator, a
! 9 is an analog switch, αet-! First sample hold, Q? lt: Second sample hold.

αIは差動増幅器、SIG、N0IS  はそれぞれサ
ンプルホールドon (171の出力信号、5NVi差
動増幅器(IIの出力信号である。このような構成にお
いて上記切替信号発生器(141は第2図に示すように
ロジックレベルHigh 、  Lowの期間がそれぞ
れTH。
αI is a differential amplifier, SIG, NOIS are sample hold on (171 output signal, 5NVi differential amplifier (II output signal). In such a configuration, the switching signal generator (141 is shown in FIG. 2) The periods of logic level High and Low are respectively TH.

TL(THさ10・TL)のパルス信号T1 とロジッ
クレベルaigh、  Lowの期間がそれぞれTL。
The period of the pulse signal T1 of TL (TH sa 10・TL) and the logic level high and low is TL, respectively.

THつまりロジックレベルがパルス信号T1と正反対の
状態のパルス信号T2を発生するようになっている。な
お上記パルス信号TI、 T2 0周期T (=TL+
TH)  は磁気共鳴の吸収信号及び光源の輝度変化に
よる雑音成分の波形情報を正確にとらえることができる
ような時間間隔の値が設定されている。
A pulse signal T2 whose logic level is exactly opposite to that of the pulse signal T1 is generated. Note that the above pulse signal TI, T2 0 period T (=TL+
TH) is set at a time interval value such that it is possible to accurately capture the waveform information of the magnetic resonance absorption signal and the noise component due to the luminance change of the light source.

またアナログスイッチαりは上記切替信号発生器Iのパ
ルス信号T1によって制御されロジックレベルがHig
h 、  Lowのときにそれぞれオン、オフ状態にな
るように設定されておシ、パルス信号T1のロジックレ
ベルがH! ghのときには上記バッファ抵抗器αDと
RFコイルα2を電気的に接続して吸収セル(51に高
周波磁界H1を印加し吸収セル(5)に磁気共鳴動作を
行わさせるが、パルス信号T1のロジックレベルがLo
wのときには上記バッファ抵抗器IとRFコイル鰻を電
気的に切シ離して吸収セル(5)には高周波磁界H1を
印加しないで非磁気共鳴動作(磁気共鳴の生じていない
)状態にする。第3図の(−はこの様子を示したもので
ある。
Further, the analog switch α is controlled by the pulse signal T1 of the switching signal generator I, and the logic level is High.
The logic level of the pulse signal T1 is set to be on and off when h and low, respectively. When gh, the buffer resistor αD and the RF coil α2 are electrically connected and a high frequency magnetic field H1 is applied to the absorption cell (51) to cause the absorption cell (5) to perform magnetic resonance operation, but the logic level of the pulse signal T1 is Lo
When w, the buffer resistor I and the RF coil are electrically disconnected, and the absorption cell (5) is brought into a non-magnetic resonance operation (no magnetic resonance occurs) without applying the high-frequency magnetic field H1. In FIG. 3, (- indicates this situation.

一万上記光検出器(7)には第1のサンプルホールドa
laト第2のサンプルホールドa乃が接続されておシ、
上記切替信号発生器α勾のパルス信号TI、T2によっ
て制御されるが、上記第1.第2のサンプルホールド(
u9(lηはそれぞれパルス信号TI、 T2のロジッ
クレベルがHighのときはサンプリングモードとなっ
て光検出器(7)の検出信号をそのまま出力し、ロジッ
クレベルがLow  のときt:m Lowに切替る直
前の検出信号を0次ホールドして出力するので第1のサ
ンプルホールドaQ、第2のサンプルホールドαηはそ
れぞれ磁気共鳴動作、非磁気共鳴動作時に観測される検
出信号をほぼ連続的に計測することができる。すなわち
第2のサンプルホールドα′r)は磁気共鳴が生じてい
ないときのランプや吸収セルの輝度変化をほぼ連続的に
計測し。
The photodetector (7) has a first sample hold a.
The second sample hold ano is connected,
It is controlled by the pulse signals TI and T2 of the switching signal generator α gradient. Second sample hold (
u9 (lη is the pulse signal TI, respectively. When the logic level of T2 is High, it becomes a sampling mode and outputs the detection signal of the photodetector (7) as it is, and when the logic level is Low, it switches to t:m Low. Since the previous detection signal is held in the zero-order state and output, the first sample hold aQ and the second sample hold αη can almost continuously measure the detection signal observed during magnetic resonance operation and non-magnetic resonance operation, respectively. That is, the second sample hold α'r) almost continuously measures the luminance changes of the lamp or absorption cell when no magnetic resonance is occurring.

第1のサンプルホールド帥は磁気共鳴時の吸収信号及び
これに重畳して現われる上記光源の輝度変化をほぼ連続
的に計測する。
The first sample and hold sensor almost continuously measures the absorption signal during magnetic resonance and the luminance change of the light source that appears superimposed on the absorption signal.

一万差動増幅器餞は上記第1.第2のサンプルホールド
αe0の出力信号SIG、N0IS  をそれぞれ正入
力、負入力に入力し上記第1のサンプルホールド(11
6の出力信号SIGから第2のサンプルホールドαDの
出力信号N0I8 を減算し信号SNとして出力するが
、このような減算機能によって磁気共鳴動作、非磁気共
鳴動作時に観測される検出信号を相殺し、磁気共鳴時の
吸収信号に重畳していた光源の輝度変化を減少させる働
きをする。
The 10,000 differential amplifier is the first one mentioned above. The output signals SIG and N0IS of the second sample hold αe0 are input to the positive input and negative input, respectively, and the output signals SIG and N0IS of the second sample hold αe0 are inputted to the
The output signal N0I8 of the second sample hold αD is subtracted from the output signal SIG of the second sample hold αD and outputted as a signal SN, but such a subtraction function cancels out the detection signal observed during magnetic resonance operation and non-magnetic resonance operation. It works to reduce the brightness change of the light source that is superimposed on the absorption signal during magnetic resonance.

第3図(bl (cl (d)はこの様子を示したもの
である。
Figure 3 (bl (cl (d)) shows this situation.

結局このように構成された光磁気共鳴磁力計では切替信
号発生器Iのパルス信号によって上記アナログスイッチ
がオン、オフ制御され、その結果吸収上ル(5)には一
定周期毎に高周波磁界H1が印加されて磁気共鳴動作と
非磁気共鳴動作が交互に行われるが、これに同期して光
検出器(7)の出力を上記第1.第2のサンプルホール
ド顧、aηで交互にサンプリングホールドすることによ
って第2のサンプルホールドaηは非磁気共鳴動作時の
ランプや吸収セルの輝度変化をほぼ連続的に計測し、第
1のサンプルホールドαGは磁気共鳴動作時の吸収信号
及びこれに重畳して現われる上記光源の輝度変化をほぼ
連続的に計測する。
In the end, in the optical magnetic resonance magnetometer configured in this way, the analog switch is controlled on and off by the pulse signal from the switching signal generator I, and as a result, a high frequency magnetic field H1 is applied to the absorption layer (5) at regular intervals. The magnetic resonance operation and the non-magnetic resonance operation are performed alternately, and in synchronization with this, the output of the photodetector (7) is changed to the above-mentioned first. By alternately sampling and holding at the second sample hold αG, the second sample hold aη almost continuously measures the luminance change of the lamp or absorption cell during non-magnetic resonance operation, and the second sample hold αG almost continuously measures the absorption signal during magnetic resonance operation and the luminance change of the light source that appears superimposed on the absorption signal.

次に上記第1.第2のサンプルホールドtieaηの出
力を差動増幅器α梯によって相殺させることによって上
記吸収信号に重畳しているランプ及び吸収セルの輝度変
化を除去するのでこれら光源の輝度変化による雑音を大
幅に低減させることができる。
Next, the above 1. By canceling the output of the second sample hold tieaη by the differential amplifier α ladder, the brightness changes of the lamp and absorption cell superimposed on the absorption signal are removed, thereby significantly reducing the noise caused by the brightness changes of these light sources. be able to.

以上述べたごとくこの発明の光磁気共鳴磁力計によれば
ランプや吸収セル等の光源で生じる輝度変化を検出し、
これを大幅に低減させるので、光磁気共鳴の高感度性を
損うことなく磁界を測定する装置を提供することができ
る。
As described above, the optical magnetic resonance magnetometer of the present invention detects changes in brightness caused by light sources such as lamps and absorption cells, and
Since this is significantly reduced, it is possible to provide an apparatus that measures magnetic fields without impairing the high sensitivity of optical magnetic resonance.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、従来の光磁気共鳴磁力計
にアナログスイッチ、切替信号発生器及び二つのサンプ
ルホールドを追加し、吸収セルに高周波磁界を一定期間
加えなかったシ、加えたシすることによって非磁気共鳴
動作と磁気共鳴動作を交互に行わせ、これに同期して光
検出器の検出信号を二つのサンプルホールドに切り替え
て入力することにより、非磁気共鳴動作、磁気共鳴動作
時にそれぞれ計測される光源の輝度変化と、吸収信号及
びこれに重畳する上記光源の輝度変化をそれぞれのサン
プルホールドでほぼ連続的に計測し。
As explained above, this invention adds an analog switch, a switching signal generator, and two sample holds to a conventional magneto-optical resonance magnetometer, and makes it possible to apply a high-frequency magnetic field to the absorption cell for a certain period of time or not. By alternately performing non-magnetic resonance operation and magnetic resonance operation, and synchronously switching and inputting the detection signal of the photodetector to two sample holds, measurements can be made during non-magnetic resonance operation and magnetic resonance operation, respectively. The brightness change of the light source, the absorption signal and the brightness change of the light source superimposed thereon are almost continuously measured at each sample hold.

これら両者の電気信号を差動増幅器で相殺させるので、
ランプや吸収セル等の光源で生じた輝度変化を大幅に低
減させることが可能となり光磁気共鳴の高感度性を損う
ことなく磁界を測定することができる。
Since these two electrical signals are canceled out by a differential amplifier,
It is possible to significantly reduce brightness changes caused by light sources such as lamps and absorption cells, and it is possible to measure magnetic fields without impairing the high sensitivity of optical magnetic resonance.

また上記光源の輝度変化を検出するのに二つのサンプル
ホールド、アナログスイッチ、切替信号発生器等の比較
的シンプルでかつ安価な電子回路を追加するだけで済む
のでコストの点でも小型化の点でも優れているという長
所がある。
In addition, in order to detect changes in the luminance of the light source, it is only necessary to add relatively simple and inexpensive electronic circuits such as two sample holds, an analog switch, and a switching signal generator, which is advantageous in terms of cost and miniaturization. It has the advantage of being superior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図は切
替信号発生器の切替信号の波形を示す図。 第3図の(at (b) (c) (d)は切替信号発
生器のパルス信号T1とそれぞれ吸収セルに印加される
高周波磁界。 第1のサンプルホールドの出力信号SIG、第2のサン
プルホールドの出力信号N0IS、差動増幅器の出力信
号SNとの関係を示す図、第4図は従来の光磁気共鳴磁
力計の構成を示す図、第5図はヘリウム原子のエネルギ
ーレベルについて示した図である。図中(1)はヘリウ
ムランプ、 +21Hランプ励起用電極、(3)はレン
ズ、 [41Fi円偏光板、(5)は吸収セル、(61
は吸収セル励起用電極、(7)は光検出器、(8)は増
幅器、(9)は位相検波器、 aQは電圧制御発振器、
Iはバッファ抵抗器、a3はRFコイル。 03は高周波発振器、 (141は切替信号発生器、α
5はアナログスイッチ、  aeは第1のサンプルホー
ルド。 αηは第2のサンプルホールド、 (ISは差動増幅器
。 SIG、N0ISはそれぞれ第1.第2のサンプルホー
ルドae、σηの出力信号、SNは差動増幅器α樽の出
力信号である。なお図中同一あるいは相当部分には同一
符号を付して示しである。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the waveform of a switching signal of a switching signal generator. (at (b) (c) (d) in Figure 3 are the pulse signal T1 of the switching signal generator and the high frequency magnetic field applied to the absorption cell, respectively. The output signal SIG of the first sample hold, the output signal SIG of the second sample hold Figure 4 is a diagram showing the configuration of a conventional optical magnetic resonance magnetometer, and Figure 5 is a diagram showing the energy level of helium atoms. In the figure, (1) is a helium lamp, +21H lamp excitation electrode, (3) is a lens, [41Fi circularly polarizing plate, (5) is an absorption cell, and (61
is an absorption cell excitation electrode, (7) is a photodetector, (8) is an amplifier, (9) is a phase detector, aQ is a voltage controlled oscillator,
I is a buffer resistor, a3 is an RF coil. 03 is a high frequency oscillator, (141 is a switching signal generator, α
5 is an analog switch, and ae is the first sample hold. αη is the second sample hold, (IS is the differential amplifier. SIG and N0IS are the output signals of the first and second sample holds ae and ση, respectively. SN is the output signal of the differential amplifier α barrel. Identical or equivalent parts are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 光磁気共鳴の光学的検出に利用する光線を発生するラン
プと磁気共鳴を生じさせる物質を内蔵した吸収セルと、
上記ランプと吸収セルを放電発光させる高周波発振器と
、上記吸収セルに高周波磁界を印加して磁気共鳴を生じ
させるためのRFコイルと、上記吸収セルにおける磁気
共鳴の結果生じる光線の吸収を検出し電気信号に変換す
る光検出器と、上記光検出器の電気信号を増幅する増幅
器と、上記増幅器の出力を位相検波し誤差信号を発生す
る位相検波器と、上記誤差信号で発振周波数を制御しラ
ーモア周波数に等しい周波数の高周波電圧を発生する電
圧制御発振器と、上記高周波電圧を電流に変換してRF
コイルに印加し高周波磁界を発生させるバッファ抵抗器
とからなる光磁気共鳴磁力計において、上記バッファ抵
抗器−RFコイル間を電気的に開閉するアナログスイッ
チと、上記光検出器の出力を入力しアナログスイッチの
開閉に同期して互いにサンプルとホールドを行う二つの
サンプルホールドと、上記アナログスイッチ及び上記二
つのサンプルホールドの動作を制御する切替信号発生器
とを追加して上記吸収セルに一定周期毎に高周波磁界を
印加し磁気共鳴動作と非磁気共鳴動作を交互に行わせ、
この時計測される磁気共鳴による吸収信号と上記ランプ
及び吸収セルの輝度変化とをそれぞれのサンプルホール
ドでサンプル及びホールドすることにより磁気共鳴の吸
収信号と輝度変化とをほぼ連続的に計測し、さらにこの
二つのサンプルホールドの出力を減算することによつて
ランプ及び吸収セルの輝度変化に伴う雑音を相殺するこ
とを特徴とした光磁気共鳴磁力計。
an absorption cell containing a lamp that generates a light beam used for optical detection of optical magnetic resonance and a substance that generates magnetic resonance;
a high-frequency oscillator that causes the lamp and absorption cell to discharge and emit light; an RF coil that applies a high-frequency magnetic field to the absorption cell to generate magnetic resonance; A photodetector that converts the electrical signal into a signal, an amplifier that amplifies the electrical signal of the photodetector, a phase detector that detects the phase of the output of the amplifier and generates an error signal, and a Larmor that controls the oscillation frequency with the error signal. A voltage controlled oscillator that generates a high frequency voltage with a frequency equal to the frequency, and a voltage controlled oscillator that converts the high frequency voltage into a current and generates an
In a magneto-optical resonance magnetometer, which consists of a buffer resistor that is applied to a coil to generate a high-frequency magnetic field, an analog switch that electrically opens and closes between the buffer resistor and the RF coil, and an analog switch that inputs the output of the photodetector and generates a high-frequency magnetic field. Two sample holds that sample and hold each other in synchronization with the opening and closing of the switch, and a switching signal generator that controls the operation of the analog switch and the two sample holds are added to the absorption cell at regular intervals. A high-frequency magnetic field is applied to cause magnetic resonance operation and non-magnetic resonance operation to occur alternately,
By sampling and holding the magnetic resonance absorption signal measured at this time and the brightness change of the lamp and absorption cell in respective sample holds, the magnetic resonance absorption signal and the brightness change are almost continuously measured, and An optical magnetic resonance magnetometer characterized in that noise accompanying brightness changes of the lamp and absorption cell is canceled by subtracting the outputs of these two sample holds.
JP30715886A 1986-12-23 1986-12-23 Optical magnetic resonance magnetometer Pending JPS63158480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30715886A JPS63158480A (en) 1986-12-23 1986-12-23 Optical magnetic resonance magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30715886A JPS63158480A (en) 1986-12-23 1986-12-23 Optical magnetic resonance magnetometer

Publications (1)

Publication Number Publication Date
JPS63158480A true JPS63158480A (en) 1988-07-01

Family

ID=17965723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30715886A Pending JPS63158480A (en) 1986-12-23 1986-12-23 Optical magnetic resonance magnetometer

Country Status (1)

Country Link
JP (1) JPS63158480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015083242A1 (en) * 2013-12-03 2017-03-16 株式会社日立製作所 Magnetic field measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015083242A1 (en) * 2013-12-03 2017-03-16 株式会社日立製作所 Magnetic field measuring device
US10215816B2 (en) 2013-12-03 2019-02-26 Hitachi, Ltd. Magnetic field measuring apparatus

Similar Documents

Publication Publication Date Title
US10088535B1 (en) System and method for measuring a magnetic gradient field
Bertoldi et al. Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G
US3513381A (en) Off-resonant light as a probe of optically pumped alkali vapors
CA2353421C (en) Sensing device and method for measuring emission time delay during irradiation of targeted samples
US8525516B2 (en) Apparatus with ambient magnetic field correction
Gawlik et al. Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment
Riehle et al. The optical calcium frequency standard
CN107727089A (en) A kind of measurement of three axle remnant fields and compensation method suitable for SERF atomic spin gyroscopes
Almat et al. Long-term stability analysis toward< 10− 14 level for a highly compact POP Rb cell atomic clock
Harding et al. Spin Resonance Clock Transition of the Endohedral Fullerene N 15@ C 60
Zhivun et al. Dual-axis π-pulse magnetometer with suppressed spin-exchange relaxation
US4430616A (en) Nuclear magnetic resonance gyro scope
US3879653A (en) Microwave spectrometer employing a bimodal cavity resonator
Zhao et al. A vector atomic magnetometer based on the spin self-sustaining Larmor method
US3738756A (en) Magneto-optic rotation analyzer
Liu et al. Light-shift-free and dead-zone-free atomic-orientation-based scalar magnetometry using a single amplitude-modulated beam
US3109138A (en) Gyromagnetic resonance methods and apparatus
Lellouch et al. Measurement of the 4 s 4 p P 1− 4 s 3 d D 1 spontaneous emission rate in calcium by use of a Stark-electric-quadrupole interference
CA2044531A1 (en) Magnetic resonance magnetometer with multiplexed exciting windings
JPS63158480A (en) Optical magnetic resonance magnetometer
GB2078972A (en) Nuclear magnetic resonance detection device
EP0807819A1 (en) Optogalvanic spectroscopy with phase independent detection
US3513383A (en) Optically pumped helium magnetometer
JPS61233383A (en) Photomagnetic resonance magnetometer
Romalis et al. Toward precision polarimetry of dense polarized 3He targets