JPS61231772A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61231772A
JPS61231772A JP60073326A JP7332685A JPS61231772A JP S61231772 A JPS61231772 A JP S61231772A JP 60073326 A JP60073326 A JP 60073326A JP 7332685 A JP7332685 A JP 7332685A JP S61231772 A JPS61231772 A JP S61231772A
Authority
JP
Japan
Prior art keywords
semiconductor
light
single crystal
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60073326A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP60073326A priority Critical patent/JPS61231772A/en
Publication of JPS61231772A publication Critical patent/JPS61231772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent deterioration caused by light application and make the width of the depletion layer of the activation region of an I-type semiconductor as wide as 1mum or wider along the direction of the current flow of a photoelectric conversion device with a PIN junction by a method wherein a non-single crystal semiconductor, including an amorphous semiconductor, containing hydrogen or halogen is annealed by light and column shape grains with anisotropy are formed by promoting crystallization. CONSTITUTION:A light permeable conductive film, which is the first conductive film 2, is formed on the whole surface of a substrate with an insulating surface, for instance a glass substrate 1. Then a laser beam is applied to form the first open ditches 13 for scribe lines and the first electrodes 15 are formed in respective activation element regions 31 and 11. After that, a non-single crystal semiconductor 3 is formed over the whole surface. Further, the second open ditch 14 is formed over the left side of the first open ditch 13. High-intensity light with a wavelength of 500nm or longer is applied to the non-single crystal semiconductor to form an I-type semiconductor as a semiconductor with column shape grains whose grain direction is vertical to the substrate. At that time, the semiconductors of the passivation regions 34 and 33' in the ditch 13 are kept from annealing by a metal mask 50 to provide isolation between the first electrode of the element 31 and the first electrode of the element 11.

Description

【発明の詳細な説明】 「発明の利用分野」 この発明は、水素またはハロゲン元素が添加されたPI
N接合を有するアモルファス半導体を含む非単結晶半導
体を絶縁表面を有する基板に設けた光電変換素子(単に
素子という)を複数個電気的に直列接続をして、高い電
圧を発生せしめる光電変換装置に関する。
Detailed Description of the Invention "Field of Application of the Invention"
Relating to a photoelectric conversion device that generates a high voltage by electrically connecting in series a plurality of photoelectric conversion elements (simply referred to as elements) in which a non-single crystal semiconductor including an amorphous semiconductor having an N junction is provided on a substrate having an insulating surface. .

「従来の技術」 従来、水素またはハロゲン元素が添加された非単結晶半
導体としてアモルファス半導体が知られている。しかし
、かかる半導体はアモルファス構造を有し、結晶性を積
極的に用いていないため、PIN接合における■型半導
体層のキャリアの空乏層の厚さは0.3 μm以下と狭
く、又、八Ml(100m囚7cm2)での光照射に対
し劣化が生じてしまった。
"Prior Art" Conventionally, amorphous semiconductors are known as non-single crystal semiconductors to which hydrogen or halogen elements are added. However, since such a semiconductor has an amorphous structure and does not actively use crystallinity, the thickness of the carrier depletion layer of the ■-type semiconductor layer in the PIN junction is as narrow as 0.3 μm or less, and Deterioration occurred due to light irradiation at 100 m (7 cm2).

「本発明が解決しようとする問題点」 本発明は、かかるアモルファス半導体を含む水素または
ハロゲン元素を含有する非単結晶半導体に対し、光アニ
ールを行い、異方性を有する柱状粒を結晶化を助長せし
めて形成し、光照射に対する劣化を防ぎ、かつPIN接
合を有する光電変換装置の電流が流れる方向に対しては
■型半導体の活性領域の空乏層を1μm以上と太き(巾
広にすることを目的としている。
"Problems to be Solved by the Present Invention" The present invention aims to optically anneal a non-single crystal semiconductor containing hydrogen or a halogen element, including such an amorphous semiconductor, to crystallize columnar grains having anisotropy. In order to prevent deterioration due to light irradiation, the depletion layer in the active region of the ■-type semiconductor is made thicker (wider) by 1 μm or more in the direction of current flow in a photoelectric conversion device having a PIN junction. The purpose is to

さらに連結部を構成する非活性半導体領域を高抵抗とし
、この非活性領域での電極間リークを防ぐものである。
Furthermore, the non-active semiconductor region constituting the connecting portion is made to have high resistance to prevent leakage between electrodes in this non-active region.

「問題を解決しようとする手段」 本発明は、非単結晶半導体に直接または透光性電極側よ
りこの電極を透過して、内部の非単結晶半導体に対し、
500nm以上の波長のパルス状の強光を遮光用メタル
マスクを間に入れて照射して、I型半導体層またはそれ
に近接したPまたはN型半導体層を水素またはハロゲン
元素を柱状粒の粒界に多量に偏析させて内部に保存しつ
つ結晶性を促進せしめるものである。
"Means for Solving the Problem" The present invention provides a means for solving the problem by transmitting light to a non-single-crystal semiconductor directly or through the transparent electrode from the transparent electrode side.
By irradiating pulsed strong light with a wavelength of 500 nm or more with a light-shielding metal mask in between, hydrogen or halogen elements are applied to the I-type semiconductor layer or the P- or N-type semiconductor layer adjacent to it at the grain boundaries of columnar grains. It segregates a large amount and stores it internally while promoting crystallinity.

特に本発明は、その光吸収が小さい500 nm以上5
μm以下、例えば0.53μまたは1.06μのYAG
レーザまたは波長0.69μのルビーレーザまたはキセ
ノンランプのパルス状の強光を照射し、全体または内部
の十分深い領域までの■型半導体の結晶性を柱状粒とし
て異方性を有せしめて促進させる、いわゆる光アニール
を行った。このため、光は半導体の光吸収係数の比較的
少ない、即ち深い領域まで光アニールを行い得る500
 nm以上の波長を用いた。
In particular, the present invention is suitable for use with a wavelength of 500 nm or more, where the light absorption is small.
YAG below μm, e.g. 0.53μ or 1.06μ
Irradiate pulsed strong light from a laser, a ruby laser with a wavelength of 0.69μ, or a xenon lamp to promote the crystallinity of the ■-type semiconductor as a whole or to a sufficiently deep region in the form of columnar grains with anisotropy. , so-called optical annealing was performed. For this reason, the light can perform optical annealing to a deep region where the optical absorption coefficient of the semiconductor is relatively small.
A wavelength of nm or more was used.

本発明は、この光アニールにより同時に伴う電気伝導度
の増加が、集積化構造にあってアイソレイションの妨げ
になってはならない。このため本発明方法においては、
この光アニールを活性半導体領域のみにおいて行い、粒
界が電流の流れに平行に、かつ、この非活性領域におい
ては活性領域と比べて実質的に高抵抗な層を有せしめた
In the present invention, the increase in electrical conductivity that accompanies this optical annealing must not impede isolation in an integrated structure. Therefore, in the method of the present invention,
This photoannealing was performed only in the active semiconductor region, so that the grain boundaries were parallel to the current flow and the inactive region had a layer with substantially higher resistance than the active region.

本発明はこの先アニールと同時またはその前または後の
工程において、非活性領域で集積化のためのに連結部を
構成するため、非単結晶半導体をレーザ光 (Qスイッ
チ)がかけられたYAG レーザ光によりスクライブし
、除去したものである。
In the present invention, a YAG laser is applied to a non-single crystal semiconductor with laser light (Q-switch) in order to form a connection part for integration in an inactive region in a process that is performed simultaneously with, before, or after annealing. It was scribed and removed using light.

「作用」 本発明により作成された光電変換装置の半導体中の非活
性領域は、光アニールを行なわないため光アニールを行
った活性領域と比べて実質的に高抵抗となっており、十
分なアイソレイションができる。他方、PINの電流は
光アニールにより形成された柱状粒にそった方向であり
、電流は粒界を横切らない。加えて光はランダムに1層
内で光路を有せしめ、光吸収係数が大きい水素を多量に
有する粒界を多数回横切るように光閉じ込め型のセルと
する。即ち第1および裏面側の第2の電極を凹凸にせし
め、また裏面電極は反射性を有せしめることが有効であ
る。本発明はこれらの効果を有し、かつ集積化光電変換
装置の製造に非単結晶半導体面側からの光を加える光ア
ニール工程のみで他の余分の工程を伴わずに完了させる
ことができるという特長を有する。
"Function" Since the non-active region in the semiconductor of the photoelectric conversion device produced according to the present invention is not photo-annealed, it has a substantially higher resistance than the active region that has been photo-annealed, and has sufficient iso-isolation. You can do rations. On the other hand, the current in PIN is in the direction along the columnar grains formed by photoannealing, and the current does not cross grain boundaries. In addition, an optical confinement type cell is formed in which light is randomly given optical paths within one layer and crosses grain boundaries containing a large amount of hydrogen, which has a large optical absorption coefficient, many times. That is, it is effective to make the first and second electrodes on the back side uneven and to make the back electrode reflective. The present invention has these effects, and it is said that the manufacturing of an integrated photoelectric conversion device can be completed only by a photo-annealing process in which light is applied from the non-single-crystal semiconductor surface side, without any other extra steps. It has characteristics.

本発明の装置における素子の配置、大きさ、形状は設計
仕様によって決められる。しかし本発明の内容を簡単に
するため、以下の詳細な説明においては、第1の素子の
下側(基板側)の第1の電極と、その右隣りに配置した
第2の素子の第2の電極(半導体上即ち基板から離れた
側)とを電気的に直列接続させた場合のパターンを基と
して記す。
The arrangement, size, and shape of elements in the device of the present invention are determined by design specifications. However, in order to simplify the content of the present invention, in the following detailed description, the first electrode on the lower side (substrate side) of the first element and the second electrode of the second element disposed on the right side thereof will be described. The pattern is based on the case where the electrodes (on the semiconductor, that is, on the side away from the substrate) are electrically connected in series.

そしてこの規定された位置にLS用のレーザ光、例えば
波長1.06μ(光径約50μ)または0.53μ(光
径約25μ)のYAGレーザ(焦点距離40mm)を照
射させる。
Then, a laser beam for LS, for example, a YAG laser (focal length 40 mm) having a wavelength of 1.06 μ (light diameter approximately 50 μ) or 0.53 μ (light diameter approximately 25 μ) is irradiated to this defined position.

さらにそれを0.05〜5m/分例えば30cm /分
の操作速度で移動せしめ、前工程と従属関係の開講を作
製せしめる。
Further, it is moved at an operating speed of 0.05 to 5 m/min, for example, 30 cm 2 /min, to create a dependent relationship with the previous process.

本発明は、基板が透光性のガラスである場合、非透光性
基板上に非単結晶半導体を形成し、非単結晶半導体面に
対し500nm以上5μm以下の光で光アニール(エネ
ルギ密度はlXl0’〜I X10’W/cm2であり
、レーザスクライブの際のエネルギ密度の5 XIO’
 〜5 X10’W/cm2より1/10〜1/103
である)を行ったもので、製造工程を従来公知の光電変
換装置の作製工程を単に光アニール工程を加えるのみで
、歩留りを従来の約60%より84%にまで高めること
ができるという画期的な光電変換装置の作製方法を提供
することにある。
In the present invention, when the substrate is a light-transmitting glass, a non-single-crystal semiconductor is formed on the non-light-transmitting substrate, and the surface of the non-single-crystal semiconductor is optically annealed with light of 500 nm or more and 5 μm or less (the energy density is lXl0' to IX10'W/cm2, and the energy density during laser scribing is 5
~5 1/10~1/103 from X10'W/cm2
This is a breakthrough in that by simply adding a photo-annealing process to the manufacturing process of conventionally known photoelectric conversion devices, the yield can be increased from the conventional approximately 60% to 84%. An object of the present invention is to provide a method for manufacturing a photoelectric conversion device.

以下に図面に従って本発明の詳細を示す。The details of the invention are shown below in accordance with the drawings.

「”実施例1」 第1図は本発明により作成された光電変換素子の縦断面
図である。
"Example 1" FIG. 1 is a longitudinal cross-sectional view of a photoelectric conversion element produced according to the present invention.

図面において、絶縁表面を有する基板例えばガラス基板
(1)であって、1.5cm 、巾2cmを用いた。
In the drawings, a substrate having an insulating surface, such as a glass substrate (1), having a diameter of 1.5 cm and a width of 2 cm was used.

さらにこの上面に、全面にわたって第1の導電膜(2)
である透光性導電膜を0.1〜0.5μmの厚さに形成
させた。この導電膜は高低差〜0.1 μmの凹凸を有
せしめた。
Further, on this upper surface, a first conductive film (2) is formed over the entire surface.
A transparent conductive film having a thickness of 0.1 to 0.5 μm was formed. This conductive film had unevenness with a height difference of 0.1 μm.

この透光性導電膜(2)として弗素等のハロゲン元素が
添加された酸化スズを主成分とする透光性導電膜または
ITO(酸化スズ・インジューム)(500〜5000
人代表的には500〜1500人)をスパッタ法または
スプレー法により形成させて、第1の導電膜とした。
This transparent conductive film (2) is a transparent conductive film whose main component is tin oxide to which a halogen element such as fluorine is added, or ITO (tin oxide indium) (500 to 5000
(typically 500 to 1,500 people) was formed by sputtering or spraying to form the first conductive film.

この後、この上面にプラズマCVD法、フォトCVD法
またはLPCV D法により、光照射により光起電力を
発生する非単結晶半導体即ちPIN接合を有する水素ま
たはハロゲン元素が添加された非単結晶半導体層(3)
をI型半導体中の最低酸素濃度を5×IQ18cm−3
以下とし、かつその厚さを0.3〜5.0 μm代表的
には2.0 μmの厚さに形成させた。
Thereafter, a non-single-crystal semiconductor layer to which hydrogen or a halogen element is added, which has a PIN junction, that is, a non-single-crystal semiconductor that generates photovoltaic force upon irradiation with light, is formed on the upper surface by a plasma CVD method, a photo-CVD method, or an LPCVD method. (3)
The minimum oxygen concentration in the I-type semiconductor is 5×IQ18cm-3
The thickness was 0.3 to 5.0 μm, typically 2.0 μm.

例えば、P型(stXcl−X O<x<1)半導体(
約200人)−1型アモルファスまたはセミアモルファ
スのシリコン半導体(約2.0μm) −N型の微結晶
(約500人)を有する半導体よりなる1つのPIN接
合を有する非単結晶半導体(3)を均一の膜厚で形成さ
せた。
For example, a P-type (stXcl-X O<x<1) semiconductor (
(approximately 200 persons) - Type 1 amorphous or semi-amorphous silicon semiconductor (approximately 2.0 μm) - Non-single crystal semiconductor (3) with one PIN junction consisting of a semiconductor having N-type microcrystals (approximately 500 persons) The film was formed to have a uniform thickness.

第1図において、さらにこの上面に第2の導電膜(5)
およびコネクタ(30)を形成した。
In FIG. 1, a second conductive film (5) is further formed on this upper surface.
and a connector (30) was formed.

被照射構造物は第1図または裏面電極を形成する前の半
導体(3)が積層された基板を対象とする。
The structure to be irradiated is the one shown in FIG. 1 or the substrate on which the semiconductor (3) is laminated before forming the back electrode.

光源の照射光面積は光学系を用いてlmmX9mmの照
射面積としたルビーパルスレーザ光を用いた。
The irradiation area of the light source was set to 1 mm x 9 mm using an optical system using a ruby pulse laser beam.

また、スキャンスピードとの関係でその厚さを1mmと
して、照射エネルギ密度を制御するため、100μm〜
3IIIII+まで可変させてもよい。
In addition, in relation to the scan speed, the thickness is set to 1 mm, and in order to control the irradiation energy density, the thickness is 100 μm ~
It may be varied up to 3III+.

ここではCTCコムチックトレーニング株式会社製レー
ザ発振器を用いた。
Here, a laser oscillator manufactured by CTC Comtic Training Co., Ltd. was used.

さらにこのレーザ光はレンズで長方形に集光し、パルス
光(周波数300Hz 〜30KHz)を有し5KW/
an!(巾1m1I+の場合)となった。
Furthermore, this laser beam is focused into a rectangular shape by a lens, has pulsed light (frequency 300Hz to 30KHz), and has a power output of 5KW/
An! (In case of width 1m1I+).

この照射光(25)を被照射面に一定速度の移動基体に
照射させた。この時、先非活性領域にはメタルマスクを
用いて光アニール用の光を照射しないようにした。
This irradiation light (25) was irradiated onto the irradiated surface of a moving base at a constant speed. At this time, a metal mask was used to prevent the previously inactive region from being irradiated with light for photoannealing.

かくすると、非単結晶半導体中で1層の全厚さく波長0
.7 μmの場合)または0.53μmの波長を用いる
場合にその半分程度の3000〜5000人の深さの領
域に柱状粒の結晶化を助長させる領域を作ることができ
た。この結晶化の事実は、この工程の後レーザラマン分
光測定を行うことにより判明した。加えて、この本発明
方法のアニールは光パルスアニールのため、結晶化の際
、既に含有している水素またはハロゲン元素を外部に脱
気することが少なく、また結晶粒界に偏析せしめ、この
粒界でのの不対結合手を中和させ得る。加えて結晶性ま
たは秩序性を光アニールにより促進するため、光劣化特
性が小さくなり、加えてPN間のアモルファス半導体に
おけるrH中の空乏層の巾をアモルファス構造のPIN
接合における0、3μmより結晶性を有せしめるため、
1〜3μmと伸ばすことができるという二重の特長を有
していた。このため1層の最適厚さをアモルファス半導
体の0.5μmより1.5〜2.0 μmにまで厚くさ
せることができ、光電変換装置としての電流を増加させ
得る。
In this way, the total thickness of one layer in a non-single crystal semiconductor has a wavelength of 0.
.. When using a wavelength of 7 μm) or 0.53 μm, it was possible to create a region that promotes crystallization of columnar grains in a region with a depth of 3,000 to 5,000 people, which is about half that. The fact of this crystallization was found by performing laser Raman spectroscopy after this step. In addition, since the annealing method of the present invention is a light pulse annealing, hydrogen or halogen elements that are already contained are less likely to be degassed to the outside during crystallization, and they are segregated at grain boundaries and are It can neutralize the unpaired bond in the field. In addition, since crystallinity or orderliness is promoted by photoannealing, photodegradation characteristics are reduced, and in addition, the width of the depletion layer in rH in an amorphous semiconductor between PNs is
In order to have crystallinity from 0.3 μm in the bond,
It had the double feature of being able to be stretched to 1 to 3 μm. Therefore, the optimum thickness of one layer can be increased from 0.5 μm of an amorphous semiconductor to 1.5 to 2.0 μm, and the current as a photoelectric conversion device can be increased.

かくの如く第1図に示した半導体上の第2の導電膜(5
)は金属と透光性導電酸化膜(CTF)とを用いた。そ
の厚さはそれぞれ300〜1500人に形成させ、光閉
じ込め型の構造とした。
In this way, the second conductive film (5) on the semiconductor shown in FIG.
) used metal and a transparent conductive oxide film (CTF). The thickness of each layer was formed by 300 to 1,500 people, and the structure was an optical confinement type.

このCTFとしてクロム−珪素化合物等の非酸化物導電
膜よりなる透光性導電膜を用いてもよい。
As this CTF, a light-transmitting conductive film made of a non-oxide conductive film such as a chromium-silicon compound may be used.

これらは電子ビーム蒸着法またはスパッタ法、フォ)C
VD法、フォト・プラズマCVD法を含むCVD法を用
い、半導体層を劣化させないため、250 ’C以下の
温度で形成させた。
These are electron beam evaporation method or sputtering method,
A CVD method including a VD method and a photo-plasma CVD method was used to form the semiconductor layer at a temperature of 250'C or less in order not to deteriorate the semiconductor layer.

斯くして照射光(1o)に対し、この実施例の如き基板
(3,5mm X 3cm)において、11.8%(1
,05cm2)の変換効率を有せしめることができた。
Thus, for the irradiated light (1o), on the substrate (3.5mm x 3cm) as in this example, 11.8% (1o)
, 05 cm2).

第2図は本発明の思想の概要を説明する構成図である。FIG. 2 is a configuration diagram illustrating the outline of the idea of the present invention.

第2図(A)は■型非単結晶半導体中の柱状粒(40)
(ここでは3ケ所のみを示す)をその柱径(41)が0
.1〜2μmでSEM (走査電子顕微鏡写真)を用い
て調べたところ、垂直方向に成長している。
Figure 2 (A) shows columnar grains (40) in a ■-type non-single crystal semiconductor.
(only three locations are shown here) whose column diameter (41) is 0
.. When examined using SEM (scanning electron micrograph) at 1 to 2 μm, it was found that the growth was vertical.

さらに結晶粒径は強光照射面側の方が反対面側より順次
大きくなっている。
Furthermore, the crystal grain size is sequentially larger on the side irradiated with strong light than on the opposite side.

このエネルギバンド巾を第2図(B) 、 (C) 、
 (D) 、 半に示す。即ち第2図(B)は第2図(
A)におけるB−B゛の柱状粒の中央部の縦方向に電界
が加わらない場合である。このように、強光照射面側は
反対面側と比べて水素の脱離量が多いため、エネルギー
バンド巾は狭くなり、光電変換装置として透光性絶縁基
板(1)側より光を照射した場合、I型非単結晶半導体
中においても、実質的にエネルギバンド巾がワイド・ト
ウ・ナローとなっており、光照射により発生した電子と
ホールをより効率よ(外部に電力として取り出すことが
できる。(C)は電界によりホール(42)、電子(4
3)がドリフトしている。(D)は柱状粒のA−A’で
の断面におけるエネルギバンドを横方向に示す。すると
光照射によって発生した電子(42’) 、ホール(4
3’)は粒界での水素が多量にある領域で光−電気変換
をしてキャリア(42) 、 (42”)を発生する。
This energy band width is shown in Figure 2 (B), (C),
(D), shown in half. In other words, Fig. 2 (B) is similar to Fig. 2 (
This is the case where no electric field is applied in the vertical direction of the central part of the columnar grains of B-B' in A). In this way, since the amount of hydrogen desorbed is larger on the side irradiated with strong light than on the opposite side, the energy band width becomes narrower, and light is irradiated from the transparent insulating substrate (1) side as a photoelectric conversion device. In this case, even in type I non-single crystal semiconductors, the energy band width is essentially wide-to-narrow, and the electrons and holes generated by light irradiation can be extracted more efficiently (extracted as electric power to the outside). (C) is a hole (42) and an electron (4) due to the electric field.
3) is drifting. (D) shows the energy band in the cross section of columnar grains taken along line AA' in the lateral direction. Then, electrons (42') and holes (4
3') generates carriers (42) and (42'') through photo-electrical conversion in the region where a large amount of hydrogen exists at the grain boundary.

そのキャリアはより安定なレベルである柱状粒の内部に
ドリフトする。
The carriers drift to a more stable level inside the columnar grains.

このため再結合中心の多くが存在する粒界により離れた
柱状粒の中央部でキャリアをドリフトすることができる
Therefore, carriers can be drifted in the center of the columnar grains, which are separated by the grain boundaries where most of the recombination centers are present.

他方、集積化構造における連結部のアイソレイション領
域では光アニールを行わないため、光アニールにより粒
界が形成されている領域と比べ高抵抗化しており、リー
ク電流を流しにくい。即ち光電変換装置の集積化を行わ
んとするとき、連結部を構成する非活性領域ではリーク
電流をより流さないようにするには、高アニールを行わ
なければよい。
On the other hand, since photoannealing is not performed in the isolation region of the connection part in the integrated structure, the resistance is higher than in the region where grain boundaries are formed by photoannealing, and it is difficult for leakage current to flow therein. That is, when attempting to integrate a photoelectric conversion device, high annealing should not be performed in order to prevent leakage current from flowing in the inactive region forming the connection portion.

第2図(を)は柱状粒(40)の粒界(45)に水素が
偏析し高濃度になる。このためこの粒界が光学的Egを
大きくし、かつアモルファス半導体と同様に光吸収係数
が大きい。
In FIG. 2, hydrogen segregates at grain boundaries (45) of columnar grains (40) and becomes highly concentrated. Therefore, this grain boundary increases the optical Eg and has a large light absorption coefficient like an amorphous semiconductor.

このことより、光はこの粒界を多数回横切るようにする
ことが薄い厚さで光−電気変換を効率よく行うに重要で
あることがわかる。
This shows that it is important for light to cross this grain boundary many times in order to efficiently perform light-to-electrical conversion with a small thickness.

またこれらの理由により、半導体の柱径は真性または実
質的に真性の半導体の厚さの0.1〜5μmに比べそれ
以下で、一般的には0.05〜0.2μmにすることが
有効である。
Furthermore, for these reasons, it is effective to set the diameter of the pillars of the semiconductor to be smaller than the thickness of the intrinsic or substantially intrinsic semiconductor, which is 0.1 to 5 μm, and generally to 0.05 to 0.2 μm. It is.

これ以上にすると、粒界で発生したキャリアは柱状粒内
部へのドリフトよりも先にPまたはN層にドリフトして
しまい、十分に行われず、即ち粒界で水素によりバリア
を高くした意味が減少してしまう。
If it is more than this, the carriers generated at the grain boundaries will drift to the P or N layer before drifting into the interior of the columnar grains, and this will not be carried out sufficiently, meaning that the meaning of raising the barrier with hydrogen at the grain boundaries will be reduced. Resulting in.

第3図における(15) 、 (16)はそれぞれI型
非単結晶半導体の縦方向の電気伝導度及び横方向の電気
伝導度を示す。
(15) and (16) in FIG. 3 indicate the vertical electrical conductivity and the lateral electrical conductivity of the I-type non-single crystal semiconductor, respectively.

各グラフにおける初期値は水素が添加されたアモルファ
ス半導体の構造において調べた光伝導度(15) 、 
(17)および暗転導度(16) 、 (18)である
。次のプロットはルビーレーザアニールをアモルファス
半導体に行ない多結晶化した後の特性、第3のプロット
の光照射(AMI”)を2時間照射した後の電気伝導度
を示す。さらに第4の測定点は150℃、2時間熱アニ
ールした後の特性を示す。
The initial values in each graph are the photoconductivity (15) investigated in the structure of an amorphous semiconductor doped with hydrogen,
(17) and dark conductivity (16), (18). The next plot shows the characteristics after performing ruby laser annealing on the amorphous semiconductor to polycrystallize it, and the third plot shows the electrical conductivity after irradiation with light irradiation (AMI") for 2 hours. Furthermore, the fourth measurement point shows the characteristics after thermal annealing at 150° C. for 2 hours.

これらの結果より明らかなことは、垂直方向の電気伝導
度は光アニールにより約3倍に光伝導度が向上するが、
粒界を横切る水平方向の(17)に示す電気伝導度は約
1710に減少する。
It is clear from these results that the electrical conductivity in the vertical direction improves approximately three times by photoannealing;
The electrical conductivity shown in (17) in the horizontal direction across grain boundaries decreases to about 1710.

加えて、粒界に存在する水素、酸素等により横方向の電
気伝導度特性には光劣化(ステブラ・ロンスキ効果)が
見られるが、垂直方向の電気伝導度には実質的には変化
がなく、きわめて安定である。
In addition, photodeterioration (Stebler-Lonski effect) is observed in the electrical conductivity characteristics in the lateral direction due to hydrogen, oxygen, etc. present at the grain boundaries, but there is virtually no change in the electrical conductivity in the vertical direction. , is extremely stable.

また、光アニールを非単結晶半導体形成後筒2の電極と
して透光性導電膜(例えばITO)を形成後に第2の電
極側から行うことは光アニールにより水素、ハロゲン元
素等の脱離を少なくし、さらに光の強度、光の照射時間
の巾を広くとることが可能であり、有効であった。
In addition, performing optical annealing from the second electrode side after forming a transparent conductive film (for example, ITO) as the electrode of the cylinder 2 after forming a non-single crystal semiconductor can reduce desorption of hydrogen, halogen elements, etc. due to optical annealing. Furthermore, it was possible to widen the light intensity and the light irradiation time, which was effective.

実施例2 第4図は本発明の製造工程を示す縦断面図である。Example 2 FIG. 4 is a longitudinal sectional view showing the manufacturing process of the present invention.

被膜の製造プロセスは実施例1と同様に行った。The manufacturing process of the film was carried out in the same manner as in Example 1.

即ち、図面において、絶縁表面を有する基板例えばガラ
ス基板(1)であって、長さく図面では左右方向) I
Dcm、巾10cmを用いた。さらに、この上面に、全
面にわたって第1の導電膜(2)である透光性導電膜(
2)を0.1〜0.5μmの厚さに凹凸を有して形成さ
せた。
That is, in the drawing, a substrate having an insulating surface, such as a glass substrate (1), whose length is in the left-right direction in the drawing) I
Dcm and a width of 10 cm were used. Further, on this upper surface, a light-transmitting conductive film (2) which is a first conductive film (2) is applied over the entire surface.
2) was formed with unevenness to a thickness of 0.1 to 0.5 μm.

この後、この基板の上側より、YAGレーザ(波長0,
53μm(パルス巾30n秒)加工機(日本電気型)に
より平均出力O03〜IW (焦点距離40mm)を加
え、直径5IIllll φのレーザ光を集光し、スポ
ット径20〜70μmφ代表的には50μmφをマイク
ロコンピュータにより制御して、上方よりレーザ光を照
射し、その走査により、スクライブライン用の第1の開
講(13)を形成させ、各活性素子領域(31) 、 
(11)に第1の電極(15)をレーザスクライブ(L
Sという)により作製した。
After that, a YAG laser (wavelength 0,
A 53 μm (pulse width: 30 ns) processing machine (Nihon Denki type) applies an average output of O03~IW (focal length: 40 mm), focuses a laser beam with a diameter of 5IIllllφ, and produces a spot diameter of 20~70 μmφ, typically 50 μmφ. Controlled by a microcomputer, a laser beam is irradiated from above and scanned to form a first opening (13) for a scribe line, and each active element area (31),
Laser scribe (L) the first electrode (15) on (11).
(referred to as S).

LSにより形成された開講(13)は、巾約50μm長
さ10cmであり、深さはそれぞれ第1の電極を構成さ
せるために完全に切断分離した。
The openings (13) formed by LS had a width of about 50 μm and a length of 10 cm, and the depths were completely cut and separated to form the first electrodes.

かくして第1の素子(31)および第2の素子(11)
を構成する領域の巾は5〜40mm例えば10mmとし
て形成させた。
Thus the first element (31) and the second element (11)
The width of the area constituting the area is 5 to 40 mm, for example 10 mm.

この時、第1の開講(13)に充填させた半導体は高抵
抗型であり、アイソレイションが行われなければならな
い。
At this time, the semiconductor filled in the first semiconductor (13) is of a high resistance type, and isolation must be performed.

この後、この上面にプラズマCVD法、フォトCVD法
またはLPCV D法により、実施例と同様に非単結晶
半導体層(3)を0.5〜5.0μm代表的には2.0
μmの厚さに形成させた。
Thereafter, a non-single-crystal semiconductor layer (3) is deposited on the upper surface to a thickness of 0.5 to 5.0 μm, typically 2.0 μm, by plasma CVD, photoCVD, or LPCVD, as in the example.
It was formed to a thickness of μm.

さらに第4図(B)に示されるごとく、第1の開溝(1
3)の左方向側(第1の素子側)にわたって第2の開#
(14)を第2のLSI程により形成させた。
Furthermore, as shown in FIG. 4(B), the first open groove (1
3) across the left direction side (first element side).
(14) was formed by the second LSI process.

この図面では第1および第2の開溝(13) 、 (1
4)の中心間を100μずらしている。
In this drawing, the first and second open grooves (13), (1
4) are shifted by 100μ between the centers.

かくして第2の開溝(18)は第1の電極の側面または
上面(8) 、 (9)を露出させた。
The second open groove (18) thus exposed the side or top surface (8), (9) of the first electrode.

さらに本発明方法における500 nm以上の波長を発
光するルビーパルス光レーザアニールは実施例1と同様
に行った。
Furthermore, the ruby pulse light laser annealing which emits light with a wavelength of 500 nm or more in the method of the present invention was performed in the same manner as in Example 1.

被照射用基板は第4図(B)に示すような構造をしてい
る。
The substrate to be irradiated has a structure as shown in FIG. 4(B).

走用光が照射されないようにした。Prevented the running light from being irradiated.

かくして、図面では示していないが、強光を非単結晶半
導体に照射し、基板に垂直方向の柱状粒を有する半導体
にI型半導体を形成させた。
Although not shown in the drawings, the non-single crystal semiconductor was irradiated with intense light to form an I-type semiconductor in the semiconductor having columnar grains perpendicular to the substrate.

この時、領域(13)の非活性領域(34) (33’
 )の半一ルが行わないようにした。
At this time, the inactive area (34) (33'
) is no longer performed.

第4図において、さらにこの上面に第4図(C)に示さ
れるごとく、第2の導電膜(5)およびコネクタ(30
)を形成した。
In FIG. 4, as shown in FIG. 4(C), a second conductive film (5) and a connector (30
) was formed.

この第2の導電膜(5)は金属と透光性導電酸化膜(C
TF)とを用いた。その厚さはそれぞれ300〜150
0人に形成させた。
This second conductive film (5) consists of a metal and a transparent conductive oxide film (C
TF) was used. Its thickness is 300~150 respectively
0 people formed it.

また第4図(C)の状態において、第2の導電膜として
透光性導電膜(例えばITO)を用いた時に光アニール
を行うことは第1の電極と第2の電極に挟まれた非単結
晶半導体からの水素またはハロゲン元素の脱離が少なく
なり、有効な手段であった。
In addition, in the state shown in FIG. 4(C), when a transparent conductive film (for example, ITO) is used as the second conductive film, photoannealing is performed on the non-conductive material sandwiched between the first and second electrodes. This was an effective method because it reduced the amount of hydrogen or halogen elements desorbed from single crystal semiconductors.

次に、第3のLSにより切断分離をして複数の第2の電
極(39) 、 (38)を第3の開講(20)を形成
してアイソレイションした。
Next, a third LS was used to cut and separate the plurality of second electrodes (39) and (38) to form a third electrode (20) and isolate them.

このCTFとしてクロム−珪素化合物等の非酸化物導電
膜よりなる透光性導電膜を用いてもよい。
As this CTF, a light-transmitting conductive film made of a non-oxide conductive film such as a chromium-silicon compound may be used.

かくして第4図(C)に示されるごとく、複数の素子(
31)、(11)を連結部(4)で直列接続する光電変
換装置を作ることができた。
Thus, as shown in FIG. 4(C), a plurality of elements (
31) and (11) were connected in series at the connecting part (4).

第4図(D)はさらに本発明を光電変換装置として完成
させんとしたものである。即ちパッシベイション膜とし
てプラズマ気相法またはフォト・プラズマ気相法により
窒化珪素膜(21)を500〜2000人の厚さに均一
に形成させ、各素子間のリーク電流の湿気等の吸着によ
る発生をさらに防いだ。
FIG. 4(D) shows the present invention further completed as a photoelectric conversion device. That is, as a passivation film, a silicon nitride film (21) is uniformly formed to a thickness of 500 to 2,000 layers by a plasma vapor phase method or a photo plasma vapor phase method, and the leakage current between each element is caused by adsorption of moisture, etc. This further prevented the outbreak.

さらに外部引出し端子(22) 、 (22’)を周辺
部に設けた。
Furthermore, external lead-out terminals (22) and (22') were provided at the periphery.

斯くして照射光(10)に対し、この実施例のごとき基
板(locm X 10cm)において、各素子を巾1
0mm X 92mmの短冊状に設け、さらに連結部の
中200μm外部引出し電穫部の巾3mm、周辺部4m
mにより、実質的に88mm X 92mm内に10段
を有せしめた。
Thus, for the irradiation light (10), on a substrate (locm x 10 cm) as in this example, each element is
It is provided in a strip shape of 0 mm x 92 mm, and the width of the 200 μm external extraction part in the connecting part is 3 mm, and the peripheral part is 4 m.
m, there were essentially 10 stages within 88 mm x 92 mm.

その結果、パネルにて8.3%(理論的には9.6%に
なるが、11段直列連結抵抗により実効変換効率が低下
したく八Ml (100mW /cm” ) ))にて
、6.7Wの出力電力を有せしめることができた。
As a result, the panel was 8.3% (theoretically it would be 9.6%, but the effective conversion efficiency was reduced due to the 11-stage series-connected resistance. It was possible to have an output power of .7W.

またさらにこのパネルを大きくし、例えば40cmX 
60cmを2ヶ直列にアルミサツシの固い枠内またカー
ボン・ブランクによる可曲性枠内に組み合わせることに
よりパッケージさせ、120cm x 40cmのNE
[lQ規格の大電力用のパネルを設けることが可能であ
る。
Furthermore, make this panel larger, for example, 40cmX.
A 120cm x 40cm NE is packaged by combining two 60cm pieces in series within a rigid frame made of aluminum sash or a flexible frame made of carbon blank.
[It is possible to provide a high power panel of IQ standard.

またこのNEDO規格のパネル用にはシーフレックスに
よりガラス基板の裏面(照射面の反対側)に本発明の光
電変換装置の上面をはりあわせて、風圧、雨等に対し機
械強度の増加を図ることも有効である。
In addition, for this NEDO standard panel, the top surface of the photoelectric conversion device of the present invention is attached to the back surface of the glass substrate (opposite side to the irradiation surface) using Seaflex to increase mechanical strength against wind pressure, rain, etc. is also valid.

パネルの実効効率としてAMI  (100mW/cm
2)にて8.7%、出カフ、8Wを得ることができた。
The effective efficiency of the panel is AMI (100mW/cm
2), we were able to obtain 8.7%, output cuff, and 8W.

有効面積は82.8cm”であり、パネル全体の82.
8%を有効に利用することができた。
The effective area is 82.8 cm”, and the total panel area is 82.8 cm”.
8% could be used effectively.

本発明におけるレーザアニールは、0.53μmパルス
巾30n秒のYAG レーザまたは0.69μm(パル
ス巾70n秒)の波長のルビーレーザを用いた。
For laser annealing in the present invention, a YAG laser with a 0.53 μm pulse width of 30 ns or a ruby laser with a wavelength of 0.69 μm (pulse width 70 ns) was used.

しかしこの50Or+m(0,5μm)〜5000nm
 (5μm)の波長光を他のレーザ光、またはフラッシ
ュ状のキセノンランプ等を用いて行うことは有効である
However, this 50Or+m (0.5μm) ~ 5000nm
It is effective to use another laser beam or a flash-shaped xenon lamp to emit light with a wavelength of (5 μm).

加えて、PINまたはNIP構造を有する水素またはハ
ロゲン元素が添加されたフォトセンサ、イメージセンサ
に対して本発明を適用してもよいことはいうまでもない
In addition, it goes without saying that the present invention may be applied to photosensors and image sensors to which hydrogen or halogen elements are added and have a PIN or NIP structure.

さらに光アニール用強光を照射する方向は基板のどちら
側でもよい。
Further, the strong light for optical annealing may be irradiated on either side of the substrate.

「効果」 本発明による方法で形成した半導体層は第5図に示す如
く、長時間の光照射(AMI (100mw/cm”)
 )に対してきわめて安定である。その1例として、一
般的なアモルファスPIN型半導体の劣化特性(50)
に比べて、本発明により形成された半導体装置の■型半
導体の場合は1.0〜5μmと厚いにもかかわらずきわ
めてその劣化が少ない。(51)は実施例1、(52)
は実施例2の特性である。
"Effect" As shown in FIG. 5, the semiconductor layer formed by the method according to the present invention is
) is extremely stable. As an example, the deterioration characteristics of a general amorphous PIN type semiconductor (50)
In comparison, in the case of the type 2 semiconductor of the semiconductor device formed according to the present invention, its deterioration is extremely small despite its thickness of 1.0 to 5 μm. (51) is Example 1, (52)
is the characteristic of Example 2.

さらに本発明により形成された光電変tA装置の先非活
性領域、即ち集積化構造における連結部は初期の構造を
保持している非単結晶半導体例えば高抵抗型を有するア
モルファス半導体であり、光活性領域は光アニールによ
り結晶性を多分に含む半導体となり、その膜質の差より
連結部の横方向のリーク電流が流れにくくなる。
Furthermore, the first non-active region of the photoelectric conversion tA device formed according to the present invention, that is, the connection part in the integrated structure, is a non-single crystal semiconductor that retains the initial structure, for example, an amorphous semiconductor having a high resistance type, and is a photoactive The region becomes a semiconductor with a high degree of crystallinity by photo-annealing, and the difference in film quality makes it difficult for leakage current to flow in the lateral direction of the connecting portion.

また、第2の電極を形成後に高アニールを行うことは水
素の脱離が少なく、より効果があった。
Furthermore, performing high-temperature annealing after forming the second electrode resulted in less hydrogen desorption and was more effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により作成された光電変換装置の縦断面
図を示す。 第2図は本発明で得られる柱状粒および対応するエネル
ギバンド図を示す。 第3図は本発明で得られる特性を示す。 第4図は本発明により作成された光電変換装置の製造工
程を示す縦断面図である。 第5図は本発明の光パルスアニールを行なわない光電変
換装置と、本発明の光パルスアニールを行った光電変換
装置の光照射信頼性特性である。
FIG. 1 shows a longitudinal cross-sectional view of a photoelectric conversion device produced according to the present invention. FIG. 2 shows the columnar grains obtained according to the invention and the corresponding energy band diagram. FIG. 3 shows the characteristics obtained with the present invention. FIG. 4 is a longitudinal sectional view showing the manufacturing process of a photoelectric conversion device created according to the present invention. FIG. 5 shows the light irradiation reliability characteristics of a photoelectric conversion device not subjected to optical pulse annealing according to the present invention and a photoelectric conversion device subjected to optical pulse annealing according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 1.絶縁表面を有する基板上に、第1の電極と、該電極
上に密接してPIN接合を有する水素またはハロゲン元
素が添加された非単結晶半導体と、該半導体上に第2の
電極とを有する光電変換素子を複数個直列に連結部にて
連結して設けた半導体装置において、前記非単結晶半導
体に500nm〜5μmの波長を有する強光を基板と前
記強光との間に遮光用マスクを配設し、光活性領域のみ
に照射せしめることを特徴とする半導体装置作成方法。
1. A substrate having an insulating surface has a first electrode, a non-single crystal semiconductor doped with hydrogen or a halogen element having a PIN junction in close contact with the electrode, and a second electrode on the semiconductor. In a semiconductor device in which a plurality of photoelectric conversion elements are connected in series at a connecting portion, strong light having a wavelength of 500 nm to 5 μm is applied to the non-single crystal semiconductor, and a light shielding mask is provided between the substrate and the strong light. 1. A method for producing a semiconductor device, characterized by irradiating only a photoactive region.
2.特許請求の範囲第1項において、連結部を構成する
非活性領域は強光アニールを行わない構造に保持し、高
抵抗領域として残存せしめることを特徴とする半導体装
置作成方法。
2. 2. A method for manufacturing a semiconductor device according to claim 1, wherein the inactive region constituting the connecting portion is maintained in a structure in which intense light annealing is not performed and is left as a high resistance region.
JP60073326A 1985-04-05 1985-04-05 Manufacture of semiconductor device Pending JPS61231772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073326A JPS61231772A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073326A JPS61231772A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61231772A true JPS61231772A (en) 1986-10-16

Family

ID=13514931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073326A Pending JPS61231772A (en) 1985-04-05 1985-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61231772A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133578A (en) * 1986-11-25 1988-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2006093212A (en) * 2004-09-21 2006-04-06 Sumitomo Heavy Ind Ltd Method of forming polycrystal layer, semiconductor device, and its manufacturing method
WO2006101200A1 (en) * 2005-03-24 2006-09-28 Kyocera Corporation Optoelectric conversion element and its manufacturing method, and optoelectric conversion module using same
JP2010225884A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Method of manufacturing thin-film solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133578A (en) * 1986-11-25 1988-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2006093212A (en) * 2004-09-21 2006-04-06 Sumitomo Heavy Ind Ltd Method of forming polycrystal layer, semiconductor device, and its manufacturing method
WO2006101200A1 (en) * 2005-03-24 2006-09-28 Kyocera Corporation Optoelectric conversion element and its manufacturing method, and optoelectric conversion module using same
US8178778B2 (en) 2005-03-24 2012-05-15 Kyocera Corporation Photovoltaic conversion element and manufacturing method therefor, and photovoltaic conversion module using same
JP5010468B2 (en) * 2005-03-24 2012-08-29 京セラ株式会社 Photoelectric conversion element, method for producing the same, and photoelectric conversion module using the same
JP2010225884A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Method of manufacturing thin-film solar cell

Similar Documents

Publication Publication Date Title
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US7964476B2 (en) Method and apparatus for the laser scribing of ultra lightweight semiconductor devices
TW201349547A (en) Method for forming a solar cell with a selective emitter
JPS6184074A (en) Semiconductor device
JPS61231772A (en) Manufacture of semiconductor device
KR102378492B1 (en) Translucent Thin Film Solar Module
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
JPH0693515B2 (en) Semiconductor device manufacturing method
JPS6184073A (en) Manufacture of semiconductor device
JPS60100482A (en) Manufacture of photoelectric converting semicoductor device
JPH0645623A (en) Photovoltaic element
JP4636689B2 (en) Method for structuring transparent electrode layers
JPS61231771A (en) Manufacture of semiconductor device
JPS6158276A (en) Manufacture of semiconductor device
JPS6158278A (en) Manufacture of semiconductor device
JPS6158277A (en) Semiconductor device
JPH0758351A (en) Manufacture of thin film solar cell
JPS63258077A (en) Manufacture of photovoltaic device
JP2000049371A (en) Photovoltaic device and its manufacture
JP2975749B2 (en) Method for manufacturing photovoltaic device
JP2756530B2 (en) Light irradiation method
JPS63133579A (en) Manufacture of semiconductor device
JPS63133578A (en) Semiconductor device
JPH0566755B2 (en)
JPS6265480A (en) Thin film solar battery