JPS61229341A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61229341A
JPS61229341A JP7021985A JP7021985A JPS61229341A JP S61229341 A JPS61229341 A JP S61229341A JP 7021985 A JP7021985 A JP 7021985A JP 7021985 A JP7021985 A JP 7021985A JP S61229341 A JPS61229341 A JP S61229341A
Authority
JP
Japan
Prior art keywords
blocks
block
polycell
parallel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7021985A
Other languages
Japanese (ja)
Inventor
Hisamitsu Aizawa
相沢 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7021985A priority Critical patent/JPS61229341A/en
Publication of JPS61229341A publication Critical patent/JPS61229341A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To array all the cell blocks without any unavailable region by a method wherein, in the arrangement structure of cell block according to a building block system, the number of the parallel arrangement stages of the polycell-structure arrays of each cell block is properly modified and the configurations of the respective cell blocks are prescribed. CONSTITUTION:When blocks B1-B9, in each of which plural pieces of polycell- structure arrays C1-C5 are arrayed in parallel to one another across each wiring region L, are arrayed, the number of the parallel stages of the polycell- structure arrays belonging to each block is properly modified and the configurations of the respective blocks are prescribed. For example, when a block 8 and a block 9 are arranged, the numbers of the parallel stages of the polycell-structure arrays of the blocks 8 and 9 are respectively modified for eliminating an unavailable region I2 to generate on the boundaries of both of the blocks 8 and 9 and a block 5 and the configurations of the blocks 8 and 9 are modified so as to fill the above-mentioned unavailable region. Hereby the unavailable region to generate between each blocks is activated and the utilization efficiency of the substrate can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はビルディング・ブロック方式によるセル・ブロ
ックの配置構造に関し、特に効率的なポリセル配列構造
を備えた半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cell block arrangement structure using a building block method, and particularly to a semiconductor integrated circuit having an efficient polycell arrangement structure.

(従来の技術) ビルディング・ブロック方式による従来のポリセル構造
の半導体集積回路では、セル・ブロック(以下単にブロ
ックという)の形状を全て矩形に統一して配置する。す
なわち、一つの半導体基板上にはブロックの大きさの違
いによって大小さまざまに形成された矩形が互いに組合
されて配置される。
(Prior Art) In a conventional polycell structure semiconductor integrated circuit based on the building block method, all cell blocks (hereinafter simply referred to as blocks) are arranged in a unified rectangular shape. That is, on one semiconductor substrate, rectangles formed in various sizes depending on the size of the blocks are arranged in combination with each other.

(発明が解決しようとする問題点) しかしながら、このように大小さまざまの矩形を規定さ
れた半導体基板領域内に配置すると、如何に有効な組合
せを行った場合でも、セル配列が全く形成されずに残る
領域が生じる。この領域を無効領域と呼ぶことにすると
、この無効領域はブロックとブロックとの境界付近およ
びブロック自身の隅部の2つの場所にできる。この無効
領域内にはセルが全く配置されておらず、言わば半導体
基板上の遊休地でもあるので基板面の利用効率を著しく
低下させる。すなわち、チップの大きさを必要以上に大
形化せしめる。
(Problem to be Solved by the Invention) However, when rectangles of various sizes are arranged in a defined semiconductor substrate area in this way, no cell array is formed at all no matter how effective the combination is. A remaining area is created. If this area is called an invalid area, this invalid area can be found in two locations: near the boundary between blocks and at the corner of the block itself. No cells are disposed within this invalid area, which is, so to speak, an idle area on the semiconductor substrate, which significantly reduces the utilization efficiency of the substrate surface. In other words, the size of the chip is made larger than necessary.

(問題点、を解決するための手段) 本発明によるポリセル構造配列の半導体集積回路は、回
路機能を異にする複数個の論理回路セルのポリセル構造
配列をそれぞれ複数段に並列配置してなるセル・ブロッ
クの複数個の配列から成り、前記セル・ブロックのそれ
ぞれは、前記ポリセル構造配列の並列段数を選択的に調
整してそれぞれの形状を規定し、半導体基板の規定領域
内に境界線を互いに接し合う隣接配列に配置されること
を含んで構成される。
(Means for Solving the Problem) A semiconductor integrated circuit with a polycell structure array according to the present invention is a cell in which a polycell structure array of a plurality of logic circuit cells having different circuit functions is arranged in parallel in multiple stages. - Consisting of a plurality of arrays of blocks, each of the cell blocks defines its respective shape by selectively adjusting the number of parallel stages of the polycell structure array, and defines boundaries with respect to each other within a defined area of the semiconductor substrate. The arrangement includes being arranged in adjacent arrays that touch each other.

すなわち、本発明によれば、ブロックそれぞれの形状は
従来の如く一つの矩形形状に統一されない。本発明によ
るブロックは、ブロックに属するポリセル構造配列の並
列段数を適宜変更して、それぞれの形状を規定する。こ
こで、並列段数を変更することは、一つの段に配列され
るセル数を常に同数に揃えることを必ずしも意味しない
。すなわち、複数段に並列配置されるポリセル構造配列
のそれぞれの配列段に含まれるセル数を適宜変更する手
法を含んで、それぞれのブロックはその形状が規定され
る。従って、これらのブロックは1元の矩形から修正さ
れ種々の変形形状をとる。通常、これらの変形手法は隣
接する他のブロックとの境界で行なわれる。すなわち、
隣接プoツク間の一方から既に述べた2つの場所に出来
る無効領域にセル移転を行ない、この領域の活性化がは
かられる。従って、この変形手法を各ブロックに順次繰
り返すと、殆んど全てのブロックは互いに境界線を接し
て、規定された半導体基板領域内に配置され、従来の配
置構造において常に存在してい友無効領域は殆んど消失
する。
That is, according to the present invention, the shapes of the blocks are not unified into one rectangular shape as in the conventional art. In the block according to the present invention, the shape of each block is defined by appropriately changing the number of parallel stages of the polycell structure array belonging to the block. Here, changing the number of parallel stages does not necessarily mean that the number of cells arranged in one stage is always the same. That is, the shape of each block is defined by appropriately changing the number of cells included in each array stage of a polycell structure array arranged in parallel in a plurality of stages. Therefore, these blocks are modified from a one-dimensional rectangle to take on various deformed shapes. Typically, these transformation techniques are performed at boundaries with other adjacent blocks. That is,
Cells are transferred from one side of the adjacent ports to the ineffective areas created at the two locations already mentioned, and activation of this area is attempted. Therefore, if this deformation technique is repeated for each block in turn, almost all the blocks will be placed within the defined semiconductor substrate area, bordering each other, and the friend invalid area that always exists in the conventional layout structure. almost disappears.

以上の変形手法により形状を定めた各ブロックは、恰も
「ハメ絵」の絵ブロックのように互いに境界線を接して
配置されるので、半導体基板上の無効領域の総面積を著
しく減少せしめる。
The blocks whose shape has been determined by the above-described modification method are arranged so as to be in contact with each other on the boundary line, just like the picture blocks in a "hame" picture, so that the total area of the ineffective region on the semiconductor substrate is significantly reduced.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

(*流側) wL1図は本発明半導体集積回路の一実施例を示すブロ
ック配置構造図である。本実施例では81〜B9の9個
のブロックを含む。ここで、各ブロック内に記した数字
記号は理解を容易にするため便宜的に記入したものであ
る。各ブロック内は一つのブロックBxt−選択して例
示しtように、複数個のポリセル構造配列C1−Csが
それぞれ配線領域りを隔てて並列に配置されている。当
然のことながら、ブロック内に含まれるセルの個数はブ
ロックの大きさで定まる。このブロックBlは短かいポ
リセル構造配列Csを有しているので従来手法に従うと
ブロックB6との間に無効領域が生ずる。しかしながら
、このブロック86はブロック内のセル配列段数を変更
して、この無効領域内にセル移転を行ない、ブロックB
4と境界線を接するように形状を規定して、この無効領
域を活性化する。ここで、11はこの活性化された無効
領域を示している。
(*Stream side) Figure wL1 is a block layout structure diagram showing an embodiment of the semiconductor integrated circuit of the present invention. In this embodiment, nine blocks 81 to B9 are included. Here, the numerical symbols written in each block are written for convenience in order to facilitate understanding. In each block, a plurality of polycell structure arrays C1-Cs are arranged in parallel with wiring areas in between, respectively, as shown in the example in which one block Bxt is selected. Naturally, the number of cells included in a block is determined by the size of the block. Since this block Bl has a short polycell structure array Cs, if the conventional method is followed, an invalid area will be generated between it and the block B6. However, this block 86 changes the number of cell arrangement stages within the block and performs cell relocation within this invalid area.
4 and activate this invalid area by defining the shape so that it touches the boundary line. Here, 11 indicates this activated invalid area.

全く同様にして、従来の矩形ブロックのブロックとブロ
ックとの境界付近に生じる無効領域も活性化される。例
として、ブロック8および9は、ブロック5との境界に
生じた無効領域内にそれぞれセル移転を行ない、ブロッ
ク5とそれぞれ境界線を接するように形状を規定して、
これらの無効領域をそれぞれ活性化する。ここでI2は
何れもこの活性化された無効領域を示す。以上説明し九
無効領域の活性化は全てのブロック間で順次繰り返され
、プclツクB1〜B9は互いに境界線を接する形状に
それぞれを規定して、規定され九半導体領域内に隣接し
て配置される。
In exactly the same way, invalid areas that occur near the boundaries between blocks of conventional rectangular blocks are also activated. For example, blocks 8 and 9 each perform cell relocation within the invalid area that occurs at the boundary with block 5, and define their shapes so that they are in contact with block 5, respectively, and
Activate each of these invalid areas. Here, I2 indicates this activated invalid area. As explained above, the activation of the nine invalid regions is repeated sequentially among all blocks, and the blocks B1 to B9 are each defined in a shape that touches the boundary line with each other, and are arranged adjacently within the defined nine semiconductor regions. be done.

第2図は本発明半導体集積回路のチップ構造の一例を示
す図で、@1図と同じく境界線を互いに接する9個のブ
ロックから成る。ここでPは周辺に配され九バクド電極
である。
FIG. 2 is a diagram showing an example of the chip structure of the semiconductor integrated circuit of the present invention, which is composed of nine blocks whose boundaries are in contact with each other, as in Figure @1. Here, P is a nine back electrode arranged at the periphery.

(発明の効果) 本発明によれば、従来の矩形ブロックに生じていた無効
領域は殆んど全て活性化され、セルの形成領域として利
用されるので、半導体基板の利用効率を著しく向上せし
め得る。
(Effects of the Invention) According to the present invention, almost all of the invalid regions that occur in conventional rectangular blocks are activated and used as cell formation regions, so the efficiency of semiconductor substrate usage can be significantly improved. .

第3図は従来の矩形ブロックによるブロック配置の比較
構造別図で、無効領域11およびI2が、ブロックとブ
ロックとの境界付近およびプルツク内部にそれぞれ生じ
ている様子が示されている。
FIG. 3 is a comparative structure diagram of a conventional block arrangement using rectangular blocks, showing how invalid areas 11 and I2 occur near the boundaries between blocks and inside pull blocks, respectively.

これらの無効領域は徒ずらにチップを大形化するのみで
しかないので、本発明による無効領域の活性化利用はチ
ップの小形化に顕著なる効果をあげ得るものである。
Since these invalid areas only increase the size of the chip in vain, the activation and utilization of the invalid areas according to the present invention can have a significant effect in reducing the size of the chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明半導体集積回路の一冥流側會示すブロッ
ク配置構造図、第2図は本発明半導体集積回路のチップ
構造を示す図、第3図は従来の矩形ブロックによるブロ
ック配置の比較構造側図である。 Bl〜B9・・・・・・セル・ブロック、01〜CII
・・・・・・ポリセル構造配列、L・・・・・・配線領
域%  h I I2・・・・・・無効領域%  II
 + ”2 ・・・・・・活性化された無効領域、P・
・・・・・パッド電極。
FIG. 1 is a diagram showing a block layout structure of one side of the semiconductor integrated circuit of the present invention, FIG. 2 is a diagram showing the chip structure of the semiconductor integrated circuit of the present invention, and FIG. 3 is a comparison of block layouts using conventional rectangular blocks. It is a structure side view. Bl~B9...Cell block, 01~CII
...Polycell structure arrangement, L...Wiring area% h I I2...Invalid area% II
+ ”2...Activated invalid area, P.
...Pad electrode.

Claims (1)

【特許請求の範囲】[Claims] 回路機能を異にする複数個の論理回路セルのポリセル構
造配列をそれぞれ複数段に並列配置してなるセル・ブロ
ックの複数個の配列から成り、前記セル・ブロックのそ
れぞれは、前記ポリセル構造配列の並列段数を選択的に
調整してそれぞれの形状を規定し、半導体基板の規定領
域内に境界線を互いに接し合う隣接配列に配置されるこ
とを特徴とする半導体集積回路。
It consists of a plurality of arrays of cell blocks each having a plurality of polycell structure arrays of logic circuit cells having different circuit functions arranged in parallel in a plurality of stages, each of the cell blocks having a polycell structure array of a plurality of logic circuit cells having different circuit functions. A semiconductor integrated circuit characterized in that the number of parallel stages is selectively adjusted to define the shape of each semiconductor integrated circuit, and the semiconductor integrated circuits are arranged in an adjacent array with boundary lines touching each other within a defined area of a semiconductor substrate.
JP7021985A 1985-04-03 1985-04-03 Semiconductor integrated circuit Pending JPS61229341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021985A JPS61229341A (en) 1985-04-03 1985-04-03 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021985A JPS61229341A (en) 1985-04-03 1985-04-03 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61229341A true JPS61229341A (en) 1986-10-13

Family

ID=13425213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021985A Pending JPS61229341A (en) 1985-04-03 1985-04-03 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61229341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229629A (en) * 1990-08-10 1993-07-20 Kabushiki Kaisha Toshiba Semiconductor integrated circuit having improved cell layout

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591856A (en) * 1978-12-29 1980-07-11 Ibm Semiconductor integrated circuit chip structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591856A (en) * 1978-12-29 1980-07-11 Ibm Semiconductor integrated circuit chip structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229629A (en) * 1990-08-10 1993-07-20 Kabushiki Kaisha Toshiba Semiconductor integrated circuit having improved cell layout

Similar Documents

Publication Publication Date Title
JPS63308343A (en) Semiconductor integrated circuit
JPS61229341A (en) Semiconductor integrated circuit
JPS62150844A (en) Logic integrated circuit device
JPH0677429A (en) Semiconductor memory
JP2001244342A (en) Layout method for integrated circuit, integrated circuit and
JPH05299508A (en) Semiconductor integrated circuit device
JP2508214B2 (en) Master slice type semiconductor integrated circuit device
JP2004179184A (en) Semiconductor integrated circuit
JPH0555381A (en) Semiconductor integrated circuit design method and device
JPH02264477A (en) Semiconductor integrated circuit device
JPH02144936A (en) Semiconductor integrated circuit device
JPS59167036A (en) Semiconductor integrated circuit
JP2956271B2 (en) Integrated circuit design method
JPS58142544A (en) Semiconductor integrated circuit
JPH01207946A (en) Gate array type semiconductor integrated circuit
JPH0360053A (en) Semiconductor integrated circuit device
JPH0272659A (en) Semiconductor integrated circuit
JPH04334055A (en) Semiconductor integrated circuit device
JPH0383376A (en) Gate array
JPS59232441A (en) Semiconductor device
JPS63147342A (en) Semiconductor integrated circuit device
JPH04258164A (en) Master slice type semiconductor integrated circuit
JPH04129247A (en) Semiconductor device
JPS58137243A (en) Semiconductor integrated circuit device
JPH10214903A (en) Layout method of standard cell