JPS58137243A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS58137243A
JPS58137243A JP1909182A JP1909182A JPS58137243A JP S58137243 A JPS58137243 A JP S58137243A JP 1909182 A JP1909182 A JP 1909182A JP 1909182 A JP1909182 A JP 1909182A JP S58137243 A JPS58137243 A JP S58137243A
Authority
JP
Japan
Prior art keywords
wiring layer
power supply
power feeding
cells
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1909182A
Other languages
Japanese (ja)
Inventor
Kunihiro Koyabu
小薮 國広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1909182A priority Critical patent/JPS58137243A/en
Publication of JPS58137243A publication Critical patent/JPS58137243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce an impedance of power supply line in the vicinity of the center of logic cell columns and to prevent drop of signal transfer speed by forming a capacitance within power feeding cells and by arranging power feeding cells in the logic cell columns with an adequate space. CONSTITUTION:A power feeding cell is formed with power feeding lines 11, 12 where the power feeding lines of a first wiring layer are arranged with the same interval, a P type diffusion region 21, an N type diffusion region 22, a first wiring layer-diffusion contacts 31, 32, substrate-first wiring layer contacts 51, 52 and insulating films 91-94. In this power feeding cell, a junction capacitance is formed between the P type diffusion region 21 and substrate 81. In addition, since the power feeding lines 11, 12 and diffusion regions 21, 22 are connected with the first wiring layer-diffusion contacts 31, 32, a junction capacitance is formed between the power feeding lines 11, 12. Here, when such power feeding cells 3 are arranged with an adequate interval between the logic cells 4, dispersion of potential of power feeding line can be reduced and drop of signal transfer speed can be prevented.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置に係り、特に多層配線層を
有し、セル内に給電手段を持つ半導体集積回路装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device having multilayer interconnection layers and having power supply means in its cells.

従来、−塩セルと給電用セルとをマトリクス的に組合せ
て作られた半導体集積回路装置は、給電用セル内に積極
的にキャパシタンスを形成させていなかったために、論
理セル列中央付近の給電ラインのインピーダンスが高く
なって給電ラインの電位が揺れることにより、信号の伝
達速度が遅くなったり、論理糾動作を行う恐れがあった
Conventionally, in semiconductor integrated circuit devices made by combining salt cells and power supply cells in a matrix, capacitance was not actively formed in the power supply cells, and therefore the power supply line near the center of the logic cell row If the impedance of the power supply line becomes high and the potential of the power supply line fluctuates, there is a risk that the signal transmission speed may become slow or a logical operation may occur.

本発明の目的はかかる従来技術の欠点を除去した半導体
集積回路装置ILを提供することであり、その特徴は給
電用セル内にジャンクシ冒ン谷童、ゲート容量1層問答
量を積極的にとりこんでキャパシタンスを形成し、適尚
な間隔でもってib理セル列内に該給電用セルを配置す
ることによって上HC欠点を除去し、論理セル列中央付
近の給電ラインのインピーダンスを低下させ、信号の伝
達速度を論理動作への影曽を少なくできるようにした半
導体集積回路装置である。
An object of the present invention is to provide a semiconductor integrated circuit device IL that eliminates the drawbacks of the prior art, and its feature is that a single layer of gate capacitance is actively incorporated into the power supply cell. By forming a capacitance in the logic cell array and arranging the power supply cells in the ib logic cell array at appropriate intervals, the above HC defect is eliminated, the impedance of the power supply line near the center of the logic cell array is lowered, and the signal This is a semiconductor integrated circuit device in which transmission speed has less influence on logic operations.

すなわち本発明は、多層配?IM層を有し、一つまたは
複数の単位回路機能を有し、訳回路機能に紺電する複数
の給電手段とを持ち基板上での一方向の長さを統一した
論理セルと#@理セルで統一された一方向の長さとを同
一の一方向の長さで、核給電手段のみを有する給電用セ
ルとを複数個マトリクス的に並べて作られる牛尋体集積
回路装置にオイテ該給電用セルに積極的にキャパシタン
x2形成し過当な間隔でもって#1Ilii埋セル列内
に該給電用セルを配置することを特徴とする牛導体集積
回路装置である。
In other words, does the present invention have a multilayer structure? A logic cell that has an IM layer, has one or more unit circuit functions, has multiple power supply means for supplying low power to the translation circuit function, and has a unified length in one direction on the board. This power supply is applied to an integrated circuit device made by arranging a plurality of power supply cells having only a nuclear power supply means in a matrix with the same length in one direction and a power supply cell having only a nuclear power supply means. This conductor integrated circuit device is characterized in that two capacitors are actively formed in the cells, and the power feeding cells are arranged in the #1Ilii buried cell row with an excessive interval.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例でi!1ifjJAセルのT
hl配廁層の給電ラインと同一間隔で配置されたw、1
配一層の給電ライン11.12、P型拡散慣域21、h
型拡散領域22、第1配線層−拡散コンタクト31.3
2.サブストレート−縞l配IN!i1層コンタク)5
1.52、基板81表面絶縁膜91%第1配線層一基板
拡散領域絶縁@92.93.94で構成されている給電
用セルを示す0なお、第1図−(a)Id、それを平面
的に示し、第1図(a)OA−に断面を第1図(b)で
示している。
FIG. 1 shows an embodiment of the present invention. 1ifjJA cell T
w,1 arranged at the same interval as the power supply line of the hl distribution layer
Distribution single-layer power supply line 11.12, P-type diffusion zone 21, h
Type diffusion region 22, first wiring layer-diffusion contact 31.3
2. Substrate - striped pattern IN! i1 layer contact) 5
1.52, 91% of substrate 81 surface insulating film 91% first wiring layer - substrate diffusion region insulation @92.93.94 It is shown in plan, and the cross section is shown in FIG. 1(a) OA- and FIG. 1(b).

収給1用セルにおいてはP型拡散領域21と基板81と
の間と、h型拡散領域22と基板81との間にはジャン
クシ璽ン容量が形成され、給電ライン11.12とP型
拡歓領域21%N型拡散顎域22とはそれぞれ第1配線
層−拡散コンタクト31.32で接続されているため給
電ライン11.12間にはジャンクシ冒ン容量が存在す
ることになる。
In the feeder 1 cell, a junction capacitance is formed between the P-type diffusion region 21 and the substrate 81 and between the H-type diffusion region 22 and the substrate 81. Since the 21% N-type diffusion jaw region 22 is connected to the first wiring layer-diffusion contacts 31 and 32, a jump capacitance exists between the power supply lines 11 and 12.

ζこで第4図(aJ 、 (bJ 、 (Cj 、 (
dJで示すようにマ) リクス的に配置された論理セル
列2にあ5図(aJ 、 (bJ、(C)で示すように
論理セル40間に過当な間隔で核給電用セル3を配置す
れに該給電用セル3のジャンクシ冒ン容蓋によりて給電
ラインの電位の帰れを少なくすることができひいては信
号の伝達速度と論理動作への悪影譬を少なくすることが
できる〇 また、サブストレー)−Ml配IwiI階コンタクト5
1.52はサブストレート電位を決めるためのもので隣
の@珈セル内にサブストレー)−11自己一層コンタク
トが存在する場合はサブストレート−第1配線層コンタ
ク)51.52は該給電用セル内になくてもよい。
ζNow, in Figure 4 (aJ, (bJ, (Cj, (
Nuclear power supply cells 3 are arranged at excessive intervals between the logic cells 40 as shown in Figure 5 (aJ, (bJ, (C)) in the logic cell array 2 arranged in a matrix as shown by dJ. In addition, the leakage of the potential of the power supply line can be reduced by using the junk cover of the power supply cell 3, thereby reducing the negative influence on the signal transmission speed and logic operation. )-Ml IwiI floor contact 5
1.52 is for determining the substrate potential, and 51.52 is for determining the substrate potential (substrate in the adjacent cell)-11 (substrate-first wiring layer contact if there is a self-single layer contact) 51.52 is in the power supply cell It doesn't have to be.

さらに本実施例においては給電ラインが2本の場合に鮫
明しているが3本以上の給電ラインの有する場合でも同
様に説明できることは明白である。
Further, in this embodiment, the case where there are two power supply lines is explained, but it is clear that the same explanation can be applied to the case where there are three or more power supply lines.

第2図は本発明の一実施例で論理セルの第1配線層の給
電ラインと同一間隔で配置された第1配?#j層の給電
ライン13.14拡散領域23.第1配線層411サブ
ストレート−第1配線層コンタクト53、第1配線層−
拡散コンタクト33、基板82、表面絶縁膜95、第1
配線層一基板拡散領域絶縁膜96.90で構成されてい
る給電用セルと、第2図(mでは平面的に示し、tJI
V、2図(bJでは第2図(1)のH−1111’断面
を示している。
FIG. 2 shows an embodiment of the present invention in which first wiring lines are arranged at the same intervals as the power supply lines of the first wiring layer of the logic cell. #j layer power supply line 13.14 diffusion region 23. First wiring layer 411 substrate - first wiring layer contact 53, first wiring layer -
Diffusion contact 33, substrate 82, surface insulating film 95, first
A power supply cell composed of a wiring layer, a substrate diffusion region, and an insulating film 96.
Figure V, 2 (bJ shows the H-1111' cross section of Figure 2 (1).

骸給電用セルにおいては拡散領域23と第1配線層41
との閣で層間容重が形成され、拡散領域23線第1ff
i線層−拡散コンタクト33にて給電ライン13に接続
され、第1配線層41は直接給電ライン14に接続され
ているため給電ライン13.14間には層間容重が存在
することになる。
In the skeleton power supply cell, the diffusion region 23 and the first wiring layer 41
The interlayer volume is formed in the cabinet, and the diffusion area 23 line 1ff
Since the i-line layer is connected to the power supply line 13 through the diffusion contact 33 and the first wiring layer 41 is directly connected to the power supply line 14, an interlayer volume exists between the power supply lines 13 and 14.

ここで、第4図(al 、 (b) 、 (C) 、 
(d)で示すようにマトリクス的に配置された論理セル
列2に第5図+8)、 (bJ I (C1で示すよう
に論理セル4の間に適当な間隔で該給電用セル3を配置
すれば該給電用セル3の層間容量によって給電ツインの
電位の層れを少なくすることができ、ひいては、信号の
伝達速度と論理動作への恩影智を少なくすることができ
る。
Here, Fig. 4 (al, (b), (C),
As shown in (d), the power supply cells 3 are arranged at appropriate intervals between the logic cells 4 as shown in FIG. Then, the interlayer capacitance of the power supply cell 3 can reduce the potential layering of the power supply twin, and in turn, the influence on the signal transmission speed and logic operation can be reduced.

またサブストレート−第1配線層コ/タクト53社サブ
ストレート電位を決めるためのもので、隣の論理セル内
にサブストレート−第1配m/iliコンタクトが存在
する場合に拡、サブストレート−第1配線層コンタクト
53は該給電用セル内になくてもよい。
It is also used to determine the substrate potential of the substrate-first wiring layer. The first wiring layer contact 53 does not need to be within the power supply cell.

さらに、第2図においては拡散−第1配一層の層間容重
を利用しているが拡散領域のかわりに、他の配線層たと
えば第2配線層を利用して、第1配線層−第2配線層の
層間容を會利用しても、また、ta1配縁層−#!2配
線層の層間容量と、拡散−第1配融層の層間容量と、拡
散−第2虻巌層の層間容量を組合せて利用しても同様に
説明できることは明白である〇 さらに本実施例においては給電ラインが2本の場合につ
いて説明しているが、3本以上の場合についても同様に
説明できることは明白である。
Furthermore, in FIG. 2, the interlayer volume between the diffusion region and the first wiring layer is used, but instead of the diffusion region, another wiring layer, for example, the second wiring layer, is used to connect the first wiring layer to the second wiring layer. Even if the interlayer volume of the layer is utilized, the ta1 alignment layer-#! It is clear that the same explanation can be achieved by using a combination of the interlayer capacitance of the two wiring layers, the interlayer capacitance of the diffusion-first distribution layer, and the interlayer capacitance of the diffusion-second distribution layer.Furthermore, this example Although the case where there are two power supply lines is explained in , it is clear that the same explanation can be applied to the case where there are three or more power supply lines.

第3図も本発明の一実施例で論理セルの第2配線層の給
電ラインの同一間隔で配置された第2配線層の給電ライ
ン15.16、P型拡散領域24、Nu拡散領域25、
第1配線層−第2配線層コンタクト71.72、第2配
線層−拡散コンタクト35.36.37.38、サブス
トレート−第1配置層コンpクト54.55、第1配線
層61.62、M2に線層42.43、基板83表面絶
縁膜97.191 。
FIG. 3 also shows an embodiment of the present invention, in which the power supply lines 15 and 16 of the second wiring layer, the P-type diffusion region 24, the Nu diffusion region 25, and
1st wiring layer - 2nd wiring layer contact 71.72, 2nd wiring layer - diffusion contact 35.36.37.38, substrate - 1st arrangement layer compact 54.55, 1st wiring layer 61.62 , a line layer 42.43 on M2, and an insulating film 97.191 on the surface of the substrate 83.

ml配線層−第2配線層絶縁膜98.192、第1配線
層゛一基板・拡散領域絶縁膜99.193で構成されて
いる給電用セルを第3図(aJで平面的に示し、第3図
(bJ 、 (C)では第3図(13のc−c’断面、
 D−D’断面をそれぞれ示している。
ml wiring layer - second wiring layer insulating film 98.192, first wiring layer - one substrate/diffusion region insulating film 99.193. Figure 3 (bJ, (C) shows Figure 3 (cc' cross section of 13,
A DD' cross section is shown.

該給電用セルにおいて嬬、P製拡散領域24と基板83
との間と、Jl拡散領域25と基板83との関にジャン
クシ冒ン容量が形成され、#I2配線層42とPW拡散
領域24との間と、第1配線層61とPW拡散領域24
との間と、第2配線層43とNfi拡散領域25との間
と、第1配線層62とΔ型拡散領域25この間にそれぞ
れ層間容量が形成され、P型拡散領域24は第2配線層
−拡散コンタク)35.36で、第2配線層43は直接
、第1配線層62拡第1配線層−第2配線層コンタクト
72で第2配線層43に接続されて給電ライン15に接
続され、へ型拡散領域25は第2配線層−拡散コンタク
ト37.38で、第2配線Am)42は直接第1配線層
61は第1配線層−第2配線層コンタク)71で、第2
配線層42に接続されて、給電ライン16に接続されて
いる丸め、給電ライン15.16関には層間容量、ジャ
ンクシ冒ン容重が存在することになる。
In the power supply cell, the P diffusion region 24 and the substrate 83
A junction capacitance is formed between the Jl diffusion region 25 and the substrate 83, and between the #I2 wiring layer 42 and the PW diffusion region 24, and between the first wiring layer 61 and the PW diffusion region 24.
interlayer capacitances are formed between the second wiring layer 43 and the Nfi diffusion region 25, and between the first wiring layer 62 and the Δ type diffusion region 25, and the P type diffusion region 24 is connected to the second wiring layer 43. - diffusion contact) 35.36, the second wiring layer 43 is directly connected to the second wiring layer 43 through the first wiring layer 62 expanded first wiring layer-second wiring layer contact 72 and connected to the power supply line 15. , the hemi-shaped diffusion region 25 is the second wiring layer-diffusion contact 37, 38, the second wiring Am) 42 is directly the first wiring layer 61 is the first wiring layer-second wiring layer contact) 71, the second wiring Am) 42 is
Interlayer capacitance and jump capacitance exist in the round and power supply lines 15 and 16 connected to the wiring layer 42 and connected to the power supply line 16.

ここで5114図(aJ 、 (b) 、 (CJ 、
 (dJで示すようにマトリクス的に配置された論理セ
ル列2に#I5図((転)。
Here, 5114 figures (aJ, (b), (CJ,
(Figure #I5 in the logic cell column 2 arranged in a matrix as shown by dJ ((transfer)).

(b) 、 (C)で示すように論理セル4の間に適当
な間隔で該給電用セル3を配置すれば、該給電用セル3
の層間容量、ジャンクシ冒ン容量によって給電う。
If the power supply cells 3 are arranged at appropriate intervals between the logic cells 4 as shown in (b) and (C), the power supply cells 3
The power is supplied by the interlayer capacitance and the junction capacitance.

インの電位の揺れを少なくすることができ、ひいては信
号の伝達速度と論理動作への患影IIIを少なくするこ
とができる。
It is possible to reduce fluctuations in the potential of the input terminal, thereby reducing the influence on the signal transmission speed and logic operation.

t+、サブストレート−第2配線層コンタクト54.5
5は、サブストレート電位を決めるためのもので、隣の
論理セル内にサブストレー)−12配線層コンタクトが
存在する場合はサブストレート−第2配線層コンタクト
54.55は該給電用セル内になくてもよい。
t+, substrate-second wiring layer contact 54.5
5 is for determining the substrate potential, and if there is a substrate-12 wiring layer contact in the adjacent logic cell, the substrate-2nd wiring layer contact 54.55 is not in the power supply cell. You can.

さらに本冥施例においては給電ラインが2本の場合につ
いて説明しているが3本以上の給電ラインを有する場合
についても同様に説明できることビ明白である。
Further, in this embodiment, the case where there are two power supply lines is explained, but it is obvious that the same explanation can be applied to the case where there are three or more power supply lines.

本発明は以上説明したように積極的に給電用セル内にキ
ャパシタンスを構成し、適当な間隔でもって論理セル列
内に該給電用セル内に配置することによって給電ライン
のインピーダンスを低下させる。
As explained above, the present invention actively configures capacitance in the power supply cells, and lowers the impedance of the power supply line by arranging the capacitance in the power supply cells within the logic cell column at appropriate intervals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(−は本発明の給電用セルの一実施例の平面図、
第1図(b)は第l崗((転)OA−A’断面図、第2
図(aha本発明の給電用セルの一実施例の平面図、第
2図(b)は第2図(a)の11−H’断面図、第3図
(a)は本発明の給電用セルの一実施例の平面図、第3
図(baa第3図(a) (D C−C/断面図、第3
図(C)は輛3図(aJOD−D’断面図、第4図(a
J 、 (b) 、 (c) 、 (dlrIiマトリ
クス的に並べられた論理セルの配置図、第5図(1、(
b) 、 (C)は縞4図で示され九論理セル列内の論
理セルと、本発明の給電用セルとの配置関係を示した図
である。 尚、図において、1・・・・・・半導体基板、2・・・
・・・−塩セル列、3・・・・・・給電用セル、4・・
・・・・si1埋セル、11.12.13.14・・・
・・・第1配線層の給電ライン、・・・・・・N型拡散
領域、31.32.33・・・・・・第1配線層−拡散
コンタクト、34.35.36.37・・・・・・1M
2配線層−拡散コンタク)、41.61.62・・・・
・・第1配線層、42.43・・・・・・#I2配縁層
、51.52.53°°。 サブストレート−第1配線層コンタクト、54゜55・
・・・・・サブストレート−第2配線層コンタクト、7
1 、72・・・・・・第1配線層−第2配線層コンタ
クト、81.82.83・・・・・・基板、91.95
.97.191・旧・・表面絶縁膜、92.93.94
.96.90.99.193−・・・・・第1配線層一
基板拡散絶縁膜、98.192・旧・・第1配線層−第
2配線層絶縁膜である。 8l−)−一 第1図 3 (b) ((:1) 第2図 榮4図(α) 2 第4図(b) 第4図(C) 第4図(d−)
FIG. 1 (- is a plan view of an embodiment of the power supply cell of the present invention,
Figure 1(b) is the 1st section ((rotated) OA-A' sectional view,
Figures (aha) A plan view of an embodiment of the power supply cell of the present invention, Figure 2 (b) is a 11-H' sectional view of Figure 2 (a), and Figure 3 (a) is a plan view of an embodiment of the power supply cell of the present invention. Top view of one embodiment of the cell, 3rd
Figure (baa Figure 3 (a) (D CC/cross-sectional view, 3rd
Figure (C) is the 3rd view of the vehicle (a JOD-D' sectional view, and Figure 4 (a
J, (b), (c), (dlrIi Arrangement diagram of logic cells arranged in matrix, Fig. 5 (1, (
b) and (C) are diagrams showing the arrangement relationship between the logic cells in the nine logic cell columns and the power feeding cells of the present invention, which are shown in four striped diagrams. In the figure, 1... semiconductor substrate, 2...
...-Salt cell row, 3...Power supply cell, 4...
...si1 buried cell, 11.12.13.14...
...Power supply line of first wiring layer, ...N-type diffusion region, 31.32.33...First wiring layer-diffusion contact, 34.35.36.37... ...1M
2 wiring layer - diffusion contact), 41.61.62...
...First wiring layer, 42.43...#I2 wiring layer, 51.52.53°°. Substrate-first wiring layer contact, 54°55・
...Substrate-second wiring layer contact, 7
1, 72...First wiring layer-second wiring layer contact, 81.82.83...Substrate, 91.95
.. 97.191・Old・・Surface insulation film, 92.93.94
.. 96.90.99.193--first wiring layer-substrate diffusion insulating film, 98.192-old...first wiring layer-second wiring layer insulating film. 8l-)-1 Figure 1 3 (b) ((:1) Figure 2 Ei 4 Figure (α) 2 Figure 4 (b) Figure 4 (C) Figure 4 (d-)

Claims (1)

【特許請求の範囲】[Claims] 多層配線層を有し、一つまたは複数の単位回路機能を有
し、該回路機能に給電する複数の給電手段を有し、基板
上での一方向の長さを統一した論理セルと、該論理セル
で統一された一方向の長さと同一の一方向の長さで、該
給電手段のみを有する給電用セルとを複数個マトリクス
的に並べて作られる半導体集積回路装置において、該給
電用セルにキャパシタンスを形成し、所定の間隔で核論
理セル列内に骸給電用セルを配置することf:特徴とす
る半導体集積回路装置。
A logic cell having a multilayer wiring layer, having one or more unit circuit functions, having a plurality of power supply means for supplying power to the circuit function, and having a uniform length in one direction on the substrate; In a semiconductor integrated circuit device made by arranging in a matrix a plurality of power feeding cells having only the power feeding means and having the same length in one direction as the unified length of the logic cells, the power feeding cells A semiconductor integrated circuit device characterized by forming a capacitance and arranging skeleton power supply cells in a core logic cell column at predetermined intervals.
JP1909182A 1982-02-09 1982-02-09 Semiconductor integrated circuit device Pending JPS58137243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1909182A JPS58137243A (en) 1982-02-09 1982-02-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1909182A JPS58137243A (en) 1982-02-09 1982-02-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS58137243A true JPS58137243A (en) 1983-08-15

Family

ID=11989787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1909182A Pending JPS58137243A (en) 1982-02-09 1982-02-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58137243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166060A (en) * 1985-01-17 1986-07-26 Matsushita Electric Ind Co Ltd Semiconductor device
US7016089B2 (en) * 1999-12-06 2006-03-21 Canon Kabushiki Kaisha Amplification-type solid state imaging device with reduced shading

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248985A (en) * 1975-10-17 1977-04-19 Hitachi Ltd Large scale integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248985A (en) * 1975-10-17 1977-04-19 Hitachi Ltd Large scale integrated circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166060A (en) * 1985-01-17 1986-07-26 Matsushita Electric Ind Co Ltd Semiconductor device
US7016089B2 (en) * 1999-12-06 2006-03-21 Canon Kabushiki Kaisha Amplification-type solid state imaging device with reduced shading
US7616355B2 (en) 1999-12-06 2009-11-10 Canon Kabushiki Kaisha Solid-state imaging device
US7864384B2 (en) 1999-12-06 2011-01-04 Canon Kabushiki Kaisha Solid-state imaging device
US7936487B2 (en) 1999-12-06 2011-05-03 Canon Kabushiki Kaisha Solid-state imaging device
US8248677B2 (en) 1999-12-06 2012-08-21 Canon Kabushiki Kaisha Solid-state imaging device
US8416473B2 (en) 1999-12-06 2013-04-09 Canon Kabushiki Kaisha Solid-state imaging device

Similar Documents

Publication Publication Date Title
WO2014185669A1 (en) Stack memory
JP3158017B2 (en) Interconnection arrangement and method of forming conductors for interconnection arrangement
EP0177336B1 (en) Gate array integrated device
JPH1187641A (en) Dynamic random access memory array and method for increasing density of the same
JPS604253A (en) Semiconductor integrated circuit memory
US8507994B2 (en) Semiconductor device
JP2001189384A (en) Semiconductor device, layout method therefor
JP3115787B2 (en) Polycell integrated circuit
JPS58111347A (en) Semiconductor device
JPS58137243A (en) Semiconductor integrated circuit device
KR20080004285A (en) Bitline of semiconductor device and method for fabricating the same
KR910009423B1 (en) Large scale integrated circuit
EP0329100B1 (en) Semiconductor device comprising a logic circuit and a memory
JPH10173055A (en) Cell-based semiconductor device and standard cell
JPH025550A (en) Semiconductor device
US6208165B1 (en) Semiconductor integrated circuit
WO2023023972A1 (en) Semiconductor structure and method for forming semiconductor structure
JPH0666434B2 (en) Semiconductor memory device
JPH0430452A (en) Semiconductor integrated circuit device
JPH02250372A (en) Semiconductor integrated circuit device
JP2621442B2 (en) Semiconductor storage device
JPH01119040A (en) Semiconductor device
EP0278065A2 (en) Semiconductor integrated circuit latch-up preventing apparatus
JPH0541452A (en) Standard cell system integrated circuit
KR20000003885A (en) Semiconductor devices having decoupling capacitor