JPS61227199A - Method for supplying metal ion in electroplating - Google Patents

Method for supplying metal ion in electroplating

Info

Publication number
JPS61227199A
JPS61227199A JP6874685A JP6874685A JPS61227199A JP S61227199 A JPS61227199 A JP S61227199A JP 6874685 A JP6874685 A JP 6874685A JP 6874685 A JP6874685 A JP 6874685A JP S61227199 A JPS61227199 A JP S61227199A
Authority
JP
Japan
Prior art keywords
metal
plating
ions
liquid
plating metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6874685A
Other languages
Japanese (ja)
Inventor
Tamotsu Mizuta
水田 有
Hajime Kimura
肇 木村
Tadao Fujinaga
藤永 忠男
Takao Ikenaga
池永 孝雄
Tetsuya Kohama
小浜 哲也
Shuji Iwamoto
岩本 周治
Shinjiro Ishikawa
石川 晋二郎
Asaharu Kihata
木畑 朝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6874685A priority Critical patent/JPS61227199A/en
Publication of JPS61227199A publication Critical patent/JPS61227199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To accelerate the dissolution of a plating metal regardless of the pH value of a plating liquid by dissolving the plating metal in the plating liquid in the presence of a metal of which the oxidation-reduction potential is nobler than the plating metal in the stage of replenishing plating metal ions to the electroplating liquid for which an insoluble anode is used. CONSTITUTION:The plating metal is deposited on a cathode which is a material to be plated by using the insoluble anode and using the plating liquid contg. the ions of the metal to be plated, by which the plating metallic film is formed. The plating metal ions in the plating liquid decrease on progression of the plating and therefore the concn. of the plating metal ions is increased by dissolving the plating metal in the plating liquid. The dissolving rate of the plating metal decreases with an increase in the pH of the plating liquid and therefore the decrease in the dissolving rate of the plating metal is prevented even if the pH value increases by adding the metal having the oxidation-reduction potential nobler than the oxidation-reduction potential of the plating metal to co-exist with the plating metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気めっきにおける金属イオン供給方法に係り
、特にめっき金属の溶解を促進できる供給方法に関し、
不溶性陽極を使用する電気めっきの分野に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for supplying metal ions in electroplating, and particularly to a supply method that can promote dissolution of plating metal.
Used in the field of electroplating using insoluble anodes.

〔従来の技術〕[Conventional technology]

最近の電気めっきの傾向として不溶性陽極を使用するい
わゆる不溶性めっきが多く用いられており、例えば亜鉛
の不溶性めっきについて考えてみると、その代表的浴組
成は次の如くである。
As a recent trend in electroplating, so-called insoluble plating using an insoluble anode is often used. For example, considering insoluble zinc plating, a typical bath composition is as follows.

Zn80..7H,0300〜500g/VNa z 
804         30  g /1lAJ(S
O2)s・17H,050g/lpH1〜3 亜鉛の不溶性めっきにおける陰・陽両極の反応は次の如
くである。
Zn80. .. 7H, 0300~500g/VNa z
804 30 g/1lAJ(S
O2) s.17H, 050 g/l pH 1-3 The reaction between the negative and positive electrodes in insoluble zinc plating is as follows.

陰極  Zn  + 21− →Zn       ・
・・(1)陽極  SOa +H20→a、so4+ 
1 /20z↑+2ノ・・・(2) 不溶性めっきの通電とともに(1)式によるznイオン
の減少と(2)式によるpHの低下が起こるため外部か
ら金属イオンの供給を連続または定期的に行う必要があ
る。
Cathode Zn + 21− →Zn ・
...(1) Anode SOa +H20→a, so4+
1 /20z↑+2ノ...(2) As the insoluble plating is energized, the Zn ions decrease according to formula (1) and the pH decreases according to formula (2), so metal ions must be continuously or periodically supplied from the outside. There is a need to do.

金属イオンの供給体としてZnめつきの場合は、Zn金
属またはその酸化物、水酸化物、炭酸塩等があるが、コ
スト面、作業性などから、Zn金属をznイオンの減少
しためつき液に浸漬、溶解する方法が多く採られている
In the case of Zn plating, Zn metal or its oxides, hydroxides, carbonates, etc. are used as a metal ion supplier, but due to cost and workability reasons, Zn metal is used in a plating solution with reduced Zn ions. Many methods include immersion and dissolution.

その時の反応を次の(3)弐に示したが−これは金属イ
オン(Zn  )の供給とpH回復が同時に行われ好都
合な反応である。
The reaction at that time is shown in (3) 2 below; this is a convenient reaction in which the supply of metal ions (Zn) and pH recovery are carried out simultaneously.

Zn+H28044ZnSO4+H2↑    ・(3
1(3)式の反応は理論的にはZn(OH)zが生成す
るpHHI3で起こるが、pHの上昇とともに反応速度
が遅くなるため実用域としてはpH中4近辺までしか反
応は期待できない。
Zn+H28044ZnSO4+H2↑ ・(3
The reaction of formula 1(3) theoretically occurs at pH HI3 where Zn(OH)z is produced, but as the pH increases, the reaction rate slows down, so in practical terms the reaction can only be expected up to around pH 4.

めっき液に金属イオンを供給する具体的な方法として、
従来流動層方式、バレル方式などがある。
As a specific method of supplying metal ions to the plating solution,
Conventional methods include fluidized bed method and barrel method.

流動層方式は特開昭58−151489に開示されてお
り、第1図に図示の如く、竪型の流動筒21C金属粉を
装入し、流動筒2の底部から金属イオンが減少しpHの
低下しためつき液4を金属粉がキャリーオーバせず流動
層6を形成する如く連続的に供給し、上部から金属イオ
ンが増加しpHの上昇しためつき液8を排出し、金属イ
オンの供給を行うものであるが、金属粉の表面に水酸化
物の皮膜を形成し金属イオンの生成が一定のpHに達す
ると停止し、金属イオンの供給が妨げられる欠点がある
The fluidized bed method is disclosed in Japanese Patent Application Laid-Open No. 58-151489, and as shown in FIG. The reduced plating liquid 4 is continuously supplied so that metal powder does not carry over and a fluidized bed 6 is formed, and the plating liquid 8 whose pH has increased due to the increase in metal ions is discharged from the top to supply metal ions. However, it has the disadvantage that a hydroxide film is formed on the surface of the metal powder, and the generation of metal ions stops when a certain pH is reached, thus preventing the supply of metal ions.

また、流動層方式を改良したものとして、例えば実開昭
60−25761号に開示されているバレル方式がある
。これは第2図に示す如く、めっき液10を収容した液
槽12に浸漬して多数の孔14を有する中空回転体バレ
ル16が設けられている。左方のホッパー18およびめ
っき液供給配管20からめつき金属粒22および金属イ
オン濃度の減少しためつき液10がそれぞれ中空回転体
16に供給され、中空回転体16が回転して金属粒22
間に接触を行わせ金属粒表面に生成する水酸化物の皮膜
を破壊して金属粒22の溶解を促進し、金属イオン濃度
の増大しためつき液10を液槽12から排出する方式で
ある。しかしながら金属イオンの供給速度を律するもの
は、前述の如くめっき液中のHイオンであるので、本方
式においても、pHが4近くになると溶解速度が極端に
低下する宿命的な問題を有している。
Further, as an improved version of the fluidized bed method, for example, there is a barrel method disclosed in Japanese Utility Model Application No. 60-25761. As shown in FIG. 2, a hollow rotating body barrel 16 having a number of holes 14 is provided, immersed in a liquid tank 12 containing a plating solution 10. The plating metal particles 22 and the plating liquid 10 with reduced metal ion concentration are supplied from the left hopper 18 and the plating solution supply pipe 20 to the hollow rotating body 16, and the hollow rotating body 16 rotates to supply the metal particles 22.
In this method, the hydroxide film formed on the surface of the metal grains is destroyed by contacting the metal grains to promote dissolution of the metal grains 22, and the tamping liquid 10 with increased metal ion concentration is discharged from the liquid tank 12. . However, as mentioned above, what controls the supply rate of metal ions is H ions in the plating solution, so this method also has the fateful problem that the dissolution rate drops dramatically when the pH approaches 4. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術の問題点を解決し、めっ
き液中のpHに関係なくめつき金属の溶解を促進できる
電気めっきにおける金属イオン供給方法を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for supplying metal ions in electroplating, which solves the problems of the prior art described above and can promote dissolution of plating metals regardless of the pH in the plating solution.

〔問題点を解決するための手段および作用〕本発明者ら
はめつき金属の溶解促進について種々検討を行った。す
なわち、めっき金属溶解の基本的反応は前記(3)式で
示されるとおりであり、第3図の水酸化亜鉛の見かけ溶
解度とpHとの関係図(G、シャルロー著 定性分析化
学If p297)から明らかな如<pHの上昇ととも
に指数的に反応速度が遅くなる。
[Means and effects for solving the problems] The present inventors have conducted various studies on promoting the dissolution of plated metals. In other words, the basic reaction for dissolving the plating metal is as shown in equation (3) above, and from the relationship diagram between the apparent solubility of zinc hydroxide and pH in Figure 3 (G. Charlow, Qualitative Analytical Chemistry If, p. 297). As is clear, the reaction rate slows down exponentially as the pH increases.

めっき金属と該めっき金属より酸化還元電位の貴なイオ
ン化傾向の小さい金属との固体接触もしくは液体を媒体
とする接触により腐食電池を形成し、めっき金属イオン
の溶解がpHK関係なく促進されることに着目し、これ
をめっき金属イオンの溶解促進に利用することによって
、本発明を完成することができた。
A corrosion cell is formed by solid contact or contact through a liquid medium between the plated metal and a metal with a higher redox potential than the plated metal and a smaller ionization tendency, and the dissolution of the plated metal ions is promoted regardless of pH. By paying attention to this and utilizing it to promote dissolution of plating metal ions, we were able to complete the present invention.

本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.

すなわち、めっき金属イオンの減少した溶液に詰めつき
金属を溶解する電気めっきにおける金属イオン供給方法
において、前記めっき金属より酸化還元電位の貴な金属
の存在下で前記溶解を行うことを特徴とする電気めっき
における金属イオン供給方法である。
That is, in a method for supplying metal ions in electroplating in which the metal is dissolved in a solution in which plating metal ions are reduced, the electroplating method is characterized in that the dissolution is performed in the presence of a metal having a nobler redox potential than the plating metal. This is a method of supplying metal ions in plating.

金属のイオン化傾向、すなわち酸化還元電位E0(V)
は第1表に示すとおりである。本発明はめつき金属を該
金属より酸化還元電位の貴な金属と積極的に接触させる
ことで腐食電池を形成しHイオンの存在忙関係なくめつ
き金属を溶解するものであるが、腐食電池の効果は接触
させる金属間の第  1  表 酸化電位の差に比例するので第1表の酸化還元電位を参
照して接触する金属を選択すればよい。しかしながら、
接触させる金属はHイオンのため若干溶解してめっき液
中に混入するのでめっきに悪影響を有する金属は除外し
なければならない。
Metal ionization tendency, i.e. redox potential E0 (V)
is shown in Table 1. In the present invention, a corrosion battery is formed by actively bringing a plating metal into contact with a nobler metal having a redox potential than that of the metal, and the plating metal is dissolved regardless of the presence of H ions. Since the effect is proportional to the difference in oxidation potential between the metals brought into contact, the metals to be contacted can be selected with reference to the oxidation-reduction potentials in Table 1. however,
Since the metal to be contacted is H ion, it dissolves slightly and mixes into the plating solution, so metals that have an adverse effect on plating must be excluded.

めっき金属を酸化還元電位の貴な金属の存在下でめっき
金属を溶解するには次の如き種々の実施態様が考えられ
る。
The following various embodiments can be considered for dissolving the plating metal in the presence of a noble metal having an oxidation-reduction potential.

囚 めっき金属粒および貴な金属粒を混合して前記流動
層方式の流動層を形成するか、あるいはバレル方式にお
いてはバレルに装入して溶解反応させる。
The plated metal particles and the noble metal particles are mixed to form a fluidized bed in the fluidized bed method, or in the barrel method, they are charged into a barrel and subjected to a melting reaction.

(B)  貴な金属を材料として流動筒あるいはバレル
の本体もしくは内張りを形成して金属粒としてはめつき
金属を単独で使用して溶解反応させる。
(B) The main body or lining of a fluid tube or barrel is formed using a noble metal as a material, and the metal particles are plated and the metal is used alone to cause a melting reaction.

(Q めつき金属および貴な金属を別個の容器に収容し
、その間をめっき液を媒体として間接的に接触せしめ溶
解反応させる。
(Q: The plating metal and the noble metal are placed in separate containers and brought into indirect contact using a plating solution as a medium to cause a dissolution reaction.

前記第2図に図示したバレル方式において、本発明法を
適用し中空回転体(バレル)16にめっき金属粒22の
他に貴な金属粒を共に供給し中空回転体16を回転して
金属粒同志を強制的に接触させ接触摩耗を促進させるこ
とにより、水酸化物皮膜の破壊と腐食電池の相乗効果に
より、めっき金属の溶解を著しく促進することができる
In the barrel method shown in FIG. 2, the method of the present invention is applied to supply noble metal particles in addition to the plating metal particles 22 to the hollow rotating body (barrel) 16, and rotate the hollow rotating body 16 to form metal particles. By forcibly bringing them into contact and promoting contact wear, the dissolution of the plated metal can be significantly promoted due to the synergistic effect of the destruction of the hydroxide film and the corrosion cell.

本発明を主として亜鉛を例に取って説明したが本発明は
亜鉛に限定されることなく、その他のめつき金属におい
ても貴な金属を使用し腐食電池を形成し、めっき金属の
溶解を促進することができる。
Although the present invention has been explained mainly by taking zinc as an example, the present invention is not limited to zinc, but also uses noble metals in other plating metals to form a corrosion battery and promote dissolution of the plating metal. be able to.

〔実施例〕〔Example〕

本発明法忙よって第2図に示したバレル方式を改良して
めっき金属の溶解を行った。すなわち、中空回転体に第
2表に示千各種の金属粒を装入し、第3表に示す条件の
めつき液を501/minの流量で供給し14 rpm
の速度で回転して溶解した。
In pursuit of the present invention, the barrel method shown in FIG. 2 was improved to melt plated metal. That is, a hollow rotating body was charged with metal grains of various types as shown in Table 2, and a plating solution under the conditions shown in Table 3 was supplied at a flow rate of 501/min at 14 rpm.
It was dissolved by rotating at a speed of .

中空回転体に装入した金属粒はめつき金属粒として粒径
5〜1011IIのZnsokgと、本発明法ニよるZ
nよりも酸化還元電位の貴な金属として粒径5〜101
mのNiあるいはAg粒を添加した。
The metal particles charged into the hollow rotating body are Znsokg with a particle size of 5 to 1011II as the plated metal particles, and Znsokg according to the method of the present invention.
Particle size 5-101 as a noble metal with redox potential than n
m of Ni or Ag grains were added.

なお、参考のため貴な金属を添加しない場合も従来例と
して実施し、それぞれのpHおよびzn濃度を調査し、
結果を第2表に示した。
For reference, a conventional example was also conducted in which no noble metal was added, and the pH and Zn concentration of each were investigated.
The results are shown in Table 2.

第  2  表 第  3  表 第2表から、znよりも酸化還元電位の貴なN i 、
 A g等を添加した本発明実施例は無添加の従来例に
比し溶解速度が速く、実施例の中では酸化還元電位の差
が大きいAgがNiよりも溶解速度の速いのがわかる。
From Table 2 and Table 3, it can be seen that Ni, which has a more noble redox potential than zn,
It can be seen that the examples of the present invention in which Ag and the like are added have a faster dissolution rate than the conventional examples without additives, and among the examples, Ag, which has a large difference in redox potential, has a faster dissolution rate than Ni.

貴な金属の添加量はNi、 AgともK 2.5 kg
と5kgの2種であるが溶解効果に差異は認められなか
った。
The amount of noble metal added is K 2.5 kg for both Ni and Ag.
and 5 kg, but no difference was observed in the dissolution effect.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記実施例からも明らかな如く、めっき金属
の溶解をめっき金属より酸化還元電位の貴な金属の存在
下行うことによりめっき液のpH忙量関係く溶解を促進
する効果をあげることができた。
As is clear from the above examples, the present invention achieves the effect of promoting dissolution regardless of the pH level of the plating solution by dissolving the plating metal in the presence of a metal with a nobler redox potential than the plating metal. was completed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流動方式の金属イオン溶解装置を示す模
式断面図、第2図は従来のバレル方式の金属イオン溶解
装置を示す断面図、第3図は水酸化亜鉛の見かけの溶解
度とpHとの関係を示す線図である。 2・・・流動筒 4・・・金属イオンが減少しpHの低下しためっき液6
・・・流動層 8・・・金属イオンが増加しpHの上昇しためっき液1
0・・・めっき液 12・・・液槽 16・・・中空回転体 22・・・金属粒 代理人 弁理士 中 路 武 雄 第1区 第3図 H
Figure 1 is a schematic cross-sectional view showing a conventional flow-type metal ion dissolving device, Figure 2 is a cross-sectional view showing a conventional barrel-type metal ion dissolving device, and Figure 3 shows the apparent solubility and pH of zinc hydroxide. FIG. 2... Fluidization cylinder 4... Plating solution 6 with decreased pH due to decreased metal ions
...Fluidized bed 8...Plating solution 1 with increased metal ions and increased pH
0...Plating solution 12...Liquid tank 16...Hollow rotating body 22...Metal particle agent Patent attorney Takeo Nakaji 1st ward, Figure 3 H

Claims (1)

【特許請求の範囲】[Claims] (1)めつき金属イオンの減少した溶液に該めつき金属
を溶解する電気めつきにおける金属イオン供給方法にお
いて、前記めつき金属より酸化還元電位の貴な金属の存
在下で前記溶解を行うことを特徴とする電気めつきにお
ける金属イオン供給方法。
(1) In a metal ion supply method in electroplating in which the plating metal is dissolved in a solution with reduced plating metal ions, the dissolution is performed in the presence of a metal having a nobler redox potential than the plating metal. A method for supplying metal ions in electroplating, characterized by:
JP6874685A 1985-04-01 1985-04-01 Method for supplying metal ion in electroplating Pending JPS61227199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6874685A JPS61227199A (en) 1985-04-01 1985-04-01 Method for supplying metal ion in electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6874685A JPS61227199A (en) 1985-04-01 1985-04-01 Method for supplying metal ion in electroplating

Publications (1)

Publication Number Publication Date
JPS61227199A true JPS61227199A (en) 1986-10-09

Family

ID=13382646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6874685A Pending JPS61227199A (en) 1985-04-01 1985-04-01 Method for supplying metal ion in electroplating

Country Status (1)

Country Link
JP (1) JPS61227199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420087A3 (en) * 2002-11-08 2004-06-16 Nihon Hyomen Kagaku Kabushiki Kaisha Method for supplying zinc ions to alkaline zinc plating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420087A3 (en) * 2002-11-08 2004-06-16 Nihon Hyomen Kagaku Kabushiki Kaisha Method for supplying zinc ions to alkaline zinc plating solution

Similar Documents

Publication Publication Date Title
EP0040243A1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers.
US4159235A (en) Method and apparatus for treating metal containing waste water
US4123340A (en) Method and apparatus for treating metal containing waste water
IL157582A (en) Method and device for recovering metals with pulsating cathode currents also combined with anode coupling processes
AU2011341844A2 (en) Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition
JP2002069689A (en) Method for electroplating on powder
JPS61227199A (en) Method for supplying metal ion in electroplating
JPS6148599A (en) Method for supplying ion during electroplating of iron or iron alloy
US2229073A (en) Method of recovering tin from tin plated articles
JPS5964800A (en) Regeneration treatment of ferrous electroplating bath
JPH10219363A (en) Method for recovering metal in solution and device therefor
US4728400A (en) Method and apparatus for extraction of amalgamatable metals from a slurry
WO1989005866A1 (en) Metal recovery process
JPH04116200A (en) Apparatus for supplying metal ion in electroplating
Guan et al. An Electrochemical Study on the Dissolution of Copper and Silver from Silver‐Copper Alloys
JPS62243798A (en) Method for feeding zn ion during galvanizing
CN109898130B (en) Copper ion supplementing device and method for electroplating
JPS586792B2 (en) Aenion no Metsukiyokuhenokiyoukiyuhouhou
JPH06316795A (en) Method and device for feeding metal ion into plating liquid
JP3258848B2 (en) Method for removing metal impurity ions in electrogalvanizing bath
JPS627900A (en) Method for supplying zinc ion to galvanizing bath
US799862A (en) Process of separating ferriferous zinc compounds.
Avci Electrolytic recovery of gold from aqueous solutions
JPS6211966Y2 (en)
JPS61136917A (en) Method for dissolving metallic zinc