JPH10219363A - Method for recovering metal in solution and device therefor - Google Patents

Method for recovering metal in solution and device therefor

Info

Publication number
JPH10219363A
JPH10219363A JP9039859A JP3985997A JPH10219363A JP H10219363 A JPH10219363 A JP H10219363A JP 9039859 A JP9039859 A JP 9039859A JP 3985997 A JP3985997 A JP 3985997A JP H10219363 A JPH10219363 A JP H10219363A
Authority
JP
Japan
Prior art keywords
metal
recovered
solution
particles
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9039859A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagai
弘 永井
Yoshinori Sugano
義則 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanao Kogyo Co Ltd
Original Assignee
Nanao Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanao Kogyo Co Ltd filed Critical Nanao Kogyo Co Ltd
Priority to JP9039859A priority Critical patent/JPH10219363A/en
Publication of JPH10219363A publication Critical patent/JPH10219363A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover metal as powdery material in a short time even from solution dissolving the metal to be recovered in low concn. by utilizing replacing reaction of the metal and to continuously recover the metal without stopping the replacing reaction, in a method and a device for recovering the metal from the solution dissolving noble metal, etc. SOLUTION: This recovering device is constituted with a packing tower 1, a stirring machine 2 arranged in the packing tower 1 and a recovered metal receiving vessel 4 arranged below the bottom surface 3 of this packing tower 1, and the solution A dissolving the metal to be recovered is passed through and brought into contact with metallic grain 9 having baser than the metal to be recovered or grain group 8 mixing the base metallic grain with electric conductive grain 10. At the time of recovering by depositing the metal to be recovered on the surface of the grain group 8, the metal to be recovered, deposited on the surface of the grain group 8 is dropped from the surface by stirring the grain group 8 and mutually rubbing and recovered and also, the surface of the grain group 8 is always held to active.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回収すべき金属の溶
解された溶液から該金属を置換反応を利用して回収する
方法および装置に係り、特に、低濃度の溶液からも効率
よく、かつ短時間で、粉体として回収し得るとともに、
前記反応を停止することなく連続して回収し得る、溶液
中の金属の回収方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for recovering a metal to be recovered from a solution in which the metal to be recovered is dissolved by using a substitution reaction. In time, it can be recovered as a powder,
The present invention relates to a method and an apparatus for recovering metals in a solution, which can be continuously recovered without stopping the reaction.

【0002】[0002]

【従来の技術】シアン化銀メッキ液等、各種廃液には貴
金属等の有用な金属がイオンまたは錯塩の形で多く溶解
されており、近年ではこれら溶液から金属を回収する種
々の技術が開発されている。
2. Description of the Related Art Various waste liquids such as silver cyanide plating solutions contain a large amount of useful metals such as noble metals dissolved in the form of ions or complex salts. In recent years, various techniques for recovering metals from these solutions have been developed. ing.

【0003】この種の回収技術としては、従来、電解
法、イオン交換法、活性炭吸着法、あるいは卑な金属に
よる置換法等が一般に利用されている。
[0003] As this type of recovery technique, conventionally, an electrolysis method, an ion exchange method, an activated carbon adsorption method, a substitution method with a base metal, and the like have been generally used.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の電解法
では、溶液中に溶解されている金属濃度が低い場合に
は、電流効率が極端に低く、このため、回収に要する時
間が長くなってしまう。さらに、回収された金属が電極
上に付着するため、電解槽から電極を取りはずして電極
表面から金属を回収しなければならない。
However, in the above-described electrolysis method, when the concentration of the metal dissolved in the solution is low, the current efficiency is extremely low, so that the time required for recovery is long. I will. Further, since the recovered metal adheres to the electrode, it is necessary to remove the electrode from the electrolytic cell and recover the metal from the electrode surface.

【0005】また、イオン交換法や、活性炭吸着法で
は、これらに用いられるイオン交換樹脂および活性炭の
単位容積当りの金属保持量が少なく、このため、高濃度
溶液には不適である。さらに、処理速度が遅く、このた
め、設備が非常に大きくなり、飽和した場合には多量の
イオン交換樹脂や活性炭を交換することになり、高価な
出費を余儀なくされる。
In addition, the ion exchange method and the activated carbon adsorption method have a small amount of metal exchange per unit volume of the ion exchange resin and activated carbon used in them, and are therefore unsuitable for high concentration solutions. In addition, the processing speed is slow, so that the equipment becomes very large, and when it is saturated, a large amount of ion exchange resin or activated carbon must be replaced, resulting in expensive expenses.

【0006】さらに、卑な金属による置換法では、回収
すべき卑な金属が析出された回収金属で覆われ、反応が
停止してしまう。このため、通常、卑な金属として粉末
亜鉛が用いられているが、粉末であるために反応が激し
く、装置化が困難であった。
Further, in the replacement method using a base metal, the base metal to be recovered is covered with the deposited recovered metal, and the reaction stops. For this reason, powdered zinc is usually used as a base metal, but since it is a powdered metal, the reaction is intense and it has been difficult to implement a device.

【0007】そこで、本発明の目的は上述の金属の置換
反応を利用し、回収すべき金属が低濃度に溶解された溶
液からでも、効率よく、かつ短時間で、粉体として回収
し得、しかも置換反応を停止することなく連続して回収
し得、上述の公知技術に存する欠点を改良した溶液中の
金属の回収方法および装置を提供することにある。
Therefore, an object of the present invention is to utilize the above-mentioned metal substitution reaction to efficiently and quickly recover a powder from a solution in which the metal to be recovered is dissolved at a low concentration, In addition, it is an object of the present invention to provide a method and an apparatus for recovering a metal in a solution, which can be continuously recovered without stopping the substitution reaction and which has improved the drawbacks of the above-mentioned known technique.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
め、本発明方法によれば、回収すべき金属の溶解された
溶液を該金属よりも卑な金属の粒子群に通過して接触さ
せ、回収すべき金属を該粒子群の表面に析出して回収す
るに当り、該粒子群を互いに摺り合わせることにより、
該粒子群表面に析出した回収すべき金属を該表面から落
として回収するとともに、該粒子群表面を常に活性に保
つようにしたことを特徴とする。
In order to achieve the above-mentioned object, according to the method of the present invention, a solution in which a metal to be recovered is dissolved is passed through and brought into contact with particles of a metal which is more noble than the metal. In collecting and recovering the metal to be recovered on the surface of the particle group, by rubbing the particle group with each other,
The method is characterized in that the metal to be recovered deposited on the surface of the particle group is collected by dropping from the surface, and the surface of the particle group is always kept active.

【0009】さらに、上述の目的を達成するため、本発
明装置によれば、充填塔と、該充填塔に配置された攪拌
機と、該充填塔の底面下方に設置された回収金属受け槽
とを備え、該充填塔は回収すべき金属の溶解された溶液
の導入口を少なくとも備えるとともに、内部に前記回収
すべき金属よりも卑な金属の粒子群を充填し、該粒子群
に、該導入口から導入される回収すべき金属の溶解され
た溶液を前記攪拌機で攪拌しながら接触せしめて該溶液
中の回収すべき金属を該粒子群表面に析出するととも
に、該表面に析出した金属を回収金属受け槽に落下せし
め、回収することを特徴とする。
Further, in order to achieve the above-mentioned object, according to the apparatus of the present invention, a packed tower, a stirrer arranged in the packed tower, and a collected metal receiving tank installed below the bottom of the packed tower are provided. The packed tower is provided with at least an inlet for a solution in which the metal to be recovered is dissolved, and is filled with particles of a metal that is more noble than the metal to be recovered. A solution in which the metal to be recovered introduced from is dissolved and brought into contact with the stirrer while stirring to precipitate the metal to be recovered in the solution on the surface of the particle group, and the metal deposited on the surface is recovered metal. It is characterized by being dropped into a receiving tank and collected.

【0010】[0010]

【発明の実施の形態】以下、本発明を添付図面を用いて
具体的に詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1は本発明にかかる回収装置の一具体例
の断面図であって、充填塔1と、この充填塔1内に配置
された攪拌機2と、この充填塔1の底面3の下方に設置
された回収金属受け槽4とから構成される。5は攪拌機
4を回転するモータである。
FIG. 1 is a cross-sectional view of one embodiment of the recovery apparatus according to the present invention, in which a packed tower 1, a stirrer 2 disposed in the packed tower 1, and a lower part of a bottom surface 3 of the packed tower 1 are shown. And a collection metal receiving tank 4 installed in the tank. Reference numeral 5 denotes a motor for rotating the stirrer 4.

【0012】充填塔1は回収すべき金属の溶解された溶
液Aを充填塔1内に導入する導入口6および必要に応じ
て溶液Aを外に排出する排出口7を備えるとともに、内
部に粒子群8を充填する。この粒子群8の粒子径は2〜
10mmφ程度である。
The packed tower 1 is provided with an inlet 6 for introducing the solution A in which the metal to be recovered is dissolved into the packed tower 1 and an outlet 7 for discharging the solution A to the outside if necessary. Fill Group 8 The particle diameter of this particle group 8 is 2 to
It is about 10 mmφ.

【0013】粒子群8は回収すべき金属よりも卑な金属
9のみでもよいが、この卑な金属9に、溶液Aに不溶な
導電性粒子10(電気伝導粒体)の混合された粒子群8で
あることが好ましい。
The particle group 8 may be only a metal 9 which is lower than the metal to be recovered, but a particle group in which conductive particles 10 (electrically conductive particles) insoluble in the solution A are mixed with the base metal 9. 8 is preferable.

【0014】この理由はこれら金属粒子9および10を混
合することにより、卑な金属粒子9が負極および導電性
粒子10が正極となる電池を形成し、卑な金属粒子9のみ
で形成する局部電池の場合よりも負の電位が一層低くな
り、このため、回収すべき金属の析出速度が促進される
ためである。
The reason for this is that by mixing these metal particles 9 and 10, a local battery is formed in which the base metal particles 9 form a negative electrode and the conductive particles 10 serve as a positive electrode, and the base metal particles 9 alone form a battery. This is because the negative potential is much lower than in the case (1), and the deposition rate of the metal to be recovered is accelerated.

【0015】この場合、特に、回収金属の析出が導電性
粒子10の表面で起こるようになり、したがって、卑な金
属粒子9の表面に析出される金属が少なくなり、後述の
攪拌効果が一層高められる。
In this case, in particular, the deposition of the recovered metal occurs on the surface of the conductive particles 10, so that the amount of metal deposited on the surface of the base metal particles 9 is reduced, and the stirring effect described later is further enhanced. Can be

【0016】次いで、粒子群8の充填された充填塔1内
に導入口6から、回収すべき金属の溶解された溶液Aを
導入し、モータ5の稼動により攪拌機2を回転して粒子
群8を攪拌しながら、粒子群8に溶液Aを接触せしめ
る。
Next, the solution A in which the metal to be recovered is dissolved is introduced into the packed tower 1 filled with the particle groups 8 from the inlet 6, and the stirrer 2 is rotated by the operation of the motor 5 to rotate the particle groups 8. Is brought into contact with the particle group 8 while stirring.

【0017】これにより、溶液A中の回収すべき金属は
粒子群8の表面に析出するとともに、該表面に析出した
金属は粒子群8が攪拌機2で回転され、互いに摺り合っ
て粒子群8から離れ、回収金属受け槽4に落下し、金属
粉体11として回収される。
Thus, the metal to be recovered in the solution A precipitates on the surface of the particle group 8, and the metal precipitated on the surface is rubbed with the particle group 8 by the stirrer 2 and rubs with each other. The metal powder 11 is separated and falls into the collection metal receiving tank 4 and is collected as the metal powder 11.

【0018】なお、上記本発明装置において、粒子群8
に直流電圧を印加してもよい。図中、12は直流電源であ
って、この直流電源12を充填塔1内に配置された陽極13
に接続し、粒子群8を陰極にシフトすることにより、卑
な金属粒子9の不用な溶解消耗が抑制される。
In the apparatus of the present invention, the particle groups 8
May be applied with a DC voltage. In the figure, reference numeral 12 denotes a DC power supply, which is connected to an anode 13 disposed in the packed tower 1.
And the particle group 8 is shifted to the cathode, thereby suppressing unnecessary dissolution and consumption of the base metal particles 9.

【0019】[0019]

【発明の実施例】以下、本発明を実施例によって説明す
るが、本発明はこの実施例によって制限されるものでは
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to these embodiments.

【0020】実施例 1 卑な金属として3〜5mmφのAl粒1lを充填し、銀濃
度100ppm のシアン化銀・メッキ希釈液を1時間当り、
15l処理を行った。このときの粒子の攪拌を行った場合
と、攪拌を行わなかった場合の回収結果を図2に示し
た。
EXAMPLE 1 One liter of Al particles having a diameter of 3 to 5 mm was filled as a base metal, and a silver cyanide / plating diluent having a silver concentration of 100 ppm was applied per hour.
A 15 liter treatment was performed. FIG. 2 shows the recovery results obtained when the particles were agitated and when the particles were not agitated.

【0021】図2から、攪拌を行った場合には、93.0
%の回収率が得られたが、無攪拌では析出した銀でAl
表面が覆われるため、82.0%の回収率しか得られなか
った。したがって、無攪拌では、表面が銀で覆われ、回
収率が極端に低下し、攪拌効果が確認された。
FIG. 2 shows that when stirring was performed, 93.0
% Recovery was obtained, but without stirring, the precipitated silver
Since the surface was covered, only a recovery of 82.0% was obtained. Therefore, without stirring, the surface was covered with silver, the recovery rate was extremely reduced, and the stirring effect was confirmed.

【0022】実施例 2 3〜5mmのAl粒と、Fe粒の混合比率を変えた混合体
を1l作成した。この混合体を充填塔に充填し、攪拌し
ながら、銀濃度100ppm のシアン化銀メッキ液希釈液を
1時間当り、12.5l通過させ回収試験を行い、結果を
図3に示した。
Example 2 One liter of a mixture of 3 to 5 mm Al particles and Fe particles in which the mixing ratio was changed. This mixture was packed in a packed tower, and a stirring test was conducted by passing 12.5 liters of a silver cyanide plating solution diluent having a silver concentration of 100 ppm per hour while stirring, and the results were shown in FIG.

【0023】図3から、Al粒のみの場合の回収率93
%に対し、混合体とした場合の回収率は98%以上とな
り、混合体とした効果が得られたことがわかる。また、
回収された金属は粉体として回収された。
FIG. 3 shows that the recovery rate is 93 when only Al particles are used.
%, The recovery in the case of a mixture was 98% or more, indicating that the effect of the mixture was obtained. Also,
The recovered metal was recovered as a powder.

【0024】実施例 3 卑な金属として3〜5mmAl粒と、不溶性電伝体として
3〜5mmFe粒を、容量比で30:70で混合した混合体
(l)を得た。これを実施例1と同じように充填し、攪
拌を行い、13Vの直流電圧を混合体と陽極間に印加し、
銀濃度100ppm のシアン化銀メッキ希釈液を1時間当り
15l通過させ、銀の回収を行った。直流電圧を印加した
場合と、印加しない場合の銀1gを回収する場合に溶解
したAl溶解量を測定した。回収率はともに98%以上
で、回収銀は粉体として回収された。この結果は表1に
示した。
Example 3 A mixture (1) was obtained by mixing 3 to 5 mm Al particles as a base metal and 3 to 5 mm Fe particles as an insoluble conductor at a volume ratio of 30:70. This was filled and stirred in the same manner as in Example 1, and a DC voltage of 13 V was applied between the mixture and the anode.
Silver cyanide plating diluent with silver concentration of 100ppm per hour
After passing through 15 l, silver was recovered. The amount of dissolved Al was measured when 1 g of silver was recovered when a DC voltage was applied and when no DC voltage was applied. The recovery was both 98% or more, and the recovered silver was recovered as a powder. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、同じ銀量を回収する場
合、直流電圧を印加すると、印加しない場合のAl溶解
量の1/2.5に抑制できることがわかる。
From the results shown in Table 1, it can be seen that when recovering the same amount of silver, applying a DC voltage can suppress the amount of dissolved Al to 1 / 2.5 when no voltage is applied.

【0027】実施例 4 実施例2と同様にして、銀濃度50、500、7000ppm のシ
アン化銀メッキ液希釈液を1時間当り13l通過させ、表
2に示す回収率を得た。
Example 4 In the same manner as in Example 2, 13 L of a silver cyanide plating solution diluent having silver concentrations of 50, 500 and 7000 ppm was passed per hour to obtain a recovery rate shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表2から、低濃度から高濃度液まで高い回
収率が得られることがわかる。
Table 2 shows that a high recovery rate can be obtained from a low concentration to a high concentration liquid.

【0030】実施例 5 3〜5mmAl粒と、不溶性電気伝導体として3〜5mmス
テンレス粒を容量比30:70で混合して混合体を得た。こ
の混合体1lを充填し、攪拌を行い、10Vの直流電圧を
印加しながら、銅イオン濃度50ppm の硫酸銅水溶液を通
過させ、銅の回収試験を行った。この結果、99.0%以
上の回収率が得られ、銅は銅粉として回収された。
Example 5 3-5 mm Al particles and 3-5 mm stainless particles as an insoluble electric conductor were mixed at a volume ratio of 30:70 to obtain a mixture. One liter of the mixture was filled, stirred, and passed through an aqueous solution of copper sulfate having a copper ion concentration of 50 ppm while applying a DC voltage of 10 V to perform a copper recovery test. As a result, a recovery rate of 99.0% or more was obtained, and copper was recovered as copper powder.

【0031】[0031]

【発明の効果】上述の本発明によれば、析出反応場であ
る粒子群8が粒状体表面であるため、反応場の面積が非
常に大きく、低濃度の溶液Aからも効率よく、短時間で
金属粉体として回収される。
According to the above-mentioned present invention, since the particle group 8 which is the precipitation reaction field is the surface of the granular material, the area of the reaction field is very large, and the reaction field can be efficiently used even from a low concentration solution A for a short time. Is collected as metal powder.

【0032】しかも、表面に金属の析出された粒子群8
を攪拌により互いに摺り合わせることにより、金属は粒
子群8の表面から脱落し、金属粉体11として、手間をか
けることなく回収される。
Moreover, the particles 8 on which metal is deposited on the surface
Are rubbed against each other by stirring, the metal falls off the surface of the particle group 8 and is collected as the metal powder 11 without any trouble.

【0033】しかも、粒子群8の表面は析出された金属
が脱落することにより、金属で覆われて置換反応が停止
するようなことがなく、このため、反応が連続して起こ
り、連続回収が可能となる。
In addition, the surface of the particle group 8 is not covered with the metal, and the substitution reaction does not stop due to the fall-off of the deposited metal. Therefore, the reaction occurs continuously, and the continuous recovery is performed. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる回収装置の一具体例の断面図で
ある。
FIG. 1 is a cross-sectional view of a specific example of a recovery device according to the present invention.

【図2】攪拌の有無についての銀の回収量と回収率の比
較を示したグラフである。
FIG. 2 is a graph showing a comparison between a silver recovery amount and a recovery ratio with and without stirring.

【図3】攪拌の有無についての混合比率と銀回収率の比
較を示したグラフである。
FIG. 3 is a graph showing a comparison between a mixing ratio with and without silver stirring and a silver recovery rate.

【符号の説明】[Explanation of symbols]

1 充填機 2 攪拌機 3 底面 4 回収金属受け槽 6 導入口 8 粒子群 9 卑な金属粒子 10 導電性粒子 11 金属粉体 A 溶液 DESCRIPTION OF SYMBOLS 1 Filling machine 2 Stirrer 3 Bottom surface 4 Recovery metal receiving tank 6 Inlet 8 Particle group 9 Base metal particles 10 Conductive particles 11 Metal powder A solution

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回収すべき金属の溶解された溶液を該金
属よりも卑な金属の粒子群に通過して接触させ、回収す
べき金属を該粒子群の表面に析出して回収するに当り、
該粒子群を互いに摺り合わせることにより、該粒子群表
面に析出した回収すべき金属を該表面から落として回収
するとともに、該粒子群表面を常に活性に保つようにし
たことを特徴とする溶液中の金属の回収方法。
1. A method in which a solution in which a metal to be recovered is dissolved is passed through and brought into contact with particles of a metal which is more noble than the metal, and the metal to be recovered is deposited on the surface of the particles and recovered. ,
In the solution, the particles are rubbed against each other to collect the metal to be recovered deposited on the surfaces of the particles from the surface and recover the particles, and to keep the surface of the particles constantly active. Metal recovery method.
【請求項2】 前記粒子群を攪拌することにより互いに
摺り合わすようにした請求項1に記載される溶液中の金
属の回収方法。
2. The method for recovering metal in a solution according to claim 1, wherein the particles are rubbed against each other by stirring.
【請求項3】 前記粒子群が前記卑な金属の粒子群に前
記溶液に不溶な導電性粒子群を混合してなる請求項1に
記載される溶液中の金属の回収方法。
3. The method for recovering metal in a solution according to claim 1, wherein said particle group is obtained by mixing said base metal particle group with a conductive particle group insoluble in said solution.
【請求項4】 前記粒子群に直流電圧を印加するように
した請求項1または3のいずれかに記載される溶液中の
金属の回収方法。
4. The method for recovering a metal in a solution according to claim 1, wherein a DC voltage is applied to the particle group.
【請求項5】 充填塔と、該充填塔に配置された攪拌機
と、該充填塔の底面下方に設置された回収金属受け槽と
を備え、該充填塔は回収すべき金属の溶解された溶液の
導入口を少なくとも備えるとともに、内部に前記回収す
べき金属よりも卑な金属の粒子群を充填し、該粒子群
に、該導入口から導入される回収すべき金属の溶解され
た溶液を前記攪拌機で攪拌しながら接触せしめて該溶液
中の回収すべき金属を該粒子群表面に析出するととも
に、該表面に析出した金属を回収金属受け槽に落下せし
め、回収することを特徴とする溶液中の金属の回収装
置。
5. A packed tower, a stirrer disposed in the packed tower, and a collecting metal receiving tank installed below a bottom surface of the packed tower, wherein the packed tower is a solution in which a metal to be recovered is dissolved. At least the inlet of, the inside is filled with a group of particles of a metal that is more noble than the metal to be recovered, and in the group of particles, a solution in which the metal to be recovered introduced from the inlet is dissolved. Contacting with a stirrer while stirring to precipitate the metal to be recovered in the solution on the surface of the particle group, dropping the metal deposited on the surface into a recovery metal receiving tank, and recovering the solution. Metal recovery equipment.
【請求項6】 請求項5の粒子群が前記卑な金属の粒子
群に、前記溶液に不溶な導電性粒子群を混合させてなる
請求項5に記載される溶液中の金属の回収装置。
6. The apparatus for recovering metal in a solution according to claim 5, wherein the group of particles according to claim 5 is obtained by mixing the group of particles of the base metal with the group of conductive particles insoluble in the solution.
【請求項7】 請求項5または6の粒子群に直流電圧を
印加するようにした請求項5または6のいずれかに記載
される溶液中の金属の回収装置。
7. The apparatus for recovering metal in a solution according to claim 5, wherein a DC voltage is applied to the particle group according to claim 5 or 6.
JP9039859A 1997-02-07 1997-02-07 Method for recovering metal in solution and device therefor Pending JPH10219363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9039859A JPH10219363A (en) 1997-02-07 1997-02-07 Method for recovering metal in solution and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9039859A JPH10219363A (en) 1997-02-07 1997-02-07 Method for recovering metal in solution and device therefor

Publications (1)

Publication Number Publication Date
JPH10219363A true JPH10219363A (en) 1998-08-18

Family

ID=12564708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9039859A Pending JPH10219363A (en) 1997-02-07 1997-02-07 Method for recovering metal in solution and device therefor

Country Status (1)

Country Link
JP (1) JPH10219363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122535A1 (en) * 2014-02-17 2015-08-20 国立大学法人高知大学 Nickel powder production method
JP2015151582A (en) * 2014-02-14 2015-08-24 田中貴金属工業株式会社 Method for recovering gold or silver from gold or silver-containing cyanogen-based waste fluid
JP2015166489A (en) * 2014-02-17 2015-09-24 国立大学法人高知大学 Method for producing nickel powder
CN108315557A (en) * 2018-04-06 2018-07-24 辽宁天利金业有限责任公司 A kind of zinc dust precipitation experimental rig

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151582A (en) * 2014-02-14 2015-08-24 田中貴金属工業株式会社 Method for recovering gold or silver from gold or silver-containing cyanogen-based waste fluid
WO2015122535A1 (en) * 2014-02-17 2015-08-20 国立大学法人高知大学 Nickel powder production method
WO2015122534A1 (en) * 2014-02-17 2015-08-20 国立大学法人高知大学 Nickel powder production method
JP2015166489A (en) * 2014-02-17 2015-09-24 国立大学法人高知大学 Method for producing nickel powder
JP2015166488A (en) * 2014-02-17 2015-09-24 国立大学法人高知大学 Method for producing nickel powder
CN106029268A (en) * 2014-02-17 2016-10-12 国立大学法人高知大学 Nickel powder production method
CN106029269A (en) * 2014-02-17 2016-10-12 住友金属矿山株式会社 Nickel powder production method
CN106029269B (en) * 2014-02-17 2017-12-12 住友金属矿山株式会社 The manufacture method of nickel powder
CN108315557A (en) * 2018-04-06 2018-07-24 辽宁天利金业有限责任公司 A kind of zinc dust precipitation experimental rig

Similar Documents

Publication Publication Date Title
US4128462A (en) Electrochemical process for recovering precious metals from their ores
AU2006219725A1 (en) Electrochemical method and apparatus for removing oxygen from a compound or metal
AU2004272647A1 (en) An electrolytic cell for removal of material from a solution
WO1997046490A1 (en) Removal of metal salts by electrolysis using an ion exchange resin containing electrode
US20070207083A1 (en) Process and method for recovery of halogens
JPH10219363A (en) Method for recovering metal in solution and device therefor
US3677918A (en) Method for directly electrochemically extracting gallium from a circulating aluminate solution in the bayer process by eliminating impurities
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
IL157582A (en) Method and device for recovering metals with pulsating cathode currents also combined with anode coupling processes
JPS61106788A (en) Metal collecting method and its device
WO1982000303A1 (en) A process for recovering noble metals and an electrolyzer for use in the process
CN211170902U (en) PCB moves back tin waste liquid and retrieves and cyclic regeneration device
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
EP0915190A2 (en) Process and apparatus for supplying metal ions to alloy electroplating bath
WO1992014866A1 (en) Process for the recovery of metallic lead from battery paste
Avci Electrolytic recovery of gold from aqueous solutions
JP2594802B2 (en) Electrolytic reduction method
JP3258752B2 (en) Method and apparatus for recovering nickel mixed in plating solution
SU1004488A1 (en) Method of electric deposition of metals
AU2001272231B2 (en) Process and method for recovery of halogens
JP6553596B2 (en) Metal recovery method and metal recovery system, solution regeneration method and solution recycling system
KR20130009550A (en) Noble metal electrolysis collecting method
JPH0527093A (en) Processing of radioactive metallic sludge
JPH05171309A (en) Device for removing and recovering noble metal from aqueous solution