JPS627900A - Method for supplying zinc ion to galvanizing bath - Google Patents

Method for supplying zinc ion to galvanizing bath

Info

Publication number
JPS627900A
JPS627900A JP14528985A JP14528985A JPS627900A JP S627900 A JPS627900 A JP S627900A JP 14528985 A JP14528985 A JP 14528985A JP 14528985 A JP14528985 A JP 14528985A JP S627900 A JPS627900 A JP S627900A
Authority
JP
Japan
Prior art keywords
zinc
ions
metallic
metal
galvanizing bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14528985A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Atsuyoshi Shibuya
澁谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14528985A priority Critical patent/JPS627900A/en
Publication of JPS627900A publication Critical patent/JPS627900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To facilitate the dissolution of metallic zinc by dissolving zinc in a soln. contg. tervalent iron ions and ions of a metal having a higher electric potential and a lower hydrogen overvoltage than zinc and by supplying the resulting soln. to a galvanizing bath. CONSTITUTION:When zinc ions are replenished during galvanization using an insoluble electrode, metallic zinc is dissolved in an aqueous soln. contg. 50-1,000ppm tervalent iron ions and 10-400ppm ions of a metal having a higher electric potential and a lower hydrogen overvoltage than zinc, e.g., Ni, Bi, Tl or Pb. The resulting soln. contg. zinc ions is supplied to a galvanizing bath. By the effect of the coexisting tervalent iron ions and other metallic ions, the deposition of impurities by substitution is facilitated and a hydrogen generating reaction, that is, a zinc dissolving reaction is accelerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、亜鉛めっき浴への亜鉛イオン供給方法、特に
不溶性電極を陽極として使用する電気亜鉛めっき法にお
いてめっき浴に亜鉛イオンを補充するためのその供給方
法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for supplying zinc ions to a galvanizing bath, particularly for replenishing zinc ions to a galvanizing bath in an electrogalvanizing method using an insoluble electrode as an anode. regarding its supply method.

(従来の技術) 亜鉛系電気めっきにおいて、浴中への亜鉛イオン供給方
法として次のような方法が従来より行われている。
(Prior Art) In zinc-based electroplating, the following method has been conventionally used as a method for supplying zinc ions into a bath.

不溶性陽極を用いた場合: これは、陽極として鉛、鉛−銀、−錫、−アンチモン系
鉛合金、カーボン、白金などを使用するものであって、
めっき浴への亜鉛イオン供給源として、金属亜鉛と比べ
溶解速度、溶解度のおおき−な水酸化亜鉛または炭酸亜
鉛あるいはそれらと酸化亜鉛との混合物をp)I=3〜
5で溶解して用いる(例:特開昭50−85531号お
よび同55−152167号)。しかし、亜鉛原単位が
金属亜鉛に比べ高いのが欠点である。
When using an insoluble anode: This uses lead, lead-silver, -tin, -antimony-based lead alloy, carbon, platinum, etc. as the anode.
As a source of zinc ions to the plating bath, use zinc hydroxide, zinc carbonate, or a mixture thereof with zinc oxide, which has a higher dissolution rate and solubility than metal zinc, or a mixture of these and zinc oxide p) I = 3 ~
(Example: JP-A-50-85531 and JP-A-55-152167). However, the drawback is that the zinc consumption rate is higher than that of metal zinc.

この点、極低pH(0,1〜0.5)で操業すれば、そ
のようなめっき浴に比較的容易に溶解するため金属亜鉛
の溶解供給は可能となる。しかし、そのような極低po
ではめっき槽および配管部の腐食が問題となり、めっき
液に接する個所の装置部材に高耐食性を有する高価な材
料を用いる必要があるなど、却って設備費が嵩む。
In this regard, if the operation is performed at an extremely low pH (0.1 to 0.5), metal zinc can be dissolved and supplied because it is relatively easily dissolved in such a plating bath. However, such extremely low po
In this case, corrosion of the plating bath and piping becomes a problem, and equipment costs increase because it is necessary to use expensive materials with high corrosion resistance for parts of the equipment that come into contact with the plating solution.

なお、亜鉛ドロス、スラグなどを第2鉄イオンの存在下
で処理して亜鉛イオンを選択的に溶出させ、亜鉛めっき
浴への供給源とすることも提案されている(特開昭54
−155131号)。
It has also been proposed that zinc dross, slag, etc. be treated in the presence of ferric ions to selectively elute zinc ions and use them as a supply source to the zinc plating bath (Japanese Patent Application Laid-Open No. 1983-1999)
-155131).

可溶性電極を用いた場合: これは、金属亜鉛を陽極として使用し、それがめつき処
理中、消耗、溶解することによってめっき浴に亜鉛イオ
ンを供給するのである。金属亜鉛が陽極を構成するため
、原単位は低いが、電極交換のハンドリングが困難で、
近接電解時に電極間距離を一定に保持するのも困難であ
る。
Using a soluble electrode: This uses metallic zinc as an anode, which is consumed and dissolved during the plating process, supplying zinc ions to the plating bath. Metallic zinc constitutes the anode, so the consumption rate is low, but it is difficult to handle when replacing the electrode.
It is also difficult to maintain a constant distance between electrodes during close electrolysis.

かくして、本質的に亜鉛イオンが連続的に消耗される亜
鉛めっき浴に絶えず亜鉛イオンを供給することはいずれ
の場合にあっても不可欠であって、技術的にもまた経済
的にも優れた方式の確立が望まれている。
Thus, a constant supply of zinc ions to the galvanizing bath, which is essentially continuously depleted of zinc ions, is in any case essential and is a technically and economically superior method. It is hoped that the establishment of

(発明が解決しようとする問題点) 前記不溶性陽極を用いためっきの場合、比較的めっき操
業条件の管理が容易であり、且つ操業上の問題も少なく
合金めっきを同時に行えるという利点から、近年の亜鉛
めっき鋼板の製造ラインは、その多くが不溶性陽極を用
いた方式となっている。
(Problems to be Solved by the Invention) In the case of plating using the above-mentioned insoluble anode, the plating operating conditions are relatively easy to manage, there are few operational problems, and alloy plating can be performed at the same time. Most production lines for galvanized steel sheets use an insoluble anode.

ところで、このような不溶性陽極を用いて特に亜鉛の厚
目付鋼板を製造する場合、亜鉛源が高価であるため、コ
スト高となり、したがってその原単位低減が望まれてい
る。その際、溶解速度が遅いが、原単位の低い金属亜鉛
を亜鉛源として用いることは非常に経済的にも有利であ
る。
By the way, when producing a thick zinc-grained steel sheet using such an insoluble anode, the cost is high because the zinc source is expensive, and therefore it is desired to reduce the consumption rate. In this case, it is very economically advantageous to use metallic zinc, which has a slow dissolution rate but a low basic unit, as a zinc source.

゛ 、ここに、本発明者らは、不溶性電極を用いる場合
について、金属亜鉛の溶解を促進する手段および金属亜
鉛イオン含有液のめっき浴への供給方式 ゛について種
々検討を重ねたところ、めらき槽とは別個に金属亜鉛の
溶解槽を設け、そこで金属亜鉛の溶解処理を行うことが
効果的であることを知り、さらに実験を重ねたところ、
3価の鉄イオン(Fe3+)および亜鉛よりも標準電極
電位(以下、単に「電位」という)が責でありかつ亜鉛
よりも水素過電圧の低い金属のイオンを共存させた条件
下では、それらの相乗効果によって、金属亜鉛の熔解が
一層促進されることを知り、本発明を完成した。
゛ Here, the present inventors have conducted various studies regarding means for promoting the dissolution of metallic zinc and methods for supplying a solution containing metallic zinc ions to a plating bath when using an insoluble electrode, and have found that the results show that After learning that it is effective to set up a dissolving tank for metallic zinc separately from the tank and dissolving metallic zinc there, we conducted further experiments.
Under conditions in which trivalent iron ions (Fe3+) and metal ions whose standard electrode potential (hereinafter simply referred to as "potential") is higher than that of zinc and whose hydrogen overpotential is lower than that of zinc coexist, their synergism increases. The present invention was completed based on the knowledge that this effect further promotes the dissolution of metallic zinc.

ここに、本発明は、3価の鉄イオン50〜too、op
p−と、亜鉛よりも電位が貴でありかつ亜鉛よりも水素
過電圧の低い金属のイオン10〜400ppmとを共存
させた溶液中に金属亜鉛を溶解し、得られた亜鉛イオン
含有水溶液を亜鉛めっき浴へ供給することを特徴とする
、亜鉛めっき浴への亜鉛イオン供給方法である。
Here, the present invention provides trivalent iron ions 50~too, op
Metallic zinc is dissolved in a solution containing p- and 10 to 400 ppm of ions of a metal whose potential is more noble than zinc and whose hydrogen overvoltage is lower than that of zinc, and the resulting zinc ion-containing aqueous solution is used for galvanizing. This is a method for supplying zinc ions to a galvanizing bath.

金属亜鉛の溶解反応は次の式によって表すことができる
The dissolution reaction of metallic zinc can be expressed by the following equation.

Zn  −*  Zn”  +  2e−・・・・・・
■2H”   +  2e−−L   °°°°゛■金
属亜鉛は水素過電圧が高いため、■の反応が律速になり
、その溶解速度が極めて低い。本発明においては、亜鉛
めっき浴中に亜鉛イオン以外の2種の金属イオン種を共
存させることによりその溶解を促進するものである。
Zn −* Zn” + 2e−・・・・・・
■2H" + 2e--L °°°°゛■ Metallic zinc has a high hydrogen overvoltage, so the reaction in (2) becomes rate-limiting and its dissolution rate is extremely low. In the present invention, zinc ions The coexistence of two other metal ion species promotes their dissolution.

一般に、微量イオンを全く含まない浴では金属亜鉛の溶
解速度は極めて遅いが、亜鉛よりも責な微量イオンを溶
存させることにより、亜鉛表面にそれらが置換析出し、
責な金属上で前記■の反応が促進されることは良く知ら
れている。
Generally, the dissolution rate of metallic zinc is extremely slow in a bath that does not contain any trace ions, but by dissolving trace ions that are more harmful than zinc, they are substituted and precipitated on the zinc surface.
It is well known that the reaction ① above is accelerated on metals that are harmful to metals.

しかしながら、本発明によれば、3価の鉄イオン(Fe
” )と亜鉛よりも電位が貴でありかつ亜鉛よりも水素
過電圧の低い金属のイオンとをそれぞれ50〜1100
0ppおよび10〜400ppII+共存させた溶液中
に金属亜鉛を溶解させるのであって、本発明者らの知見
によれば、Fe’+との共存効果は、Fe”−Fe3°
の反応が速いため、共存不純物の置換析出が゛促進され
、水素発生反応即ちZn?1j解反応が半反応れる。こ
のため金属亜鉛の溶解反応は相乗的に改善され、従来者
えられなかった程、効果的にその溶解反応が進むのであ
る。
However, according to the present invention, trivalent iron ions (Fe
) and ions of a metal whose potential is more noble than zinc and whose hydrogen overpotential is lower than that of zinc, respectively, at a concentration of 50 to 1100.
Metallic zinc is dissolved in a solution containing 0 pp and 10 to 400 ppII+, and according to the findings of the present inventors, the coexisting effect with Fe'+ is Fe''-Fe3°
Because the reaction of Zn? 1j solution reaction is half reaction. Therefore, the dissolution reaction of metallic zinc is improved synergistically, and the dissolution reaction proceeds more effectively than was previously possible.

ここに、本発明により金属亜鉛を溶解させるのは酸性溶
液であって、めっき浴としてめっき槽に供給できるもの
であれば特に制限はない。しかし、通常は、pH・3〜
5の硫酸水溶液である。
According to the present invention, the acidic solution used to dissolve metallic zinc is not particularly limited as long as it can be supplied to the plating bath as a plating bath. However, usually pH 3~
This is an aqueous sulfuric acid solution of No. 5.

なお、その性質上、本発明において規定する共存金属イ
オンを供給するものであれば、不純物としてそれらの金
属を含有する金属亜鉛であってもよい。
Note that metallic zinc containing such metals as impurities may be used as long as it supplies the coexisting metal ions specified in the present invention due to its properties.

(作用) 添付図面を参照しながら以下、本発明をさらに説明する
(Operation) The present invention will be further described below with reference to the accompanying drawings.

第1図は、本発明にかかる方法を示すフローシートであ
り、金属亜鉛を溶解する溶解槽10からは適宜固液分離
手段12を経てストレージタンク14に亜鉛イオン含有
溶液、例えば硫酸水溶液が送られ、次いで必要に応じ適
宜量だけこの亜鉛イオン含有溶液はめっき槽16に送ら
れる。あるいは、このストレージタンク14とめっき槽
16との間には絶えず循環流が見られるようにして、常
にめっき浴組成を一定に保っているようにしても−よい
。−ここに、本発明によれば、前記溶解槽にあって、3
価の鉄イオンと、亜鉛よりも電位が責であって、かつ亜
鉛よりも水素過電圧の低い金属のイオン、例えば、Ni
、 B+、  Tj!、 Pb等のイオンとが共存する
FIG. 1 is a flow sheet showing the method according to the present invention, in which a zinc ion-containing solution, for example, a sulfuric acid aqueous solution, is sent from a dissolution tank 10 for dissolving metallic zinc to a storage tank 14 via a solid-liquid separation means 12 as appropriate. Then, an appropriate amount of this zinc ion-containing solution is sent to the plating tank 16 as required. Alternatively, a circulating flow may be constantly provided between the storage tank 14 and the plating bath 16, so that the plating bath composition is always kept constant. - Here, according to the invention, in the dissolution tank, 3
valent iron ions and metal ions whose potential is higher than that of zinc and whose hydrogen overvoltage is lower than that of zinc, such as Ni.
, B+, Tj! , Pb, and other ions coexist.

第2図は、粒径100メツシユの各金属粒を温度50℃
、PH−2,0の硫酸溶液に60分間溶解したときの、
各時間における溶解量をグラフで示したものであるが1
、図示例の場合、Fe”  とNi”との共存効果には
著しいものがあることが分かる。
Figure 2 shows the temperature of each metal grain of 100 mesh at 50°C.
, when dissolved in sulfuric acid solution of PH-2.0 for 60 minutes,
This is a graph showing the amount dissolved at each time.
In the illustrated example, it can be seen that the coexistence effect of Fe'' and Ni'' is significant.

なお、Ni以外の金属イオンについても一連の実験結果
から亜鉛より貴でありかつ水素過電圧の低い金属につい
て同様の効果がみれれることを確認した。
In addition, it was confirmed from a series of experimental results that similar effects can be seen for metal ions other than Ni, which are nobler than zinc and have a lower hydrogen overvoltage.

ところで、Fe’″(3価の鉄イオン)はその量が多い
程金属亜鉛の溶解を促進する上では有利であ゛るが、一
般的にFe”は片面めっき時において銅帯裸面の酸ヤケ
現象を起こすが、本発明者らはこの点について実操業ラ
インで実験した結果、1000pp蒙程度以下ではその
現象は、実際上越とらないことを確認した。しかし、本
発明の所期の目的である金属亜鉛の溶解速度を向上させ
るためには少なくとも50ppm以上必要とする。好ま
しくは、100〜500ppmである。なお、上記鉄イ
オンは上述の範囲内であればクロメート反応性、被膜の
加工密着性に悪影響を及ぼさないことを確認した。
Incidentally, the larger the amount of Fe''' (trivalent iron ion), the more advantageous it is in promoting the dissolution of metallic zinc, but generally, Fe''' is used as an acid ion on the bare surface of the copper strip during single-sided plating. However, as a result of experiments on actual production lines, the inventors of the present invention confirmed that this phenomenon does not actually occur at a concentration of about 1,000 ppm or less. However, in order to improve the dissolution rate of metal zinc, which is the intended purpose of the present invention, it is necessary to add at least 50 ppm or more. Preferably it is 100 to 500 ppm. It was confirmed that the iron ion content within the above range did not adversely affect the chromate reactivity and the processing adhesion of the film.

本発明において、上述の鉄イオンと少なくとも一種共存
すべき他の共存元素(Ni”、Bi’°、Tβ目・′″
、pb”“・4◆等)は、10〜400ppmの範囲内
の量において所期の効果が発揮されるが、さらに好まし
くは、15〜200ppmである。これらの共存弄素イ
オンはクロメート反応性、加工密着性に多少影響するが
、上述の範囲内であるかぎり、Fe3°との共存下では
影響は少ない。この範囲内において、この共存イオン種
合計濃度は低い程良いが、余り低いとクロメート反応性
を多少低下させる可能性があり、そのためその下限を厳
格に規定するのが望ましい。
In the present invention, at least one other coexisting element (Ni", Bi'°, Tβ order/'"
, pb""・4◆, etc.) exhibits the desired effect in an amount within the range of 10 to 400 ppm, more preferably 15 to 200 ppm. These coexisting chlorine ions have some influence on chromate reactivity and processing adhesion, but as long as they are within the above-mentioned range, their influence is small in the coexistence with Fe3°. Within this range, the lower the total concentration of coexisting ionic species is, the better; however, if it is too low, the chromate reactivity may be reduced to some extent, so it is desirable to strictly define the lower limit.

第1表は、Fe”イオン300.700.1l100p
p含有する硫酸水溶液中に各金属イオンを共存させた状
態で亜鉛めっきを行ったときに、それぞれ得られためっ
き綱板の加工密着性およびクロメート反応性を下記条件
で試験した結果および鋼板表面の酸ヤケの有無を調べた
結果をまとめたものである。
Table 1 shows Fe” ion 300.700.1l100p
When galvanizing was carried out in the coexistence of each metal ion in an aqueous solution of sulfuric acid containing p, the processing adhesion and chromate reactivity of the plated steel sheets obtained were tested under the following conditions, and the results of the tests on the surface of the steel sheet. This is a summary of the results of examining the presence or absence of acid discoloration.

皿鐙及ユ皇魚作: 被処理鋼板 : 5PCG O,8mm厚X 100n
+m巾X 100mm長めっき浴組成: ZnSOs 
 ・7HtO= 500 (g/ A’ )、NatS
On = 1100(/ j! )浴温度   : 5
0 (’C) 電流密度  : 70 (A/dmz)めっき量  :
 20 (g/m”) 加工密着性試験(円筒深絞り): 5011IIIφ試験片、30mmφ円筒円筒深絞り 外面テープ剥離 目視4段階評価 、クロメート反応性試験: 試験液:バーカー製ZM352 5秒浸漬螢光X線にて
Cr付着および 5ST20 (hr)後の赤サビ発生量を4段階評価第
1表 (頬に−とプ() 悌1表のつづき) (滋◎:優、 O:やや優、 △:やや不良、 ×:不
良次に、本発明を実施例によってさらに説明する。
Made by Sarasugi and Yu Huangyu: Steel plate to be treated: 5PCG O, 8mm thickness x 100n
+m width x 100mm length Plating bath composition: ZnSOs
・7HtO=500 (g/A'), NatS
On = 1100 (/j!) Bath temperature: 5
0 ('C) Current density: 70 (A/dmz) Plating amount:
20 (g/m") Processing adhesion test (cylindrical deep drawing): 5011IIIφ test piece, 30mmφ cylindrical deep drawing outer surface tape peeling visual evaluation in 4 stages, chromate reactivity test: Test liquid: Barker ZM352 5 seconds immersion fluorescence Table 1: 4-grade evaluation of Cr adhesion and amount of red rust generated after 5ST20 (hr) using X-rays (Continuation of Table 1) (Shige ◎: Excellent, O: Fairly good, △ : Slightly poor, ×: Poor Next, the present invention will be further explained with reference to Examples.

実施例1 本発明にしたがい、パイロットプラントレベルで実際の
装置を使って、溶解実験を行った。本例では、充填槽に
高純度金属亜鉛(20〜40メツシユ)を充填し、固定
床としこれにメッキ浴としてZn5Oa ・7HzO=
500 g/ 1、NazSO4=100 g/ 41
の組成のものを使用し、このメッキ浴にFe”と各金属
イオンをそれぞれ濃度および共存金属イオンを変えた硫
酸水溶液(pH=2.0 、溶温度=50℃)を流下さ
せながら金属亜鉛を溶解させデ填槽の出口にはステンレ
ス鋼製のフィルターを設けており、金属亜鉛の平均溶解
量とこのフィルターの口詰りとを観察した。結果を第2
表にまとめて示す。なお、比較例としてp e 2 +
と金属イオンを含まないときおよびどちらか一方のイオ
ンのみの場合のときの溶解量も併記して示す。
Example 1 According to the present invention, dissolution experiments were conducted using actual equipment at the pilot plant level. In this example, a filling tank is filled with high-purity metallic zinc (20 to 40 meshes) to form a fixed bed and a plating bath of Zn5Oa 7HzO=
500 g/1, NazSO4=100 g/41
Using a plating bath with a composition of A stainless steel filter was installed at the outlet of the melting and defilling tank, and the average amount of dissolved metal zinc and clogging of this filter were observed.
They are summarized in the table. In addition, as a comparative example, p e 2 +
The amount dissolved in the case where no metal ion is included and when only one of the ions is included is also shown.

実施例2 本例では、充填槽の下部から上記硫酸水溶液の吹き込み
をおこなって流動床とした点を除いて実施例1を繰り返
した。金属亜鉛粉末の液中での混合効果が大きいため溶
解が促進される。結果を同じく第2表にまとめて示す。
Example 2 In this example, Example 1 was repeated except that the aqueous sulfuric acid solution was blown into the tank from the bottom to create a fluidized bed. Dissolution is promoted because the mixing effect of metal zinc powder in the liquid is large. The results are also summarized in Table 2.

第2表 an表のつづき) (発明の効果) 以上説明したように、本発明によれば、金属亜鉛の溶解
速度は従来の方法に比較して飛躍的に増大し、不溶性陽
極を用いる方式の利益がさらに一層効果的に利用できる
のであって、その実際上の効果には大なるものがある。
(Continuation of Table 2 an) (Effects of the invention) As explained above, according to the present invention, the dissolution rate of metallic zinc is dramatically increased compared to the conventional method, and the method using an insoluble anode Profits can be used even more effectively, and the practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる方法を利用しためっき装置の
概念構成図;および 第2図は、本発明における各金属イオンの金属亜鉛溶解
に及ぼす共存効果を示すグラフである。
FIG. 1 is a conceptual block diagram of a plating apparatus using the method according to the present invention; and FIG. 2 is a graph showing the coexistence effect of each metal ion on metal zinc dissolution in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 3価の鉄イオン50〜1000ppmと、亜鉛よりも電
位が貴でありかつ亜鉛よりも水素過電圧の低い金属のイ
オン10〜400ppmとを共存させた溶液中に金属亜
鉛を溶解し、得られた亜鉛イオン含有水溶液を亜鉛めっ
き浴へ供給することを特徴とする、亜鉛めっき浴への亜
鉛イオン供給方法。
Zinc obtained by dissolving metallic zinc in a solution containing 50 to 1000 ppm of trivalent iron ions and 10 to 400 ppm of ions of a metal whose potential is nobler than that of zinc and whose hydrogen overvoltage is lower than that of zinc. A method for supplying zinc ions to a galvanizing bath, the method comprising supplying an ion-containing aqueous solution to the galvanizing bath.
JP14528985A 1985-07-02 1985-07-02 Method for supplying zinc ion to galvanizing bath Pending JPS627900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14528985A JPS627900A (en) 1985-07-02 1985-07-02 Method for supplying zinc ion to galvanizing bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14528985A JPS627900A (en) 1985-07-02 1985-07-02 Method for supplying zinc ion to galvanizing bath

Publications (1)

Publication Number Publication Date
JPS627900A true JPS627900A (en) 1987-01-14

Family

ID=15381694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14528985A Pending JPS627900A (en) 1985-07-02 1985-07-02 Method for supplying zinc ion to galvanizing bath

Country Status (1)

Country Link
JP (1) JPS627900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004359A1 (en) * 1989-09-22 1991-04-04 Electricity Association Services Limited Improvements in or relating to the electrodeposition of zinc or zinc alloy coatings
JP2001316859A (en) * 2000-02-29 2001-11-16 Asahi Kasei Corp Corrosion inhibition method for metallic material
DE102004038650A1 (en) * 2004-08-09 2006-02-23 Coutelle, Rainer, Dr. Process for the dissolution of zinc in alkalis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004359A1 (en) * 1989-09-22 1991-04-04 Electricity Association Services Limited Improvements in or relating to the electrodeposition of zinc or zinc alloy coatings
EP0493479B1 (en) * 1989-09-22 1994-04-27 Ea Technology Limited Improvements in or relating to the electrodeposition of zinc or zinc alloy coatings
JP2001316859A (en) * 2000-02-29 2001-11-16 Asahi Kasei Corp Corrosion inhibition method for metallic material
JP4565734B2 (en) * 2000-02-29 2010-10-20 旭化成エンジニアリング株式会社 Method for inhibiting corrosion of metal materials
DE102004038650A1 (en) * 2004-08-09 2006-02-23 Coutelle, Rainer, Dr. Process for the dissolution of zinc in alkalis
DE102004038650B4 (en) * 2004-08-09 2006-10-26 Coutelle, Rainer, Dr. Process for the dissolution of zinc in alkalis

Similar Documents

Publication Publication Date Title
Lu et al. Manganese electrodeposition—A literature review
US2355070A (en) Electrolytic deposition of metal
CN113818055B (en) Component adjusting method and device for acid copper electroplating plating solution or electroplating replenishment solution of insoluble anode
US7833404B2 (en) Electrolytic phosphate chemical treatment method
CA2027656C (en) Galvanic dezincing of galvanized steel
EP1626098A2 (en) Process of dissolving zinc in alkaline brines
JPS627900A (en) Method for supplying zinc ion to galvanizing bath
US2704273A (en) Process for chromium electrodeposition
PL95746B1 (en) METHOD OF GALVANIC TINNING
WO1996002689A1 (en) Process for electrochemically dissolving a metal such as zinc or tin
US2377229A (en) Electrolytic deposition of chromium
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JPH1060683A (en) Electroplating with ternary system zinc alloy, and its method
JPS62243798A (en) Method for feeding zn ion during galvanizing
JPS58151489A (en) Iron-zinc alloy plating method
AU2013381287B2 (en) Production method for electrolytic copper
JPH06316795A (en) Method and device for feeding metal ion into plating liquid
GB2027055A (en) Manganese coating of steels
US2384301A (en) Electrolytic deposition of tungsten
JPS586792B2 (en) Aenion no Metsukiyokuhenokiyoukiyuhouhou
JPH01275799A (en) Method for feeding zn ion in galvanizing
Bell A Laboratory Technique for the Electrodeposition of Manganese on Other Metals
AU2015210369A1 (en) Production method for electrolytic copper
JPS6230898A (en) Method and apparatus for replenishing metallic component to plating bath