JPH01275799A - Method for feeding zn ion in galvanizing - Google Patents

Method for feeding zn ion in galvanizing

Info

Publication number
JPH01275799A
JPH01275799A JP10389588A JP10389588A JPH01275799A JP H01275799 A JPH01275799 A JP H01275799A JP 10389588 A JP10389588 A JP 10389588A JP 10389588 A JP10389588 A JP 10389588A JP H01275799 A JPH01275799 A JP H01275799A
Authority
JP
Japan
Prior art keywords
metal
galvanizing
soln
ions
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10389588A
Other languages
Japanese (ja)
Inventor
Akira Matsuda
晃 松田
Akiyoshi Nakatsu
中津 朗善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10389588A priority Critical patent/JPH01275799A/en
Publication of JPH01275799A publication Critical patent/JPH01275799A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To rapidly replenish a galvanizing soln. with Zn ions when Zn ions in the soln. are consumed in galvanizing with an insoluble anode, by immersing metallic Zn and a metal having higher electric potential than Zn in the galvanizing soln. CONSTITUTION:The concn. of Zn ions in a galvanizing soln. used in galvanizing with an insoluble anode lowers in accordance with the progress of a galvanizing reaction. When the concn. lowers, the galvanizing soln. 2 is circulated in a Zn dissolution vessel 1 contg. metallic Zn powder or granules 5 and bars 6 of a metal having higher electric potential than Zn, e.g., Pt, Au, Ag, Pd, In, Nb, Fe, Cr, Mo, Ni, Cd, Co or Sn in a net 4 made of a metal having higher electric potential than Zn in the direction of arrows through filter cloth 3. The metallic Zn 5 is rapidly dissolved in the galvanizing soln. 2 by the presence of the bars 6 and the net 4 having higher electric potential to rapidly raise the concn. of Zn ions in the soln. 2 to a prescribed value.

Description

【発明の詳細な説明】 (産業上の利用分野) ・ 本発明は電気Znメッキ、特に不溶性電極を用いる電気
ZnメッキにおけるZnイオンの供給方法に関するもの
でおる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) - The present invention relates to a method for supplying Zn ions in electrolytic Zn plating, particularly in electrolytic Zn plating using an insoluble electrode.

〔従来の技術〕[Conventional technology]

不溶性陽極を用いた電気Znメッキは、一般に硫酸塩浴
が用いられ、陰極反応及び陽極反応は、 陰極反応 Zn2”十′2e−→Zn・・・・・・・・
(1)陽極反応 SO4”−+H20→ HzSO++HOz+28− ・・・・(2)であり、
陰極では(1)式のようにZnの析出によりメッキ液中
のZnイオンの減少が起り、陽極では(2)式のように
pHの低下が起るため、Znイオンの補給とメッキ液の
pH調整が必要である。即ち硫酸塩を主としたZnメッ
キ液中で不溶性陽極を用いて電気メッキを行う場合、金
属ZnをZnイオンの補給に用いるとZ rl +Hz
SO4−+ Z n 3Q4+l(2・・−・−・・・
・(3)の反応が生じ、上記(1)式のZnイオンの供
給と、(2)式のメッキ液pHの低下と(3)式のpH
上昇がバランスし、メッキ液1)Hが一定に維持される
利点がある。
In electrolytic Zn plating using an insoluble anode, a sulfate bath is generally used, and the cathodic reaction and anodic reaction are as follows:
(1) Anodic reaction SO4”-+H20→ HzSO++HOz+28- (2),
At the cathode, the Zn ions in the plating solution decrease as shown in equation (1), and at the anode, the pH decreases as shown in equation (2). Adjustments are required. That is, when electroplating is performed using an insoluble anode in a Zn plating solution mainly containing sulfate, if metallic Zn is used to replenish Zn ions, Z rl +Hz
SO4−+ Z n 3Q4+l(2・・−・−・・・
- The reaction (3) occurs, supplying Zn ions in the above equation (1), decreasing the pH of the plating solution in the equation (2), and decreasing the pH in the equation (3).
There is an advantage that the increase is balanced and the plating solution 1)H is maintained constant.

Znイオンの供給源として金属Zn粉末またはZno、
Zn (Of−!z)、ZnCO3等の金属塩粉末をメ
ッキ液に溶解させ、Znイオンを補給する方法が、特公
昭60’−18598号公報等に開示されている。また
金属Znを溶解するのに、金属ZnにZnより員な金属
を合金化させ、Znの溶解速度を向上させる方法が特開
昭62−243798号公報に開示されている。
Metallic Zn powder or Zno as a source of Zn ions,
A method of replenishing Zn ions by dissolving metal salt powder such as Zn (Of-!z) or ZnCO3 in a plating solution is disclosed in Japanese Patent Publication No. 18598/1986. Furthermore, Japanese Patent Laid-Open No. 62-243798 discloses a method of alloying metal Zn with a metal more powerful than Zn to improve the dissolution rate of Zn.

(発明が解決しようとする課題〕 しかしながら硫駿塩を主体としたZnメッキ浴中では、
金属Znの溶解に伴い、メッキ液のDHが上昇し、金属
Znの表面に生成する水酸化物の皮膜を形成し、金属Z
nの溶解速度が著しく減少する。また金属塩粉末は金属
Znに比べて溶解速度は極めて大きいが、コスト高とな
り、ハンドリング作業設備費も高価なものとなる。
(Problem to be solved by the invention) However, in a Zn plating bath mainly containing sulfur salt,
As metal Zn dissolves, the DH of the plating solution increases, forming a hydroxide film on the surface of metal Zn, and dissolving metal Zn.
The dissolution rate of n is significantly reduced. Furthermore, although the dissolution rate of metal salt powder is much higher than that of metal Zn, the cost is high, and the cost of handling equipment is also high.

更に金属ZnにZnより貞な金属を合金化させたもので
は、合金化のためコストアップとなる事や、溶解後のZ
nより真な金属の粉の除去に必要なハンドリング作業設
備費も高価なものとなり、メッキ液への粉の混入による
Zn被膜の特性劣化等の問題があり、実用的でない。
Furthermore, when metal Zn is alloyed with a metal that is more pure than Zn, the cost increases due to alloying, and the Zn after melting increases.
The cost of the handling equipment required to remove the true metal powder is also high, and there are problems such as deterioration of the characteristics of the Zn coating due to the powder mixed into the plating solution, making it impractical.

一般に金属Znの溶解速度を大きくするためには、(イ
)金属Znの化学的溶解(腐食)条件を厳しくする。(
ロ)金属Znの表面積を大きくする等の手段があげられ
る。(イ)の具体策としてメッキ液のpHを下げ、温度
を上げ、液流速を上げ、更にZnイオン濃度を下げる。
Generally, in order to increase the dissolution rate of metal Zn, (a) chemical dissolution (corrosion) conditions for metal Zn are made stricter. (
(b) Measures such as increasing the surface area of metal Zn can be cited. Specific measures for (a) include lowering the pH of the plating solution, increasing the temperature, increasing the solution flow rate, and further lowering the Zn ion concentration.

(ロ)の具体策としてメッキ液への被接触金属Zn量を
多くし、金属Zn塊を粉砕して微細化する等があり、そ
れぞれその効果を上げている。
Specific measures for (b) include increasing the amount of metal Zn in contact with the plating solution and pulverizing metal Zn lumps to make them finer, each of which has been effective.

しかしこれ等の対策、手段には前述した電気メッキ液の
本質的な問題及び金属Zn溶解設備の大型化などにより
、工業的には制約がおり、夫本的な解決策とはなり得な
い。
However, these countermeasures and means have industrial limitations due to the above-mentioned inherent problems with the electroplating solution and the increase in the size of metal Zn melting equipment, and cannot serve as practical solutions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み、種々検討の結果、電気Znメッキ
におけるZnイオンの供給方法を開発したもので、不溶
性陽極を用いる電気Znメッキにおいて、Zn濃度の減
少したメッキ液に金属Znと金属Znより電位が貴な金
属を接触させて浸漬する事を特徴とするものである。
In view of this, and as a result of various studies, the present invention has developed a method for supplying Zn ions in electrolytic Zn plating. It is characterized by contacting and immersing a metal with a noble potential.

〔作 用〕[For production]

本発明は、不溶性@極を用いる電気Znメツ主において
、Znイオン濃度の減少したメッキ液に、Znイオンの
供給源として金属Znを溶解させる場合に、金属Znに
メッキ液中での電位がZnより肖な金属と接触させて浸
漬することにより、低コストにて金属Znの溶解速度を
従来技術に比へて著しく大きくし、陰極に析出するln
に相当する金属Znの溶解ff1(Znイオンの補給量
)を得てZnメッキ液中のZnイオン濃度をバランスさ
せることができる。
The present invention provides an electric Zn method using an insoluble @electrode, in which when metallic Zn is dissolved as a supply source of Zn ions in a plating solution with a reduced Zn ion concentration, the electrical potential in the plating solution is By contacting and immersing the Zn metal in contact with a more suitable metal, the dissolution rate of Zn metal is significantly increased compared to the conventional technology at a low cost, and the ln precipitated on the cathode is
The Zn ion concentration in the Zn plating solution can be balanced by obtaining the dissolution ff1 (replenishment amount of Zn ions) of metal Zn corresponding to .

本発明に用いる金属Znは、−船釣な金属Zn(電気Z
n)でよく、その形状は塊、板。
The metal Zn used in the present invention is - boat metal Zn (electric Zn)
n) and its shape is a lump or a plate.

小片1粒、粉末等のいずれの形状でも用いられ、特に限
定するものではないが前記の如く、メッキ液への被接触
面積を大きくするため、微細化することは溶解速度を上
げる方法として有効である。
It can be used in any form, such as a single small piece or powder, and as mentioned above, miniaturization is an effective way to increase the dissolution rate in order to increase the area that comes into contact with the plating solution, although it is not particularly limited. be.

本発明における金属Znとの接触金属としては、メッキ
液中での電位がZnより貴な金属でおれば良く、例えば
Pt、Au、Ag、Pd。
The metal in contact with metal Zn in the present invention may be any metal whose potential in the plating solution is nobler than that of Zn, such as Pt, Au, Ag, and Pd.

In、Nb、Fe、Cr、Mo、N i、Cd。In, Nb, Fe, Cr, Mo, Ni, Cd.

Co、3n等がある。尚本発明におけるZnより貴な金
属として、上記金属の外にCu、pb。
There are Co, 3n, etc. In addition to the above-mentioned metals, metals nobler than Zn in the present invention include Cu and pb.

3r等が必るが、Znメッキ液中に溶解し、Znメッキ
皮膜中に共析して耐食性、メッキ密着性等に悪影響を及
ぼすようなものは望ましくない。また金属単体ではなく
合金、例えばAu−A9合金、Pt−Pd合金等でもよ
い。
3r or the like is necessary, but it is not desirable to use a material that dissolves in the Zn plating solution and eutectoids into the Zn plating film and adversely affects corrosion resistance, plating adhesion, etc. Further, instead of a single metal, an alloy such as an Au-A9 alloy or a Pt-Pd alloy may be used.

次に本発明を実施例に基づいて詳細に説明する。Next, the present invention will be explained in detail based on examples.

〔実施例〕〔Example〕

第1図に示すようにZnメッキ槽(図示せず)に塩化ビ
ニールで形成したZn溶解槽(1)を取付け、メッキ液
(2)を循環ポンプ(図示せず)により矢印方向に強制
循環した。Zn溶解槽(1)は図に示すように溶解槽(
1)内にろ布(3)と金属ネット(4)を配置し、金属
ネット(4)内に金属Z n (5)と金属棒(6)を
接触させて挿入した。
As shown in Figure 1, a Zn dissolving tank (1) made of vinyl chloride was attached to a Zn plating tank (not shown), and the plating solution (2) was forcibly circulated in the direction of the arrow by a circulation pump (not shown). . The Zn dissolution tank (1) is a dissolution tank (1) as shown in the figure.
1) A filter cloth (3) and a metal net (4) were placed inside the chamber, and a metal Z n (5) and a metal rod (6) were inserted into the metal net (4) in contact with each other.

このようにしてZnメッキ液として Z n 304 ・7H20250g/ lNaSO4
70g/l の組成のものを、pH=1.0となるようにH2S C
)+で調整し、液温55°Cとして強制循環させた。金
属Znとしては通常の電気Zn(iA度99、99%以
上)を直径2#の粒状に加工したものを用いた。金属ネ
ットと金属棒には金属Znより真な同一の金属又は合金
を用いた。
In this way, Zn 304 7H20250g/lNaSO4 was used as Zn plating solution.
The composition of 70g/l was added to H2S C so that pH=1.0.
)+, and forced circulation was carried out at a liquid temperature of 55°C. As the metal Zn, ordinary electric Zn (iA degree 99, 99% or more) processed into particles with a diameter of 2# was used. The metal net and the metal rod were made of the same metal or alloy, which is truer than metal Zn.

このようにして金属ネットと金属棒に第1表に示す金属
Znより真な金属又は合金を用い金属Znの溶解速度を
求めた。その結果を金属ネットと金属棒のかわりに塩化
ビニールを用いた従来方法と比較して第1表に併記した
In this way, the dissolution rate of metal Zn was determined using metals or alloys truer than metal Zn shown in Table 1 for the metal net and metal rod. The results are also listed in Table 1 in comparison with the conventional method using vinyl chloride instead of the metal net and metal rod.

金属Znの溶解速度は金属Z n 1 K3の1時間あ
たりの溶解量で表わした。
The dissolution rate of metal Zn was expressed as the amount of metal Z n 1 K3 dissolved per hour.

第1表 第1表から明らかなように、金属Zn粒のみからなる従
来方法では、Znの溶解速度が5Ci/に’j・hrと
著しく低いのに対し、本発明方法によれば1509/に
’j・hr以上とZnの溶解速度が著しく大きいことが
判る。
Table 1 As is clear from Table 1, in the conventional method consisting only of metallic Zn grains, the dissolution rate of Zn was extremely low at 5 Ci/'j·hr, whereas in the method of the present invention, it was 1509/hr. It can be seen that the dissolution rate of Zn is extremely high above 'j·hr.

〔発明の効果〕〔Effect of the invention〕

てのように本発明方法によれば、Zns度の減少したZ
nメッキ液にZnイオンを速やかに補給し、Ztl1度
を上げることができ、メッキ液の通液量を電解で消費さ
れるZn量に合わせることで所定のZn′a度を保持す
ることができる等工業上顕著な効果を秦するものである
According to the method of the present invention, Z
By quickly replenishing Zn ions to the n plating solution, the Ztl can be raised by 1 degree, and by matching the amount of plating solution passed to the amount of Zn consumed in electrolysis, the predetermined Zn'a degree can be maintained. It has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のZn溶解槽の一実施例を示す説明図で
ある。 1.2n溶解槽 2、メッキ液 3、ろ布 4、金属ネット 5、金属Zn 6、金属棒 第1図
FIG. 1 is an explanatory diagram showing an embodiment of the Zn dissolving tank of the present invention. 1.2n dissolving tank 2, plating solution 3, filter cloth 4, metal net 5, metal Zn 6, metal rod Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)不溶性陽極を用いる電気Znメッキにおいて、Z
n濃度の減少したメッキ液に金属Znと金属Znより電
位が貴な金属を接触させて浸漬する事を特徴とする電気
ZnメッキにおけるZnイオンの供給方法。
(1) In electrolytic Zn plating using an insoluble anode, Z
A method for supplying Zn ions in electrolytic Zn plating, which comprises contacting and immersing metal Zn and a metal with a nobler potential than metal Zn in a plating solution with a reduced n concentration.
JP10389588A 1988-04-28 1988-04-28 Method for feeding zn ion in galvanizing Pending JPH01275799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10389588A JPH01275799A (en) 1988-04-28 1988-04-28 Method for feeding zn ion in galvanizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10389588A JPH01275799A (en) 1988-04-28 1988-04-28 Method for feeding zn ion in galvanizing

Publications (1)

Publication Number Publication Date
JPH01275799A true JPH01275799A (en) 1989-11-06

Family

ID=14366159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10389588A Pending JPH01275799A (en) 1988-04-28 1988-04-28 Method for feeding zn ion in galvanizing

Country Status (1)

Country Link
JP (1) JPH01275799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739995B1 (en) * 1992-09-16 1998-08-19 Nippon Mining & Metals Co., Ltd. Use of a Zn-Ni alloy for preparation of Zn-Ni alloy hot-dip galvanizing bath
JP2002206199A (en) * 2000-12-28 2002-07-26 Atotech Japan Kk Copper dissolution tank in copper plating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739995B1 (en) * 1992-09-16 1998-08-19 Nippon Mining & Metals Co., Ltd. Use of a Zn-Ni alloy for preparation of Zn-Ni alloy hot-dip galvanizing bath
JP2002206199A (en) * 2000-12-28 2002-07-26 Atotech Japan Kk Copper dissolution tank in copper plating apparatus

Similar Documents

Publication Publication Date Title
Lu et al. Manganese electrodeposition—A literature review
US4290859A (en) Process for preparing electrode
US3480523A (en) Deposition of platinum-group metals
KR900002842B1 (en) Method for preparing an electrode and use thereof in electrochemical processes
Djokić et al. Electrodeposition and electroless deposition of metallic powders: A comparison
US2541721A (en) Process for replenishing nickel plating electrolyte
EP1626098A2 (en) Process of dissolving zinc in alkaline brines
Choi et al. Production of ultrahigh purity copper using waste copper nitrate solution
JPH01275799A (en) Method for feeding zn ion in galvanizing
JP4323297B2 (en) Method for producing electrolytic copper powder
JPH11229172A (en) Method and apparatus for producing high-purity copper
US3764497A (en) Decreasing cyanide content by an electrochemical technique
JPS62243798A (en) Method for feeding zn ion during galvanizing
JPS58151489A (en) Iron-zinc alloy plating method
JPH059799A (en) Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
JPH0860391A (en) Insoluble metallic anode
JPS6017096A (en) Production of electrode
JPH04311596A (en) Dossolving method of metallic zinc in nikkle-zinc plating solution
JPS586792B2 (en) Aenion no Metsukiyokuhenokiyoukiyuhouhou
Soltanzadeh et al. Synthesis of dendritic silver nano powder using pulsing electrolysis in ammonia solution
White The electrolytic corrosion of some metals
RU2237750C1 (en) Method for electrolytic refining of copper and nickel from copper/nickel alloys
Zhang et al. The Behaviour of Low arsenic copper anodes aT high currenT densiTy in eLecTrorefining
JP3258848B2 (en) Method for removing metal impurity ions in electrogalvanizing bath