JPH06316795A - Method and device for feeding metal ion into plating liquid - Google Patents

Method and device for feeding metal ion into plating liquid

Info

Publication number
JPH06316795A
JPH06316795A JP10413293A JP10413293A JPH06316795A JP H06316795 A JPH06316795 A JP H06316795A JP 10413293 A JP10413293 A JP 10413293A JP 10413293 A JP10413293 A JP 10413293A JP H06316795 A JPH06316795 A JP H06316795A
Authority
JP
Japan
Prior art keywords
metal
plating solution
plating
oxidizing agent
plating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10413293A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakano
浩 中野
Kaoru Mizumoto
薫 水本
Takashi Sekida
貴司 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10413293A priority Critical patent/JPH06316795A/en
Publication of JPH06316795A publication Critical patent/JPH06316795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve the dissolving velocity of metal powder in a plating liquid in an electroplating device using an insoluble anode by feeding an oxidizing agent into the plating liquid together with metal powder when plating metal ions are replenished. CONSTITUTION:When metal, such as Zn is applied to electroplate the surface of a steel strip, an insoluble anode, such as Ir is used as an anode. And for plating metal Zn, Zn powder is fed into a plating liquid to keep the Zn ion concentration in the plating liquid constant. In this case, the plating liquid where the Zn ion concentration has been decreased from a plating line is fed into a circulating tank 2 by piping 22 and also sent to a dissolving tank 1. Into the dissolving tank 1, metal Zn powder m from a hopper 8 and also an oxidizing agent, such as air and oxygen from an oxidizing agent mixing-in means 10 are fed. The metal Zn powder M is rapidly dissolved in the plating liquid in the presence of the oxidizing agent to turn into Zn ions and the plating liquid having a high Zn concentration thus obtained is returned to the plating line by piping 21 through the circulating tank 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不溶性陽極を用いる鋼
帯等の金属帯の連続電気亜鉛めっき設備において、消費
される金属イオンをめっき液中に補充するための金属イ
オンの供給方法ならびにその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying metal ions for replenishing the plating solution with consumed metal ions in a continuous electrogalvanizing equipment for metal bands such as steel bands using an insoluble anode, and a method therefor. Regarding the device.

【0002】[0002]

【従来の技術】近年、自動車、家電製品等において耐食
性向上の要求が高まり、従来から利用されている亜鉛め
っき鋼板に加えて、最近開発された亜鉛−ニッケルめっ
き鋼板等の合金めっき鋼板の需要も著しい増加を見せて
いる。(なお、本明細書においては、このような合金め
っきも「亜鉛めっき」に含めるものとする。)こうした
需要増に対処するため、高能率生産の可能な高電流密度
による高速めっき法が採用されているが、高速めっき法
においては陽極交換を頻繁に行わねばならない可溶性陽
極方式よりも、陽極交換の必要のないイリジウム系等の
不溶性陽極を用い、消費される金属イオンを連続的に補
給する方式の方が有利であることはいうまでもない。
2. Description of the Related Art In recent years, the demand for improved corrosion resistance in automobiles, home appliances and the like has increased, and in addition to the galvanized steel sheets that have been conventionally used, there is a demand for alloy-plated steel sheets such as zinc-nickel plated steel sheets that have been recently developed. It shows a significant increase. (Note that, in the present specification, such alloy plating is also included in “zinc plating”.) In order to cope with such an increase in demand, a high-speed plating method with high current density capable of high-efficiency production is adopted. However, in the high-speed plating method, a method of continuously replenishing consumed metal ions by using an insoluble anode such as an iridium-based material that does not require anode replacement, rather than a soluble anode method that requires frequent anode replacement. Needless to say, is more advantageous.

【0003】めっき液としては通常、硫酸系の電解液が
使用される。また、めっき液中への亜鉛、ニッケル等の
金属イオンの補給方法には、金属亜鉛や金属ニッケルを
直接めっき液に接触させることにより溶解させる方法
と、酸化亜鉛等の金属化合物を溶解させる方法とがあ
る。粒状、あるいは塊状の金属亜鉛や金属ニッケルを直
接溶解させる方法は溶解速度が低く、粉末状の金属化合
物を溶解させる方が一見能率的なようであるが、このよ
うな金属化合物粉は一般に液中に投入された際、粉体表
面に生じる反応熱によって塊状化(ブロッキング)しや
すく、塊状化したものはほとんど溶解しないという欠点
がある。この点を改善し、たとえば特公昭58-13639号公
報によれば、酸化亜鉛または塩基性塩等の化合物を予め
水に分散させてからめっき浴中へ投入することが記載さ
れている。
As the plating solution, a sulfuric acid type electrolytic solution is usually used. In addition, as a method of supplying metal ions such as zinc and nickel to the plating solution, a method of dissolving metal zinc or nickel by directly contacting the plating solution and a method of dissolving a metal compound such as zinc oxide are used. There is. The method of directly dissolving granular or lumpy metallic zinc or metallic nickel has a low dissolution rate, and it seems that it is more efficient to dissolve the metallic compound in powder form, but such metallic compound powder is generally found in liquid. When charged into the powder, the reaction heat generated on the surface of the powder tends to cause agglomeration (blocking), and the agglomerated material hardly dissolves. In order to improve this point, for example, Japanese Patent Publication No. 58-13639 discloses that a compound such as zinc oxide or a basic salt is previously dispersed in water and then added to a plating bath.

【0004】しかし、この方法によれば、塊状化は防止
されるものの、分散処理のための高速攪拌機(ホモジナ
イザ)等が必要であること、めっき液内に水分が過剰に
供給されてしまうためエバポレータ等の水分除去手段が
必要となることなどの問題点がある。また、特開昭57−
171700号公報によれば、めっき浴中の金属イオンを酸化
亜鉛や炭酸ニッケル等の塩基性化合物の形で補給する
際、塩基性化合物を粉状にして空気、あるいは窒素ガス
等のキャリヤガスによりめっき浴中に吹き込むことによ
り、キャリヤガスの攪拌作用によって塊状化することな
しに浴中に拡散することが提案されているが、このやり
方は粉状体にしか適用できないし、装置もかなり複雑に
なる。
However, according to this method, although agglomeration is prevented, a high-speed stirrer (homogenizer) or the like for dispersion treatment is required, and water is excessively supplied into the plating solution, so that the evaporator is used. However, there is a problem that a water removing means such as the above is required. In addition, JP-A-57-
According to Japanese Patent No. 171700, when the metal ions in the plating bath are replenished in the form of a basic compound such as zinc oxide or nickel carbonate, the basic compound is powdered and plated with air or a carrier gas such as nitrogen gas. By blowing into the bath, it has been proposed to diffuse into the bath without agglomeration due to the stirring action of the carrier gas, but this approach is only applicable to powders and the equipment is rather complicated .

【0005】さらに、特開昭62−7200号公報によれば、
3価の鉄イオンと、亜鉛よりも電位が貴でかつ亜鉛より
も水素過電圧の低いニッケル、ビスマス等の金属イオン
とを共存させた溶液中に金属亜鉛を溶解し、得られた亜
鉛イオン含有水溶液を亜鉛めっき浴に供給することで酸
焼け現象を起こすことなしに溶解を促進させることが記
載されている。
Further, according to Japanese Patent Laid-Open No. 62-7200,
A zinc ion-containing aqueous solution obtained by dissolving metal zinc in a solution in which a trivalent iron ion and a metal ion such as nickel or bismuth having a higher potential than zinc and a hydrogen overvoltage lower than that of zinc coexist It is described that the solution is supplied to a galvanizing bath to promote dissolution without causing an acid burning phenomenon.

【0006】しかし、3価の鉄イオンは、「めっき焼
け」と呼ばれる着色の原因となるなど品質上好ましくな
いので極力少ない方がよいし、ニッケル、ビスマス等が
イオン化すると純亜鉛めっきにとっては不純物となり、
耐食性や外観を悪化させるという問題点がある。
[0006] However, trivalent iron ions are not preferable in terms of quality because they cause coloring called "plating burn", so it is better to minimize them. If nickel, bismuth, etc. are ionized, they become impurities for pure zinc plating. ,
There is a problem that corrosion resistance and appearance are deteriorated.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解消し、きわめて容易でかつ確実な手段によ
って金属イオンの溶解を促進する方法を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a method for promoting the dissolution of metal ions by a very easy and reliable means.

【0008】[0008]

【課題を解決するための手段】本発明は、不溶性陽極を
用いる金属帯の連続電気亜鉛めっき設備において、めっ
き液中へ金属を溶解して金属イオンを補充するに際し、
めっき液中に酸化剤を添加して溶解速度を向上させるこ
とを特徴とするめっき液中への金属イオンの供給方法で
ある。
The present invention relates to a continuous electrogalvanizing equipment for metal strips using an insoluble anode, in dissolving a metal in a plating solution to supplement a metal ion,
A method for supplying metal ions to a plating solution, which comprises adding an oxidizing agent to the plating solution to improve the dissolution rate.

【0009】[0009]

【作 用】本発明によれば、めっき液中に空気、酸素ガ
ス、過酸化水素水等の酸化剤を添加することによって、
金属の溶解で発生する水素ガスを酸化して H20とするこ
とで金属表面の水素ガスが除去され、金属表面が H+
オンと接触しやすくなり、溶解が促進される。
[Operation] According to the present invention, by adding an oxidizing agent such as air, oxygen gas, or hydrogen peroxide solution to the plating solution,
By oxidizing the hydrogen gas generated by the dissolution of the metal to H 2 0, the hydrogen gas on the metal surface is removed, the metal surface easily comes into contact with H + ions, and the dissolution is promoted.

【0010】亜鉛イオン 35g/l 、ニッケルイオン 65g
/l 、3価の鉄イオン 300mg/l 、2価の鉄イオン 800
mg/l 、pH 1.7のめっき液を図2に示す実験装置内を
循環させて溶解速度を測定した。pH調整は硫酸で行
い、液の温度は50±2 ℃に管理した。図2において1は
溶解槽、2は循環タンク、3はポンプ、4はバルブ、5
は流量計、6は循環タンク行き配管、7は循環タンク戻
り配管、10は酸化剤混入手段で11はタンク、貯槽などの
酸化剤供給源、13はポンプ、14はバルブ、15は流量計で
ある。
Zinc ion 35g / l, nickel ion 65g
/ L, trivalent iron ion 300mg / l, divalent iron ion 800
A plating solution of mg / l and pH 1.7 was circulated in the experimental apparatus shown in FIG. 2 to measure the dissolution rate. The pH was adjusted with sulfuric acid, and the temperature of the solution was controlled at 50 ± 2 ° C. In FIG. 2, 1 is a dissolution tank, 2 is a circulation tank, 3 is a pump, 4 is a valve, 5
Is a flow meter, 6 is a circulation tank return pipe, 7 is a circulation tank return pipe, 10 is an oxidant mixing means, 11 is an oxidant supply source such as a tank or a storage tank, 13 is a pump, 14 is a valve, and 15 is a flow meter. is there.

【0011】溶解槽1に 400mmの厚みに金属粒Mを充填
し、流速 2.0cm/秒でめっき液を通液させながら1時間
毎に金属粒Mを補充し、合計12時間の総補充量を溶解量
と見なして溶解速度を算出した。平均粒径 5mmの金属亜
鉛の場合、酸化剤を添加しない場合のめっき液に対する
溶解速度を1とすると、酸化剤供給源11から空気をめっ
き液に対し 5ml/l の割合で吹き込んだ場合、ならびに
同じく酸素ガスをめっき液に対し大気圧換算 5ml/l の
割合で吹き込んだ場合の金属亜鉛の溶解速度はいずれも
1.2、35%H2O2水を 0.5g /l の割合で添加した場合の
溶解速度は 1.3であった。
The dissolution tank 1 was filled with metal particles M to a thickness of 400 mm, and the metal particles M were replenished every hour while the plating solution was being passed at a flow rate of 2.0 cm / sec, for a total replenishment amount of 12 hours. The dissolution rate was calculated by considering it as the amount of dissolution. In the case of metallic zinc having an average particle diameter of 5 mm, if the dissolution rate in the plating solution when no oxidizing agent is added is 1, and when air is blown into the plating solution at a rate of 5 ml / l from the oxidizing agent supply source 11, Similarly, when oxygen gas is blown into the plating solution at a rate of 5 ml / l in terms of atmospheric pressure, the dissolution rate of metallic zinc is
When 1.2 and 35% H 2 O 2 water were added at a rate of 0.5 g / l, the dissolution rate was 1.3.

【0012】また、平均粒径 5mmの金属ニッケルの場
合、酸化剤を添加しない場合のめっき液に対する溶解速
度を1とすると、酸化剤供給源11から空気をめっき液に
対し大気圧換算 5ml/l の割合で吹き込んだ場合、なら
びに同じく酸素ガスをめっき液に対し同じく 5ml/l の
割合で吹き込んだ場合の金属ニッケルの溶解速度はいず
れも 1.1、35%H2O2水を 0.5g /l の割合で添加した場
合の溶解速度は 1.2であり、亜鉛、ニッケルいずれに対
しても20〜30%の溶解速度の向上が見られた。
Further, in the case of metallic nickel having an average particle diameter of 5 mm, assuming that the dissolution rate in the plating solution without addition of the oxidant is 1, air from the oxidant supply source 11 to the plating solution is converted into atmospheric pressure at 5 ml / l. The rate of dissolution of nickel metal was 1.1 and that of 35% H 2 O 2 water was 0.5 g / l in both cases of blowing oxygen gas into the plating solution and blowing oxygen gas into the plating solution at a rate of 5 ml / l. The dissolution rate when added in a ratio of 1.2 was found to be 20 to 30% higher for both zinc and nickel.

【0013】実験中は、硫酸を投入しながらpHが一定
となるようにコントロールした。
During the experiment, the pH was controlled to be constant while adding sulfuric acid.

【0014】[0014]

【実施例】本発明の一実施例である鋼帯の連続電気亜鉛
めっきラインの一部の構成図を図1に示す。さきの図2
と同一のものについては同じ符号を使用した。8は金属
粒ホッパ、9は切り出し装置、21はラインタンク行き配
管、22はラインタンク戻り配管である。
EXAMPLE FIG. 1 shows a partial configuration diagram of a continuous electrogalvanizing line for steel strips, which is an example of the present invention. Previous figure 2
The same reference numerals are used for the same items. 8 is a metal grain hopper, 9 is a cutting device, 21 is a line tank line, and 22 is a line tank return line.

【0015】この実施例では酸化剤として酸素ガスを使
用し、循環タンク2から溶解槽1への戻り配管7の途中
に、酸化剤供給源11(この場合酸素タンク)、送気ポン
プ13、流量計15を経て酸化剤混入手段10からの配管が開
口しており、循環するめっき液中に酸素ガスが吹き込ま
れる。一方、溶解槽1には亜鉛粒ホッパ8内の亜鉛粒M
が切り出し装置9によって所定量だけ切り出され、溶解
槽1内に補充される。
In this embodiment, oxygen gas is used as an oxidant, and an oxidant supply source 11 (oxygen tank in this case), an air supply pump 13, and a flow rate are provided in the return pipe 7 from the circulation tank 2 to the dissolution tank 1. A pipe from the oxidizing agent mixing means 10 is opened via a total of 15, and oxygen gas is blown into the circulating plating solution. On the other hand, in the melting tank 1, the zinc particles M in the zinc particle hopper 8 are
Is cut out by a cutting device 9 by a predetermined amount and is replenished in the dissolution tank 1.

【0016】亜鉛−ニッケルめっきラインの場合は亜鉛
粒ホッパ8のほかにニッケル用ホッパが設けられる。金
属亜鉛は一般に亜鉛粒、あるいは亜鉛粉であり、ニッケ
ルも粒体または粉体が使用される。本発明に使用する酸
化剤としては空気、酸素ガスなどの気体、過酸化水素水
などの液体のほか粉末状の固体酸化剤も使用できるが、
めっき液中に添加するものであるから、めっきに対して
品質上の悪影響を持たないものであることが重要であ
る。気体を使用した場合、バブリングによる攪拌効果も
期待できる。
In the case of a zinc-nickel plating line, a nickel hopper 8 is provided in addition to the zinc grain hopper 8. The metallic zinc is generally zinc particles or zinc powder, and nickel is also used in the form of particles or powder. As the oxidant used in the present invention, air, a gas such as oxygen gas, a liquid such as hydrogen peroxide solution as well as a powdered solid oxidant can be used.
Since it is added to the plating solution, it is important that it does not adversely affect the quality of the plating. When gas is used, a stirring effect due to bubbling can be expected.

【0017】酸化剤を混入させる位置は、溶解槽1と循
環タンク2を結ぶ循環配管経路内のいずれの位置でもよ
いが、酸化剤が気体や液体の場合、図1のようにめっき
液の溶解槽1への循環タンク戻り配管7に酸化剤混入手
段10の配管を開口させるのがもっとも効果的であり、ま
た固体の酸化剤の場合は溶解槽1に直接酸化剤を投入し
てもよい。
The position where the oxidizing agent is mixed may be any position in the circulation piping path connecting the dissolving tank 1 and the circulating tank 2, but when the oxidizing agent is gas or liquid, the plating solution is dissolved as shown in FIG. It is most effective to open the pipe of the oxidant mixing means 10 in the circulation tank return pipe 7 to the tank 1, and in the case of a solid oxidant, the oxidant may be directly fed to the dissolution tank 1.

【0018】[0018]

【発明の効果】本発明によれば、金属亜鉛や金属ニッケ
ルの溶解速度を20〜30%向上させることにより、不溶性
陽極を用いる連続電気めっきの生産性が増大するとい
う、すぐれた効果を奏する。
According to the present invention, by improving the dissolution rate of metallic zinc or metallic nickel by 20 to 30%, the productivity of continuous electroplating using an insoluble anode is increased, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の効果を試験する実験装置の構成図であ
る。
FIG. 2 is a configuration diagram of an experimental device for testing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 溶解槽 2 循環タンク 3 ポンプ 4 バルブ 5 流量計 6 循環タンク行き配管 7 循環タンク戻り配管 8 金属粒ホッパ 9 切り出し装置 10 酸化剤混入手段 11 酸化剤供給源 13 ポンプ 14 バルブ 15 流量計 21 ラインタンク行き配管 22 ラインタンク戻り配管 1 Dissolution tank 2 Circulation tank 3 Pump 4 Valve 5 Flowmeter 6 Circulation tank going pipe 7 Circulation tank return pipe 8 Metal grain hopper 9 Cutting device 10 Oxidizing agent mixing means 11 Oxidizing agent supply source 13 Pump 14 Valve 15 Flowmeter 21 Line tank Outgoing piping 22 Line tank return piping

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不溶性陽極を用いる金属帯の連続電気亜
鉛めっき設備において、めっき液中へ金属を溶解して金
属イオンを補充するに際し、めっき液中に酸化剤を添加
して溶解速度を向上させることを特徴とするめっき液中
への金属イオンの供給方法。
1. In a continuous electrogalvanizing equipment for a metal strip using an insoluble anode, when a metal is dissolved in a plating solution to supplement metal ions, an oxidizing agent is added to the plating solution to improve the dissolution rate. A method of supplying metal ions to a plating solution, which is characterized by the above.
【請求項2】 めっき液中への酸化剤の添加が、空気ま
たは酸素ガスのめっき液中への吹き込みである請求項1
記載のめっき液中への金属イオンの供給方法。
2. The addition of an oxidizing agent to the plating solution is blowing air or oxygen gas into the plating solution.
A method for supplying metal ions to the plating solution described.
【請求項3】 めっき液中への酸化剤の添加が、過酸化
水素溶液のめっき液中への添加である請求項1記載のめ
っき液中への金属イオンの供給方法。
3. The method for supplying metal ions to a plating solution according to claim 1, wherein the addition of the oxidizing agent to the plating solution is addition of a hydrogen peroxide solution to the plating solution.
【請求項4】 不溶性陽極を用いる金属帯の連続電気亜
鉛めっき設備において、めっき液中へ金属を溶解して金
属イオンを補充する溶解槽(1)とめっき液循環タンク
(2)との循環配管経路(1、6、2、7)内に、酸化
剤混入手段(10)を設けたことを特徴とするめっき液中
への金属イオンの供給装置。
4. In a continuous electrogalvanizing equipment for metal strips using an insoluble anode, a circulation pipe of a plating bath circulating tank (2) and a bath for dissolving metal in the plating bath to replenish metal ions. An apparatus for supplying metal ions to a plating solution, characterized in that an oxidant mixing means (10) is provided in the paths (1, 6, 2, 7).
JP10413293A 1993-04-30 1993-04-30 Method and device for feeding metal ion into plating liquid Pending JPH06316795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10413293A JPH06316795A (en) 1993-04-30 1993-04-30 Method and device for feeding metal ion into plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10413293A JPH06316795A (en) 1993-04-30 1993-04-30 Method and device for feeding metal ion into plating liquid

Publications (1)

Publication Number Publication Date
JPH06316795A true JPH06316795A (en) 1994-11-15

Family

ID=14372588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10413293A Pending JPH06316795A (en) 1993-04-30 1993-04-30 Method and device for feeding metal ion into plating liquid

Country Status (1)

Country Link
JP (1) JPH06316795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262444A (en) * 1994-12-20 1995-10-13 Sanyo Electric Co Ltd Commodity sample for automatic vending machine
WO2001009409A1 (en) * 1999-07-30 2001-02-08 Centro Sviluppo Materiali S.P.A. Process for the solution of metals into an electrolytic deposition solution and solution plant operating such process
JP2010202941A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Sn ALLOY PLATING APPARATUS AND METHOD OF REPLENISHING Sn COMPONENT FOR THE SAME
CN110886008A (en) * 2018-09-07 2020-03-17 深圳市好天机械设备有限公司 Upset charge device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262444A (en) * 1994-12-20 1995-10-13 Sanyo Electric Co Ltd Commodity sample for automatic vending machine
WO2001009409A1 (en) * 1999-07-30 2001-02-08 Centro Sviluppo Materiali S.P.A. Process for the solution of metals into an electrolytic deposition solution and solution plant operating such process
JP2010202941A (en) * 2009-03-04 2010-09-16 Mitsubishi Materials Corp Sn ALLOY PLATING APPARATUS AND METHOD OF REPLENISHING Sn COMPONENT FOR THE SAME
CN110886008A (en) * 2018-09-07 2020-03-17 深圳市好天机械设备有限公司 Upset charge device

Similar Documents

Publication Publication Date Title
US4469569A (en) Cyanide-free copper plating process
US4715935A (en) Palladium and palladium alloy plating
JPH06316795A (en) Method and device for feeding metal ion into plating liquid
US5198095A (en) Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet
EP0088192B1 (en) Control of anode gas evolution in trivalent chromium plating bath
KR101271587B1 (en) Mono-fluid type metal nano coating composition and preparation method of the same
US4436595A (en) Electroplating bath and method
JPS58151489A (en) Iron-zinc alloy plating method
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JPH08283982A (en) Chloride bath electrogalvanizing method
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JP2787992B2 (en) Ni-W alloy plating method
JPS6344837B2 (en)
JPS627900A (en) Method for supplying zinc ion to galvanizing bath
JPH10212592A (en) Platinum alloy plating bath
JPS62243798A (en) Method for feeding zn ion during galvanizing
JPS586792B2 (en) Aenion no Metsukiyokuhenokiyoukiyuhouhou
JP3056317B2 (en) Method for replenishing zinc ions to Zn-Ni alloy electroplating bath
JP3176794B2 (en) Method and apparatus for supplying nickel raw material into nickel-based plating solution
JPH07233496A (en) Silver-palladium alloy plating method and plating bath
JPS6230898A (en) Method and apparatus for replenishing metallic component to plating bath
JPS5813639B2 (en) Electric plating method
JP3068364B2 (en) Method and apparatus for dissolving zinc oxide
JPH07126898A (en) Melting method for metal zinc for electroplating
JP3082985B2 (en) Continuous electroplating equipment