JPS61225139A - Clathration separation using supercritical or pressure-liquefied gas as medium - Google Patents

Clathration separation using supercritical or pressure-liquefied gas as medium

Info

Publication number
JPS61225139A
JPS61225139A JP60064586A JP6458685A JPS61225139A JP S61225139 A JPS61225139 A JP S61225139A JP 60064586 A JP60064586 A JP 60064586A JP 6458685 A JP6458685 A JP 6458685A JP S61225139 A JPS61225139 A JP S61225139A
Authority
JP
Japan
Prior art keywords
gas
clathrate
pressure
supercritical
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60064586A
Other languages
Japanese (ja)
Other versions
JPH0329441B2 (en
Inventor
Shozaburo Saito
斉藤 正三郎
Kunio Arai
邦夫 新井
Yasuo Suzuki
康夫 鈴木
Katsuhisa Yamaguchi
勝久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60064586A priority Critical patent/JPS61225139A/en
Publication of JPS61225139A publication Critical patent/JPS61225139A/en
Publication of JPH0329441B2 publication Critical patent/JPH0329441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:Utilizing the phenoma that clathrates are selectively and reversibly formed and dissociated in a supercritical or pressure liquefied gas, and allowing an entrainer to coexist, the objective substance is obtained from a mixture in high purity and high yield. CONSTITUTION:An extraction phase is obtained from a mixture using, as a solvent, a supercritical gas or high-pressure liquefied gas such as carbon dioxide or nitrous oxide and the gas is used as a medium to effect the reaction between the clathrate lattice component such as urea or deoxycholic acid and the solute in the extraction phase to form and dissociate the clathrates selectively and reversibly whereby the extraction phase containing the desired solute is collected. Then, the gas as the solvent is removed to give the objective compound. In case that the gas are a little weak in capability of forming clathrates, an entrainer stimulating clathrate formation such as methanol is admixed. The ability of the gas as a solvent is heavily dependent on the pressure and the separation of gas from the desired compound is rapidly carried out by pressure reduction.

Description

【発明の詳細な説明】 「産業−1−の利用分野」 本発明は、超臨界ガスあるいは高圧液化ガス中においで
ある種の包接化合物が選択的および可逆的に形成、分解
することを利用して、混合物から目的成分を高純度、高
収率で分離する方法に関するものである。
Detailed Description of the Invention "Field of Application in Industry-1-" The present invention utilizes the selective and reversible formation and decomposition of certain clathrate compounds in supercritical gas or high-pressure liquefied gas. The present invention relates to a method for separating a target component from a mixture with high purity and high yield.

「従来の技術」 従来、包接化合物の選択的形成を利用した分離法が、実
験室的には広くおこなわれているが、包核化合物の安定
度の差の大きくない成分が含まれている混合物を、効率
よく単離することは困難とされている。例えば、尿素伺
加分別法による天然油脂から高度不飽和脂肪酸に富む混
合物の分離は、工業的にもおこなわれているが、ごらに
それを構成成分にN”Rすることは困難とされている。
``Prior art'' Separation methods that utilize the selective formation of clathrate compounds have been widely used in laboratories; It is difficult to efficiently isolate mixtures. For example, separation of mixtures rich in highly unsaturated fatty acids from natural oils and fats using the urea fractionation method has been carried out industrially, but it is considered difficult to convert them into constituent components. ing.

すなわち、包接操作を繰り返すごとに、伺゛加体あるい
は非付加体中の成分の包接化合物の安定度の差は次第に
小さくなり、効率の良い中離が不可能となるばかりでな
く、1回ごとの包接操作がきわめて煩雑であることはさ
けられない。例えば、尿素飽和メタノール溶液を用いた
尿素伺加分別法では、1回の操作中に付加体の晶析とそ
の濾別、また濾液から非付加体を分離、濃縮するための
メタノールおよび濾液中の溶解尿素の除去などが必要と
なる。また、固体尿素を包接格子成分とし、脂肪族炭化
水素や脂環式炭化水素を溶媒として不飽和脂肪酸を分離
する方法(特開昭57−164196号)も提案されて
いるが、晶析および濾液中からの尿素の除去工程が省か
れるものの、工業市川、模での多数回の操作には1なお
焔雑さをまぬがれえない。
In other words, as the inclusion operation is repeated, the difference in the stability of the inclusion compounds of the components in the adduct or non-adduct becomes gradually smaller, and not only does efficient separation become impossible, but also It cannot be avoided that the inclusion operation each time is extremely complicated. For example, in a urea fractionation method using a urea-saturated methanol solution, adducts are crystallized and filtered out in one operation, and non-adducts are separated and concentrated from the filtrate using methanol and filtrate. Removal of dissolved urea is required. In addition, a method has been proposed in which unsaturated fatty acids are separated using solid urea as an inclusion lattice component and aliphatic hydrocarbons or alicyclic hydrocarbons as solvents (Japanese Patent Application Laid-Open No. 164196/1982), but crystallization and Although the step of removing urea from the filtrate is omitted, it is still complicated to perform multiple operations in industrial Ichikawa and Momo.

一方、超臨界ガス抽出跋(特公昭54−10539す)
も知られているが、構造の似た成分の分離性能が低く、
実用範囲が限られるという難がある。
On the other hand, supercritical gas extraction (Special Publication No. 54-10539)
is also known, but its performance in separating components with similar structures is low;
The problem is that the practical range is limited.

「発明が解決しようとする問題点」 ここにおいて本発明者らは、包接化合物の安定度の差の
犬ぎくない成分が含まれる程合物から。
``Problems to be Solved by the Invention'' Here, the present inventors have discovered that the clathrate compounds contain components that differ in their stability.

所望成分を効率よイ分離することについて種々研究を重
ねた結果、遂に以下の発明を完成するにいたった。
As a result of various studies on how to efficiently separate desired components, the following invention was finally completed.

「問題を解決するだめのf段」 すなわち、衣発明は、超臨界ガスあるいは高圧液化ガス
を溶媒として混合物から抽出相を得、かかる状態のガス
を媒体として、もし当該ガスが包接化合物の形成を賦活
する程度が低い場合には、これに包接形成の賦活能を有
するエントレーナーを共存させ、圧力、温度を操作因子
とし、包接格子成分と抽出相中の溶質成分とを反応させ
、選釈的、可逆的に包接化合物を形成、分解させること
により、所望の溶質成分からなる抽出相を得、それより
溶媒成分のガスを分離して所望の溶質成分を取得する超
臨界ガスあるいは高圧液化ガスを媒体とする包接分離u
:を提供せんとするものである。
``F-stage to solve the problem'' In other words, the invention involves obtaining an extraction phase from a mixture using a supercritical gas or high-pressure liquefied gas as a solvent, and using the gas in such a state as a medium to prevent the formation of clathrate compounds. When the degree of activation is low, an entrainer having the ability to activate inclusion formation is made to coexist with the entrainer, pressure and temperature are used as operating factors, and the inclusion lattice component is reacted with the solute component in the extraction phase. A supercritical gas or Inclusion separation using high pressure liquefied gas as a medium
: We aim to provide the following.

包接化合物の形成における選択性は、包接格子成分であ
るホスト分子の結晶構造に特有な間隙の形状によって発
揮される。この結晶構造は、包接格子に取り込まれるゲ
スト分子の存在により新たに形成される場合と、ゲスト
分子に無関係に安定に存在しうる場合とがある。前者の
代表例としては尿素、後者の代表例としては形状選択性
を有する吸着剤のゼオライトなどがあげられる。また、
包接化合物の形成が可逆的になるための条件としては、
ホスト分子とゲスト分子の相互作用が物理的結合1例え
ばファン争デフ・ワールス(vander  Waal
s )力や水素結合などによるものが望ましい。一般に
知られているホスト−ゲスト分子の関係を表1に示す。
Selectivity in the formation of clathrate compounds is exerted by the shape of the gaps specific to the crystal structure of the host molecule, which is an inclusion lattice component. This crystal structure may be newly formed due to the presence of a guest molecule incorporated into the inclusion lattice, or may exist stably regardless of the guest molecule. A typical example of the former is urea, and a typical example of the latter is zeolite, an adsorbent with shape selectivity. Also,
The conditions for the formation of clathrate compounds to be reversible are as follows:
The interaction between the host molecule and the guest molecule is a physical bond 1, for example, the van der Waal
s) It is preferable to use forces, hydrogen bonds, etc. Table 1 shows the generally known host-guest molecule relationships.

さて、包接化合物の形成および分解にあたり。Now, regarding the formation and decomposition of clathrate compounds.

ホスト−ゲスI・分子間の結合の選択性および可逆性を
目的に応じて賦ゲyせるためには、溶媒の選定がとくに
重要であり、本発明は、溶媒として好ましくは操作温度
付近に臨界温度を有し、分画すべき混合物との親和性が
あり、かつ、包接反応の賦活剤としての効果を有する超
臨界ガスあるいは高圧液化ガスを用いることにより、従
来状では不可能であった高純度、高収率の分離を可能に
したことになる。すなわち、超臨界ガスあるいは臨界点
近傍の高圧液化ガスが、低粘度、高浸透性を有し、これ
らの性質が異相系反応である包接化合物の形成に有利に
作用することを見出している。
In order to increase the selectivity and reversibility of the bond between the host and GesI molecules according to the purpose, the selection of the solvent is particularly important. By using a supercritical gas or high-pressure liquefied gas that has a high temperature, has an affinity with the mixture to be fractionated, and has an effect as an activator for the inclusion reaction, it is possible to achieve high temperatures that were previously impossible. This enabled separation with high purity and high yield. That is, it has been discovered that supercritical gas or high-pressure liquefied gas near the critical point has low viscosity and high permeability, and these properties work advantageously for the formation of clathrate compounds, which are heterophasic reactions.

しかしながら、例外的に超臨界ガスあるいは高圧液化ガ
スのある種のものが、とくに包接化合物の形成を賦活す
る程度が低い場合には、包接反応が円滑におこなわれな
くなるので、このような場合、必要に1(3じ、包接形
成の賦活能を有するエントレーナーを比較的少量共存さ
せれば、包接化合物の形成の賦活を助長しうろことも見
出している。
However, in exceptional cases where certain types of supercritical gases or high-pressure liquefied gases activate the formation of clathrate compounds to a particularly low degree, the clathrate reaction will not proceed smoothly; It has also been found that if a relatively small amount of an entrainer having the ability to activate clathrate formation is co-present, the activation of clathrate formation can be promoted.

包接化合物形成の平衡反応は、超臨界カスあるいは高圧
液化カス相中では制御因子である温度に敏感に追従し、
R温により比較的短時間に包接形成から分解の方向−平
衡を移動することができる。その際、超臨界ガスあるい
は高圧液化ガスの溶媒能力は圧力に犬きく依存するため
、適当な圧力を選ぶことにより、包接形成から分解まで
の温度範囲において充分な溶媒能力を保持させることが
できる。
The equilibrium reaction of clathrate formation sensitively follows temperature, which is a controlling factor, in the supercritical gas or high-pressure liquefied gas phase.
The R temperature can shift the direction-equilibrium from inclusion formation to decomposition in a relatively short time. At this time, the solvent capacity of supercritical gas or high-pressure liquefied gas is highly dependent on pressure, so by selecting an appropriate pressure, sufficient solvent capacity can be maintained in the temperature range from clathration formation to decomposition. .

以上の二とから、本発明の実施例で示す通り、きわめて
簡Qtな装置と方法により、(」的成分の濃縮および回
収が可能となる。
Based on the above two points, as shown in the examples of the present invention, it is possible to concentrate and recover the ('' component) using an extremely simple Qt device and method.

なお、溶媒は純成分に限定せず、混合溶媒の組成変化に
より5分離能の向1−をはかることができる。包接格子
成分についても、一種類に限定せず、とくに目的成分の
分離能を上げる必要のある場合は、複数種の組合せを用
いることもできる。
Note that the solvent is not limited to pure components, and the direction of resolution can be determined by changing the composition of the mixed solvent. The inclusion lattice component is not limited to one type, and a combination of multiple types may be used, especially when it is necessary to increase the separation ability of the target component.

本発明方法によれば、目的成分と溶媒の分離が圧力の減
少により速やかにおこなわれ、溶媒の製品中への残留が
きわめて少なく、その、はぼ完全な回収が可能であり、
しかも、従来の蒸留などの分離に比べ格段に省エネルギ
ーも図られるという大きな利点がある。
According to the method of the present invention, the separation of the target component and the solvent is carried out quickly due to a decrease in pressure, and very little solvent remains in the product, making it possible to recover it almost completely.
Moreover, it has the great advantage of being much more energy efficient than conventional separation methods such as distillation.

また、包接格子成分の超臨界ガスあるいは高圧液化ガス
相への溶解はきわめて少なく無視することができ、包接
化合物中のゲスト成分は、分解後速やかに溶媒ガスに同
伴されるため、包接格子成分はそのまま繰り返し使用が
可能であるという利点がある。
Furthermore, the dissolution of the clathrate lattice components into the supercritical gas or high-pressure liquefied gas phase is extremely small and can be ignored, and the guest components in the clathrate compound are quickly entrained in the solvent gas after decomposition. An advantage is that the lattice components can be used repeatedly as they are.

さらに、本発明方法と超臨界ガスあるいは高圧液化ガス
の温度、圧力の変化による溶媒能力の相違を利用した還
流法との組み合せも利用できるほか、超臨界ガスあるい
は高圧液化ガスを溶媒とした限外濾過膜法、あるいは逆
浸透脱法との併用も可能であり、この場合、分離の駆動
力として、系の圧力をそのまま利用できることで、きわ
めて有利な組み合せとなる。
Furthermore, it is also possible to combine the method of the present invention with a reflux method that takes advantage of the difference in solvent capacity due to changes in the temperature and pressure of supercritical gas or high-pressure liquefied gas. It is also possible to use the membrane filtration method or the reverse osmosis removal method in combination, and in this case, the pressure of the system can be used as is as the driving force for separation, making this a very advantageous combination.

本発明において超臨界ガスあるいは高圧液化ガスとして
二酸化炭素、亜酸化窒素を、包接格子成分として尿素、
デオキシコール酸を、エントレーナーとしてメタノール
をそれぞれ用い、混合物成分として脂肪酸、脂肪酸エス
テルを対象とした包接分離の具体的実施例を示しである
が、本発明はこれに限定されるものでなく、本発明思想
は広範囲の組み合せのものに適用することができる。
In the present invention, carbon dioxide and nitrous oxide are used as supercritical gases or high-pressure liquefied gases, and urea and nitrous oxide are used as inclusion lattice components.
Although a specific example of clathrate separation using deoxycholic acid and methanol as an entrainer and targeting fatty acids and fatty acid esters as mixture components is shown, the present invention is not limited thereto. The inventive idea can be applied to a wide range of combinations.

包接分離において、系内の温度および圧力を適宜調節す
ることにより、超臨界ガスあるいは高圧液化ガスの流通
下経時的に所望の溶質成分からなる抽出相が得られるが
、連続分離による目的成分およびその他の構成成分の濃
縮分離の場合の概念図を図1に示す。ここにおいて、目
的成分が最も不安定な包接化合物を形成する場合を例と
した。
In inclusion separation, by appropriately adjusting the temperature and pressure in the system, an extraction phase consisting of the desired solute components can be obtained over time under the flow of supercritical gas or high-pressure liquefied gas, but the target components and A conceptual diagram of concentration separation of other constituent components is shown in FIG. Here, a case where the target component forms the most unstable clathrate compound is taken as an example.

プロセス中、超臨界ガスあるいは高圧液化ガスと格子成
分を自流接触させ、接触がおこなわれる塔の下方にあた
る回収部には温度勾配を設け5塔下部では包接化合物が
ほとんど分解するようにし、塔の上方の濃縮部は、塔頂
で目的成分のみが抽出相に存在するに充分な長さと設定
温度を有する。
During the process, supercritical gas or high-pressure liquefied gas and lattice components are brought into self-flow contact, and a temperature gradient is provided in the recovery section below the column where the contact occurs, so that most of the clathrate compounds are decomposed at the bottom of the column. The upper concentration section has a sufficient length and set temperature so that only the target component is present in the extraction phase at the top of the column.

サイドカットは、それぞれの構成成分の濃度が最大にな
る点で抜き出す。この場合、−4二方から1番目のサイ
ドカット位置は、目的成分のピンチポイントを考慮して
設置することにより、目的成分が高回収率で得られる。
Side cuts are taken at the point where the concentration of each component is maximum. In this case, the first side cut position from the -4 direction is installed in consideration of the pinch point of the target component, so that the target component can be obtained with a high recovery rate.

格子成分および超臨界ガスあるいは高圧液化ガスは、循
環再利用することができる。なお、塔の接触方式には、
移動層、多段流動層および擬似移動層などを適宜選択し
得る。
The lattice components and supercritical gas or high pressure liquefied gas can be recycled and reused. In addition, the contact method of the tower is
A moving bed, a multistage fluidized bed, a pseudo moving bed, etc. can be selected as appropriate.

以下、実施例により本発明をyらに具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically explained using Examples.

「実施例1」 魚油から得られた脂肪酸のメチルエステル16.0gに
対し、溶媒として40’01100kg/ cf Gに
おける超臨界二酸化炭素、包接格子成分として乳鉢で微
粉化した尿素104.7gをそれぞれ用い1分離をおこ
なった。分離装置は図2に示すものを用いた。
"Example 1" To 16.0 g of fatty acid methyl ester obtained from fish oil, supercritical carbon dioxide at 40'01100 kg/cf G was used as a solvent, and 104.7 g of urea pulverized in a mortar was used as an inclusion lattice component. One separation was performed using The separation device shown in FIG. 2 was used.

まず、原料槽5と包接化合物形成槽6にそれぞれ所定量
の原料と包接格子成分を仕込み、恒鴻槽10および保圧
弁11をそれぞれ所定の温度および圧力に調節し、高圧
ポンプ3を作動して、系内が所定圧に到達した後、減圧
弁7を開け、超臨界ガスの流通を開始する。加圧された
二酸化炭素は↓■臨界ガス状態にあり、原料槽5で原料
中の可溶成分を溶解し、包接化合物゛形成槽6に導入さ
れる。同伴された溶質成分の一部は槽6で包接格子成分
と包接化合物を形成し、抽出相から分離されて槽6内に
留まる。残りは超臨界ガスに同伴され槽6より流出する
。包接化合物の形成は、前述し    “たように包接
格子成分(ホスト分子)、溶質成分(ゲスト分子)およ
びガス(溶媒)の種類に応じて、その安定性および形成
速度が異なり、これにより超臨界ガス中の溶質成分の分
画がおこなわれる。槽6より流出した抽出相は減圧弁7
により減圧され、溶質を捕集器8に放出した後、その流
量はガスメーター9で測定される。また捕集器8にトラ
ップされた溶質を適宜サンプリングし、重量1.111
定および組成分析をおこなう。
First, predetermined amounts of raw materials and clathrate lattice components are charged into the raw material tank 5 and the clathrate compound forming tank 6, respectively, the constant temperature tank 10 and pressure holding valve 11 are adjusted to predetermined temperatures and pressures, and the high-pressure pump 3 is activated. After the system reaches a predetermined pressure, the pressure reducing valve 7 is opened and the flow of supercritical gas is started. The pressurized carbon dioxide is in a critical gas state, dissolves soluble components in the raw material in the raw material tank 5, and is introduced into the clathrate compound formation tank 6. A part of the entrained solute component forms an clathrate compound with the inclusion lattice component in the tank 6, is separated from the extraction phase, and remains in the tank 6. The remainder is entrained by the supercritical gas and flows out from the tank 6. The formation of clathrate compounds differs depending on the types of inclusion lattice components (host molecules), solute components (guest molecules), and gases (solvent), as described above, and this leads to The solute components in the supercritical gas are fractionated.The extraction phase flowing out from the tank 6 is passed through the pressure reducing valve 7.
After the pressure is reduced and the solute is released into the collector 8, the flow rate is measured by a gas meter 9. In addition, the solute trapped in the collector 8 was sampled as appropriate, and the weight was 1.111.
and conduct compositional analysis.

本分離装置は半回分式のため、包接化合物形成槽6人口
の溶質濃度は、時間的に変化し、原料槽5中の可溶成分
がすべて抽出された時点で零となる。
Since this separation device is of a semi-batch type, the solute concentration in the clathrate compound forming tank 6 changes over time and becomes zero when all the soluble components in the raw material tank 5 are extracted.

さらに、そのまま超臨界ガスを溶媒として流し続けると
、槽6中の不安定な包接化合物の分解が生じ、ついには
槽6からの溶質の流出はほとんど無くなる。この時点で
、槽6中の包接化合物は安定上あり、さらにこれを速や
かに分解するためには、包接平衡を移動する必要がある
Furthermore, if the supercritical gas continues to flow as a solvent, the unstable clathrate in the tank 6 will decompose, and eventually the solute will hardly flow out of the tank 6. At this point, the clathrate in tank 6 is stable, and in order to further rapidly decompose it, it is necessary to shift the clathrate equilibrium.

その方法としては、昇圧あるいは溶媒の種類あるいは組
成変化などによる抽出相へのゲスト分子の溶解度の増加
、昇温などによる包接化合物の不安定化、包接格子成分
の抽出相への可溶化などがあり、さらに、これらの方法
の組み合せが考えられる。すなわち、分解方法の選択は
、ゲスト分子の選択的回収、包接格子成分の回収、およ
び分解速度などの操作性および効率性を考慮しておこな
うべきものであるが、最も一般的な方法としては、昇温
操作を伴う分解があげられる。したがって、包接化合物
の分解はガスを流したまま、系内を昇圧、昇温すること
によりおこなう。なお、lはガスボンベ、2は冷却器、
4は加熱器である。
Methods for this include increasing the solubility of guest molecules in the extraction phase by increasing the pressure or changing the type or composition of the solvent, destabilizing the clathrate by increasing the temperature, and solubilizing the inclusion lattice component in the extraction phase. Furthermore, combinations of these methods are possible. In other words, the selection of the decomposition method should take into consideration operability and efficiency such as selective recovery of guest molecules, recovery of inclusion lattice components, and decomposition rate, but the most common method is , decomposition accompanied by temperature raising operation. Therefore, the decomposition of the clathrate compound is carried out by increasing the pressure and temperature in the system while keeping the gas flowing. In addition, l is a gas cylinder, 2 is a cooler,
4 is a heater.

表2ならび図3、図4に結果の−・部を示すが、ここで
流出率とは、流出全量(8、4g)に対しての流出割合
をいう。
The results are shown in Table 2 and FIGS. 3 and 4, where the outflow rate refers to the outflow ratio with respect to the total outflow amount (8, 4 g).

魚油中の炭素数20(以下、C20と略記する。)、炭
素数22(以下、C22と略記する。)の脂肪酸メチル
エステルの分離性能をみた。
The separation performance of fatty acid methyl esters having 20 carbon atoms (hereinafter abbreviated as C20) and 22 carbon atoms (hereinafter abbreviated as C22) in fish oil was examined.

二重結合の少ない脂肪酸メチルエステルが超臨界二酸化
炭素中において、安定な包接化合物を形成し、全流出域
において、流出物中はとんどエイコサペンタエン酸(以
下、EPAあるいはC20−sと略記する。)、ドコサ
ヘキサエン酸(以下、DHAあるいはC22−6と略記
する。)のメチルエステルのみである。ここで、本発明
の実施例中Cm−nは炭素数mで二重結合数nの脂肪酸
あるいはその誘導体を表わすものとする。なお、最終流
出率付近での流出物中の組成比の大きな変化は、本装置
が半回分式であるために、二重結合数の差によるわずか
な分離性能の差が最終的な原料の濃縮のため拡大された
ことによると思われる。
Fatty acid methyl esters with few double bonds form stable clathrate compounds in supercritical carbon dioxide, and in the entire outflow area, the effluent contains mostly eicosapentaenoic acid (hereinafter abbreviated as EPA or C20-s). ), methyl ester of docosahexaenoic acid (hereinafter abbreviated as DHA or C22-6). Here, in the examples of the present invention, Cm-n represents a fatty acid or a derivative thereof having m carbon atoms and n double bonds. Note that the large change in the composition ratio in the effluent near the final flow rate is due to the slight difference in separation performance due to the difference in the number of double bonds due to the fact that this device is a semi-batch type. This is probably due to the fact that it was expanded.

以1;より、)契素数が同一で二重結合数の差の大きい
混合物については、包接化合物の分解による回収操作を
併用すれば、高回収率でしかも高純度分離法として、操
作がきわめて簡単であり、工業的に適用が可能である。
(1)) For mixtures with the same prime number and a large difference in the number of double bonds, if the recovery operation by decomposition of the clathrate compound is used in conjunction with the recovery operation, it is possible to achieve a high recovery rate and high purity separation method with an extremely simple operation. It is simple and industrially applicable.

なお、比較のためにおこなった、超臨界ガス抽出法では
、最終旋用率付近まで、流出物中の組成比は仕込み原料
中の組成比とほとんど変らず、分離性能が低い。
In addition, in the supercritical gas extraction method carried out for comparison, the composition ratio in the effluent is almost the same as the composition ratio in the charged raw material until near the final turnover rate, and the separation performance is low.

表2 流出物中における二重結合数の差によるC20.
 C22の脂肪酸メチルエステルの組成「実施例2」 表3に示す、二重結合数が1個づつ異なるC 1Bの脂
肪酸のエチルエステル混合物を、実施例1と同様な方法
で分離した。原料混合物7.0g、振動ボールミルで微
粉化した尿素101gをそれぞれ用いた。全流出量は原
料に対し、36%の2゜5gであった。流出物がほとん
ど得られなくなった時点で、包接化合物を、系外に取り
出し、温水を用いて分解したところ、4.3gの包接分
解物が得られた。表3ならびに図5に流出物および包接
分解物の組成を示す。
Table 2 C20 due to the difference in the number of double bonds in the effluent.
Composition of C22 Fatty Acid Methyl Ester "Example 2" Ethyl ester mixtures of C1B fatty acids each having one double bond number as shown in Table 3 were separated in the same manner as in Example 1. 7.0 g of the raw material mixture and 101 g of urea pulverized with a vibrating ball mill were used. The total flow rate was 2.5 g, which is 36% of the raw material. When almost no effluent was obtained, the clathrate was taken out of the system and decomposed using hot water, yielding 4.3 g of clathrate decomposition product. Table 3 and FIG. 5 show the compositions of the effluent and clathrate decomposition products.

二重結合が多いものほど、原料組成に対する濃縮比が大
きく、流出物に対して同様の操作を繰返すことにより、
各成分毎の分離が可能であることがわかる。
The more double bonds there are, the higher the concentration ratio to the raw material composition, and by repeating the same operation on the effluent,
It can be seen that separation of each component is possible.

なお、流出率とともに、二重結合数の大きい成分の組成
が低下する現象は、格子成分の更新を行なわないためで
あり、木質的な問題ではない。
The phenomenon in which the composition of components with a large number of double bonds decreases with the outflow rate is due to the fact that the lattice components are not updated, and is not a wood-related problem.

比較でおこなった超臨界ガス抽出法では、炭素数が同じ
で、二重結合数の差が1個づつ異なる混合物の分離はほ
とんど不可能である。
In the supercritical gas extraction method used for comparison, it is almost impossible to separate mixtures that have the same number of carbon atoms but differ in number of double bonds by one.

表3 流出物中における二重結合数の差によるC1θの
脂肪酸メチルエステルの組成 「実施例3」 図2に示す分離装置により、原料として表4に示す魚油
から得られた脂肪酸のメチルエステルを10.6g、振
動ボールミルで微粉化した尿素113.5gをそれぞれ
用い、三酸化炭素は20℃において毎分0.3見、昇温
時は毎分3文を使用した。なお、分離器8で捕集された
流出物は9゜6gで、原料に対し、約91%であった。
Table 3 Composition of fatty acid methyl ester of C1θ according to the difference in the number of double bonds in the effluent "Example 3" Using the separation apparatus shown in FIG. .6 g of urea and 113.5 g of urea pulverized with a vibrating ball mill were used, and carbon trioxide was used at 0.3 m/min at 20°C, and 3 m/min when the temperature was raised. The amount of effluent collected by the separator 8 was 9.6 g, which was about 91% of the raw material.

表4ならびに、図6に魚油から得られた脂肪酸のメチル
エステル中の主な成分の流出物の組成変化を示す。
Table 4 as well as FIG. 6 show the compositional changes in the effluent of the main components in the methyl esters of fatty acids obtained from fish oil.

1オしめ、20’O1100kg/cm”G ノ高圧液
化二酸化炭素中で包接化合物の形成をおこない、ついで
、この条件下波出物がほとんど得られなくなった時点で
、200 kgldGに昇圧し、さらに80°Cまで徐
々に昇温することにより、包接化合物の分解をおこなっ
た。
After 1 hour, the clathrate compound was formed in high-pressure liquefied carbon dioxide at 1100 kg/cm"G of 20'O, and then, when almost no ejected material was obtained under this condition, the pressure was increased to 200 kgldG, and further. The clathrate compound was decomposed by gradually increasing the temperature to 80°C.

一般に脂肪酸およびその誘導体の尿素包接化合物は、炭
素数が小さいほど、また二重結合が多いほど不安定にな
ることが知られているが、本実施例の高圧液化ないし、
超臨界の二酸化炭素相中での挙動も同様である。すなわ
ち、高度不飽和脂肪酸であるEPA、DHAは尿素と包
接化合物を安定に形成せず、大部分が包接化合物成形時
に二酸化炭素と共に流出する。また、少措のEPA、D
HAの包接化合物はかなり低温域で速やかに分解するこ
とがわかる。一方、飽和脂肪酸および二重結合の少ない
不飽和脂肪酸は尿素と安定な包接化合物を形成し、包接
化合物形成時には、流出物中の組成比が原料組成におけ
るよりも小さく、大部分は包接の分解に伴なって、それ
ぞれの安定度および濃度に対応して、流出する。本実施
例は半回分式のため、包接化合物形成槽6の入口組成が
時間的に変化すること、および包接格子成分が、更新さ
れないことにより、流出組成が一見複雑に変化するが、
j−記安定度の差により、分離されることは、包接化合
物の形成および分解時の流出物組成と原料組成とを比較
すれば理解することができる。
It is generally known that urea clathrate compounds of fatty acids and their derivatives become more unstable as the number of carbon atoms decreases and as the number of double bonds increases.
The behavior in the supercritical carbon dioxide phase is similar. That is, EPA and DHA, which are highly unsaturated fatty acids, do not stably form clathrate compounds with urea, and most of them flow out together with carbon dioxide during formation of clathrate compounds. In addition, the EPA, D
It can be seen that HA clathrate compounds are rapidly decomposed at considerably low temperatures. On the other hand, saturated fatty acids and unsaturated fatty acids with few double bonds form stable clathrate compounds with urea, and when clathrate compounds are formed, the composition ratio in the effluent is smaller than that in the raw material composition, and most of the clathrates are As they decompose, they flow out, depending on their stability and concentration. Since this example is a semi-batch type, the inlet composition of the clathrate compound forming tank 6 changes over time and the clathrate lattice components are not updated, so the outflow composition changes in a seemingly complicated manner.
The separation due to the difference in stability can be understood by comparing the composition of the effluent from the formation and decomposition of the clathrate compound and the composition of the raw material.

表4 魚油から得られた脂肪酸メチルエステル主成分の
流出組成の変化「実施例4」 図2に示す分離装置を用い、原料の月見草種子油から得
られた脂肪酸のエチルエステル10.2gに対し、包接
化合物形成槽6中に振動ボールミルで微粉化した尿素1
09gを入れ、二酸化炭素の圧力100kg/dG、温
度25°Cで包接化合物の形成をおこなったところ、4
.9gの流出物を得た。なお、包接化合物の形成後、系
内を大気圧まで減圧し、槽6中の尿素付加体を取出し、
温水中に溶解させたところ、包接分解物5.3gを得た
Table 4 Changes in effluent composition of fatty acid methyl ester main components obtained from fish oil "Example 4" Using the separation apparatus shown in Figure 2, for 10.2 g of fatty acid ethyl ester obtained from the raw material evening primrose seed oil, Urea 1 pulverized by a vibrating ball mill is placed in the clathrate formation tank 6.
When the clathrate compound was formed at a carbon dioxide pressure of 100 kg/dG and a temperature of 25°C,
.. 9 g of effluent was obtained. After the formation of the clathrate compound, the pressure inside the system is reduced to atmospheric pressure, and the urea adduct in the tank 6 is taken out.
When dissolved in hot water, 5.3 g of clathrate decomposition product was obtained.

月見草種油中には、生理活性物質であるγ−リルン酸(
CI8−3 )が約8%含まれているが、二重結合の1
個少ないリノール酸(CIll −2)が大量に含まれ
ているため、その濃縮は通常の尿素付加法ではきわめて
煩雑になる。
Evening primrose seed oil contains γ-lylunic acid (
CI8-3) is included at about 8%, but 1 of the double bonds
Since it contains a large amount of linoleic acid (CIll-2), its concentration becomes extremely complicated using the usual urea addition method.

しかるに1本実施例によれば、表5に示すとおり、1回
の簡単な操作で全流出物中のγ−リルン酸は、平均組成
でも約2倍に濃縮され、包接形成物中には、原料組成比
で約3分の1と減少している。これに対し、リノール酸
は包接分解物中にかなりの濃度で含まれることになるの
で、本操作の繰返しなどにより、γ−リルン酸の高純度
濃縮が可能であることがわかる。
However, according to this example, as shown in Table 5, γ-lylunic acid in the total effluent was concentrated to about twice the average composition in one simple operation, and the γ-lylunic acid in the clathrate formed , the raw material composition ratio has decreased to about one-third. On the other hand, since linoleic acid is contained in the clathrate decomposition product at a considerable concentration, it is understood that it is possible to concentrate γ-linolenic acid to a high degree of purity by repeating this operation.

「実施例5」 表6に示す組成の脂肪酸混合物を調整し、実施例1と同
様な方法で分離した。超臨界ガスとして二酸化炭素を用
い、温度40 ’O1圧力150 kg/C1’Gでお
こなった。包接格子成分としては、振動ボールミルで微
粉化した尿素95.3gを使用した。
"Example 5" A fatty acid mixture having the composition shown in Table 6 was prepared and separated in the same manner as in Example 1. Carbon dioxide was used as the supercritical gas, and the temperature was 40'O1 and the pressure was 150 kg/C1'G. As the inclusion lattice component, 95.3 g of urea pulverized with a vibrating ball mill was used.

飽和脂肪酸類およびC1a脂肪酸類の流出組成変化を表
6ならびに図7、図8に示す。
Changes in the effluent composition of saturated fatty acids and C1a fatty acids are shown in Table 6 and FIGS. 7 and 8.

これらに関し超臨界ガス抽出法との分離性能の比較を試
みたが、本実施例のほうがすぐれることが認められた。
Regarding these, an attempt was made to compare the separation performance with the supercritical gas extraction method, and it was found that the present example was superior.

すなわち、本実施例では包接形成時において、流出物中
の各飽和脂肪酸の組成はほぼ2%以下であり、その分離
がきわめて良好であることがわかる。また、超臨界ガス
抽出法では、炭素数が同一の成分の分離はきわめて困難
であるが、本発明では二重結合の差のみでも大きな分離
性能が得られる。
That is, in this example, during inclusion formation, the composition of each saturated fatty acid in the effluent was approximately 2% or less, indicating that the separation was extremely good. Further, in the supercritical gas extraction method, it is extremely difficult to separate components having the same number of carbon atoms, but in the present invention, great separation performance can be obtained just by the difference in double bonds.

原料脂肪酸のうち5.8gが包接化合物を形成したが、
表7ならびに図9に示す昇温、昇圧パターンにより、分
解に供した。ここで、昇圧の程度は、最終温度90’O
においても超臨界二酸化炭素が脂肪酸に対して充分な溶
解力を有するように決定した。表8ならびに図10に飽
和脂肪酸の流出組成の変化を示すが、炭素数の少ないも
のから順に流出していく様子が認められる。表9ならび
に図11、図12にそれぞれC1[1、C22の脂肪酸
類の二重結合の差による流出組成変化の相違を示した。
5.8g of the raw fatty acids formed clathrate compounds, but
Decomposition was performed according to the temperature and pressure increase patterns shown in Table 7 and FIG. Here, the degree of pressure increase is the final temperature of 90'O
It was also determined that supercritical carbon dioxide has sufficient dissolving power for fatty acids. Table 8 and FIG. 10 show changes in the composition of saturated fatty acids flowing out, and it can be seen that fatty acids flow out in descending order of carbon number. Table 9 as well as FIGS. 11 and 12 show differences in outflow composition changes due to differences in the double bonds of C1[1 and C22 fatty acids, respectively.

これらから、包接化合物の分解時にも二重結合の差が明
確にあられれており、不飽和度の大きいほど分解し易い
ことがわかる。
From these results, it can be seen that there is a clear difference in the number of double bonds during the decomposition of the clathrate compound, and the greater the degree of unsaturation, the easier it is to decompose.

表7 昇温、昇圧パターン 「実施例6」 実施例1に用いたと同組成の魚油から得られた脂肪酸の
メチルエステル5.02gにエントレーナーとして、尿
素の良溶媒であるメタノール1゜02gを予め加えてお
き、包接格子成分として微粉化した尿素]、 02 、
2 gを用い、亜酸化窒素を20°O,100kg/i
Gの高圧液化ガス状態で溶媒として、メタノールの共存
した状態で、分離をおこなった@ 昇温、昇圧のパターンを表10ならびに図13に示し、
結果を表11、表12ならびに図14、図15に示すが
、後述のメタノールを加えない場合と異なり包接化合物
の形成が明らかに認められ、超臨界あるいは高圧液化ガ
ス中においても、メタノールは尿素付加物の形成に対す
る賦活能を有することがわかる。
Table 7 Temperature and pressure increase pattern "Example 6" 1.02 g of methanol, which is a good solvent for urea, was added in advance to 5.02 g of fatty acid methyl ester obtained from fish oil with the same composition as used in Example 1 as an entrainer. In addition, pulverized urea as an inclusion lattice component], 02,
2 g of nitrous oxide at 20°O, 100 kg/i
Separation was performed in the presence of methanol as a solvent in a high-pressure liquefied gas state of G. The temperature and pressure increase patterns are shown in Table 10 and Figure 13.
The results are shown in Tables 11 and 12, as well as Figures 14 and 15. Unlike the case in which methanol is not added, which will be described later, the formation of clathrate compounds is clearly observed, and even in supercritical or high-pressure liquefied gas, methanol does not form with urea. It can be seen that it has the ability to activate the formation of adducts.

比較のため、亜酸化窒素を20°C1l OOkg/d
Gの高圧液化ガス状態で溶媒として用い、本実施例と同
じ脂肪酸メチルエステル原料に対して超臨界ガス抽出法
による分離を試みたが、溶解力が大で抽出量は時間とと
もに漸次減少し、抽出組成は抽出率にかかわりなく分析
誤差範囲で原料組成と一致した。さらに、尿素を包接格
子成分として用いたが、結果は変らなかった。すなわち
、包接化合物の形成は起らなかったことになる。したが
って、包接化合物形成に必要な条件として、包接格子成
分の選定のみならず、ガスの種類およびエントレーナー
の選択も重要な因子であることが理解される。
For comparison, nitrous oxide at 20°C 1l OOkg/d
An attempt was made to separate the same fatty acid methyl ester raw material as in this example using the supercritical gas extraction method using G as a solvent in a high-pressure liquefied gas state, but due to the large dissolving power, the amount extracted gradually decreased over time, and the extraction The composition matched the raw material composition within the analytical error range, regardless of the extraction rate. Furthermore, using urea as an inclusion lattice component did not change the results. In other words, no clathrate formation occurred. Therefore, it is understood that not only the selection of the inclusion lattice components but also the type of gas and the selection of the entrainer are important factors as necessary conditions for the formation of clathrate compounds.

表10  昇温、昇圧パターン 「実施例7」 図2の分離装置を用い、f!!油から得られた脂肪酸の
メチルエステル4.5gに対し、包接化合物形成槽6中
にデオキシコール酸70gを充填し、亜酸化窒素を溶媒
として分離実験をおこなった。
Table 10 Temperature and pressure increase pattern “Example 7” Using the separation apparatus shown in FIG. 2, f! ! A separation experiment was conducted by filling 70 g of deoxycholic acid into the clathrate compound forming tank 6 with respect to 4.5 g of fatty acid methyl ester obtained from oil and using nitrous oxide as a solvent.

圧力100kg/cr’G、温度20°Cでおこなった
ところ、原料に対し58%にあたる2.6gの流出物を
得た。その後、表13ならびに図16に示したように圧
力200 kg/dGにし、温度を90°Cまで徐々に
昇温したところ、包接分解物1.2gを得、全体の流出
率は84%となった。結果を表14、表15ならびに図
17、図18に示す。この場合、実施例6と異なり、エ
ントレーナーを必要とすることなく包接化合物を形成し
たが、デオキシコール酸は脂肪酸メチルエステルの分離
に対して、尿素はど包接化合物形成の選択性は大きくな
いことがわかる。
When the reaction was carried out at a pressure of 100 kg/cr'G and a temperature of 20° C., 2.6 g of effluent, which is 58% of the raw material, was obtained. Thereafter, as shown in Table 13 and Figure 16, the pressure was increased to 200 kg/dG and the temperature was gradually raised to 90°C, yielding 1.2 g of clathrate decomposition products, with an overall efflux rate of 84%. became. The results are shown in Tables 14 and 15, as well as FIGS. 17 and 18. In this case, unlike Example 6, the clathrate compound was formed without the need for an entrainer, but deoxycholic acid has a high selectivity for the formation of clathrate compounds for the separation of fatty acid methyl esters, whereas urea has a high selectivity for the formation of clathrate compounds. It turns out that there isn't.

表13 昇温、昇圧パターン 「発明の効果」 本発明の包接分離法は、適当な超臨界ガスあるいは高圧
液化ガスと包接格子成分が見出さ−れるすべての分離対
象混合物質に適用することができ、とくに、その特徴を
発揮できる対象としては、常温付近での操作が可能なた
め、食品、医薬品など高温下での分離が不適当なもの、
および共沸混合物の分離のように、多大のエネルギーと
煩雑な操作を必要とするものなどがあげられる。また、
超臨界クロマトグラフィとして、本発明の分析化学分野
への応用も期待される。
Table 13 Temperature and pressure increase pattern "Effects of the invention" The inclusion separation method of the present invention can be applied to all mixtures to be separated in which an appropriate supercritical gas or high-pressure liquefied gas and an inclusion lattice component are found. In particular, this feature can be applied to objects that cannot be separated at high temperatures, such as foods and pharmaceuticals, since they can be operated at around room temperature.
and separation of azeotropic mixtures, which require a large amount of energy and complicated operations. Also,
The present invention is also expected to be applied to the field of analytical chemistry as supercritical chromatography.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法による連続分離プロセスの概念図、第
2図は実施例で用いた半回分式分離装置の概念図、第3
図は流出物中における二重結合数の差によるC 20の
脂肪酸メチルエステルの組成を示すグラフ図、第4図は
流出物中における二重結合数の差によるC 22の脂肪
酸メチルエステルの組成を示すグラフ図、第5図は流出
物中における二重結合数の差によるC +aの脂肪酸 
エチルエステルの組成を示すグラフ図、第6図は魚油か
ら得られた脂肪酸メチルエステル主成分の流出物組成の
変化を示すグラフ図、第7図は飽和脂肪酸類の包   
 □接形成時の流出物組成を示すグラフ図、第8図はC
Ill脂肪酸類の包接形成時の流出物組成を示すグラフ
図、第9図は昇温、昇圧パターンを示すグラフ図、第1
O図は飽和脂肪酸類の包接化合物分解時における流出物
組成を示すグラフ図、第11図はCra脂肪酸類の包接
化合物分解時における流出組成を示すグラフ図、第12
図はC22脂肪酸類の包接化合物分解時における流出組
成を示すグラフ図、第13図は昇温、昇圧パターンを示
すグラフ図、第14図は飽和脂肪酸と二重結合1個を有
する不飽和脂肪酸メチルエステルの包接形成と分解時の
流出物組成を示すグラフ図、第15図は二重結合を2個
以上有する高度不飽和脂肪酸メチルエステルの包接化合
物と分解時の流出物組成を示すグラフ図、第16図は昇
温、昇圧パターンを示すグラフ図、第17図は飽和およ
び二重結合1個を有する脂肪酸メチルエステルの流出物
組成を示すグラフ図、第18図は2測具1−有する高度
不飽和脂肪酸メチルエステルの流出物組成を示すグラフ
図である。 特許出願人   斉 藤  正 玉 部外  1  名
3. 11111:1)、 i(図 第2図 −ツ 椿11符C τ ゆ Oく ^ 何植W幅くメ @ 旧−9−0 炎dψ寸−一 鴫白 文9色8割 uuuu ぽ絨W憾(r ・(−■ ギ殖!蚊〈♂ ; 1S シ 鞍 ○〈×口 4メ ■ 柵                     −0 
− へ 0 ・  禰  ■  O r) 瘉 房 0  < −1:gセ8薗 UOQ() 0 0く口・( ○ぐ口・(腸    “ ○ 蛎躾W嘱彊? ≧ O〈口×・(■[株] s 17 図 十〜〜へ、 9、釈乱戊 0  :  CIG−07,9 △:  Cl6−0 14.8 0; CIG−1,9,I X :  Cog−02,1 ・  Cog−112゜1 ム  C20−16,2 閣、C22−15,4 4Pl租販 OCヅ−22,7 6,01g−31,4 0・ Cog−斗   4,1 @ 、C20−512,9 ム C2241,2 ■、 C22−69,4
Figure 1 is a conceptual diagram of the continuous separation process according to the method of the present invention, Figure 2 is a conceptual diagram of the semi-batch type separation apparatus used in the examples, and Figure 3 is a conceptual diagram of the semi-batch type separation apparatus used in the examples.
The figure is a graph showing the composition of C20 fatty acid methyl ester depending on the difference in the number of double bonds in the effluent, and Figure 4 shows the composition of C22 fatty acid methyl ester depending on the difference in the number of double bonds in the effluent. The graph shown in Figure 5 shows the difference in the number of double bonds in the effluent of C+a fatty acids.
Figure 6 is a graph showing the composition of ethyl esters, Figure 6 is a graph showing changes in the composition of the effluent mainly composed of fatty acid methyl esters obtained from fish oil, and Figure 7 is a graph showing the composition of saturated fatty acids.
□Graphic diagram showing the composition of the effluent during contact formation, Figure 8 is C
A graph showing the composition of the effluent during inclusion formation of Ill fatty acids, Fig. 9 is a graph showing the temperature increase and pressure increase pattern, Fig. 1
Figure O is a graph showing the composition of the effluent when the clathrate compounds of saturated fatty acids are decomposed, Figure 11 is a graph showing the composition of the effluent when the clathrate compounds of Cra fatty acids are decomposed, and Figure 12 is a graph showing the composition of the effluent when the clathrate compounds of Cra fatty acids are decomposed.
The figure is a graph showing the outflow composition during the decomposition of clathrate compounds of C22 fatty acids, Figure 13 is a graph showing the temperature increase and pressure increase pattern, and Figure 14 is a saturated fatty acid and an unsaturated fatty acid with one double bond. A graph showing the composition of the effluent during inclusion formation and decomposition of methyl esters. Figure 15 is a graph showing the composition of the effluent during the inclusion and decomposition of highly unsaturated fatty acid methyl esters having two or more double bonds. Figure 16 is a graph showing the temperature and pressure increase patterns, Figure 17 is a graph showing the effluent composition of fatty acid methyl esters having saturated and one double bond, and Figure 18 is a graph showing the two measuring instruments 1- FIG. 2 is a graph showing the composition of the effluent of highly unsaturated fatty acid methyl esters. Patent applicant Tadashi Saito 1 outsider 3. 11111:1), i (Fig. 2-Tsubaki 11 marks C τ Yuoku ^ How many plants W wide me @ Old - 9-0 Flame dψ dimension - Ichishiro Hakubun 9 colors 80%uuuu Poro W 憾(r ・(−■ Gi breeding! Mosquito〈♂ ; 1S Shisa ○〈×mouth4me■ Fence −0
- to 0 ・ 禰 ■ Or) Kafusa 0 < -1:gSe8 薗UOQ() 0 0ku口・( ○uguguchi・(intestine " ○ 蛎躾W嘱彊? ≧ O〈口×・( ■[Stock] s 17 Figure 10 to ~, 9, Shakuran 0: CIG-07,9 △: Cl6-0 14.8 0; CIG-1,9,IX: Cog-02,1 ・Cog -112゜1 Mu C20-16,2 Cabinet, C22-15,4 4Pl Sales OCㅅ-22,7 6,01g-31,4 0 Cog-Dou 4,1 @ , C20-512,9 Mu C2241 , 2 ■, C22-69, 4

Claims (5)

【特許請求の範囲】[Claims] (1)超臨界ガスあるいは高圧液化ガスを溶媒として混
合物から抽出相を得、かかる状態のガスを媒体として、
もし当該ガスが包接化合物の形成を賦活する程度が低い
場合には、これに包接形成の賦活能を有するエントレー
ナーを共存させ、圧力、温度を操作因子とし、包接格子
成分と抽出相中の溶質成分とを反応させ、選択的、可逆
的に包接化合物を形成、分解させることにより、所望の
溶質成分からなる抽出相を得、それより溶媒成分のガス
を分離して所望の溶質成分を取得する超臨界ガスあるい
は高圧液化ガスを媒体とした包接分離法。
(1) Obtain an extraction phase from the mixture using supercritical gas or high-pressure liquefied gas as a solvent, and use the gas in such a state as a medium.
If the gas has a low degree of activating the formation of clathrate compounds, an entrainer capable of activating clathrate formation should be added to the gas, and the clathrate lattice components and extraction phase should be controlled by using pressure and temperature as operating factors. By selectively and reversibly forming and decomposing clathrates with solute components in Inclusion separation method using supercritical gas or high-pressure liquefied gas as a medium to obtain components.
(2)溶媒が二酸化炭素、亜酸化窒素である特許請求の
範囲第1項記載の超臨界ガスあるいは高圧液化ガスを媒
体とした包接分離法。
(2) The clathrate separation method using supercritical gas or high-pressure liquefied gas as a medium according to claim 1, wherein the solvent is carbon dioxide or nitrous oxide.
(3)包接格子成分が尿素、デオキシコール酸である特
許請求の範囲第1項記載の超臨界ガスあるいは高圧液化
ガスを媒体とした包接分離法。
(3) The inclusion separation method using supercritical gas or high-pressure liquefied gas as a medium according to claim 1, wherein the inclusion lattice component is urea or deoxycholic acid.
(4)混合物成分が脂肪酸、脂肪酸エステルである特許
請求の範囲第1項記載の超臨界ガスあるいは高圧液化ガ
スを媒体とした包接分離法。
(4) The clathrate separation method using supercritical gas or high-pressure liquefied gas as a medium according to claim 1, wherein the mixture component is a fatty acid or a fatty acid ester.
(5)溶媒が亜酸化窒素、包接格子成分が尿素である場
合のエントレーナーがメタノールである特許請求の範囲
第1項記載の超臨界ガスあるいは高圧液化ガスを媒体と
した包接分離法。
(5) The inclusion separation method using supercritical gas or high-pressure liquefied gas as a medium according to claim 1, wherein the entrainer is methanol when the solvent is nitrous oxide and the inclusion lattice component is urea.
JP60064586A 1985-03-28 1985-03-28 Clathration separation using supercritical or pressure-liquefied gas as medium Granted JPS61225139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60064586A JPS61225139A (en) 1985-03-28 1985-03-28 Clathration separation using supercritical or pressure-liquefied gas as medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064586A JPS61225139A (en) 1985-03-28 1985-03-28 Clathration separation using supercritical or pressure-liquefied gas as medium

Publications (2)

Publication Number Publication Date
JPS61225139A true JPS61225139A (en) 1986-10-06
JPH0329441B2 JPH0329441B2 (en) 1991-04-24

Family

ID=13262496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064586A Granted JPS61225139A (en) 1985-03-28 1985-03-28 Clathration separation using supercritical or pressure-liquefied gas as medium

Country Status (1)

Country Link
JP (1) JPS61225139A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249742A (en) * 1988-03-31 1989-10-05 Miyagi Pref Gov Concentration and fractionation apparatus of component of mixture of highly unsaturated fatty acid, its ester or such and method for concentration and fractionation of said component
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
WO1995033541A1 (en) * 1994-06-09 1995-12-14 Idaho Research Foundation, Inc. Fluid extraction of metals and/or metalloids
US5606724A (en) * 1995-11-03 1997-02-25 Idaho Research Foundation, Inc. Extracting metals directly from metal oxides
US5730874A (en) * 1991-06-12 1998-03-24 Idaho Research Foundation, Inc. Extraction of metals using supercritical fluid and chelate forming legand
US5770085A (en) * 1991-06-12 1998-06-23 Idaho Research Foundation, Inc. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts
US5792357A (en) * 1996-07-26 1998-08-11 Idaho Research Foundation, Inc. Method and apparatus for back-extracting metal chelates
US7128840B2 (en) 2002-03-26 2006-10-31 Idaho Research Foundation, Inc. Ultrasound enhanced process for extracting metal species in supercritical fluids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231855A (en) * 1975-09-02 1977-03-10 Giichi Masuda Processing and treating method of corn germ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231855A (en) * 1975-09-02 1977-03-10 Giichi Masuda Processing and treating method of corn germ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249742A (en) * 1988-03-31 1989-10-05 Miyagi Pref Gov Concentration and fractionation apparatus of component of mixture of highly unsaturated fatty acid, its ester or such and method for concentration and fractionation of said component
US5013443A (en) * 1989-01-23 1991-05-07 Nihon Bunko Kogyo Kabushiki Kaisha Extraction and separation method and apparatus using supercritical fluid
US5730874A (en) * 1991-06-12 1998-03-24 Idaho Research Foundation, Inc. Extraction of metals using supercritical fluid and chelate forming legand
US5770085A (en) * 1991-06-12 1998-06-23 Idaho Research Foundation, Inc. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts
WO1995033541A1 (en) * 1994-06-09 1995-12-14 Idaho Research Foundation, Inc. Fluid extraction of metals and/or metalloids
US5606724A (en) * 1995-11-03 1997-02-25 Idaho Research Foundation, Inc. Extracting metals directly from metal oxides
US5792357A (en) * 1996-07-26 1998-08-11 Idaho Research Foundation, Inc. Method and apparatus for back-extracting metal chelates
US7128840B2 (en) 2002-03-26 2006-10-31 Idaho Research Foundation, Inc. Ultrasound enhanced process for extracting metal species in supercritical fluids

Also Published As

Publication number Publication date
JPH0329441B2 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
KR101265836B1 (en) Ozonolysis reactions in liquid co2 and co2-expanded solvents
CA2656286C (en) Improved chromatography process for recovering a substance or a group of substances from a mixture
AU2006295843B2 (en) A process and an apparatus for producing episesamin-rich compositions
KR970059159A (en) Process for producing acrylic acid and acrylic acid ester
US7709668B2 (en) Separation technology
JPS62201828A (en) Supercritical extraction process and apparatus therefor
JPS61225139A (en) Clathration separation using supercritical or pressure-liquefied gas as medium
KR102605699B1 (en) Purification of hydrogen peroxide
TWI578985B (en) Extraction and purification of conjugated triene linoleic acid (CLN)
ES2203502T3 (en) PROCEDURE FOR THE RECOVERY OF POLYINSATURED FATTY ACIDS OF UREA ADUCTS WITH SATURATED AND NOT SATURATED FATTY ACIDS.
JPH1095744A (en) Production of highly unsaturated aliphatic acid or its alkyl ester
JPH1180083A (en) Production of eicosapentaenoic ester
Ren et al. A simple and feasible separation process of toluene from n-heptane with imidazolium-based switchable solvents
JPH06199741A (en) Method for continuous preparation of alkyl nitrite
Liang et al. Effect of Temperature Variation on the Separation of Sesamin and Sesamolin by Simulated Moving Bed (pp. 479-486)
Mukhopadhyay et al. Refining of crude lecithin using dense carbon dioxide as anti-solvent
JPS6225985A (en) Method of concentrating and purifying alcohol
JP2726828B2 (en) Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters
TW502015B (en) Improved process for separating pure terephthalic acid
King et al. Organometallic Synthesis as a Continuous Process: The Synthesis and Isolation of Cr (CO) 5 (η2-C3H6) and (C5R5) Mn (CO) 2 (η2-C3H6)(R= H and Me) from Superheated Liquid Propene
JPS60214757A (en) Concentration and separation of highly unsaturated fatty acid or its ester
JPS63174997A (en) Extraction and separation of valuable substance from fat and oil raw material
JP3271371B2 (en) Method for producing diacetin concentrate
JPS62135440A (en) Method for concentrating and purifying alcohol
JPH09263787A (en) Production of highly unsaturated fatty acid or alkyl ester thereof