JPS62135440A - Method for concentrating and purifying alcohol - Google Patents

Method for concentrating and purifying alcohol

Info

Publication number
JPS62135440A
JPS62135440A JP60275995A JP27599585A JPS62135440A JP S62135440 A JPS62135440 A JP S62135440A JP 60275995 A JP60275995 A JP 60275995A JP 27599585 A JP27599585 A JP 27599585A JP S62135440 A JPS62135440 A JP S62135440A
Authority
JP
Japan
Prior art keywords
alcohol
solvent
raw material
liquid
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60275995A
Other languages
Japanese (ja)
Other versions
JPH0578535B2 (en
Inventor
Hirotoshi Horizoe
浩俊 堀添
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60275995A priority Critical patent/JPS62135440A/en
Publication of JPS62135440A publication Critical patent/JPS62135440A/en
Publication of JPH0578535B2 publication Critical patent/JPH0578535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To separate and to concentrate a high-purity alcohol in reduction of energy, by bringing a raw material consisting of an alcohol, a high-boiling impurity and water into contact with a solvent in a supercritical state in counter current, reducing pressure of the prepared extracted solution at two stages and successively separating the high- boiling impurity and the solvent. CONSTITUTION:A raw material mixture comprising an organic liquid solute consisting of an alcohol and a high-boiling impurity and water is fed from a top part 1 of a counter current contact extractor 3 and a solvent having a critical temperature lower than the boiling point of the alcohol from a bottom part 2. The raw material is brought into contact with the solvent in counter current in a state wherein the solvent is in a supercritical state or psudocritical state and a light solution containing the solvent and the alcohol and a small amount of the high-boiling impurity and water is taken out from a top part 6. The pressure of the light solution is reduced 7 to pressure required from phase separation of the high-boiling impurity, introduced to an impurity separating tank 9 and a separated heavy impurity solution is fed to a middle part 11 of the device 3. The pressure of the light purified solution is reduced 14 to pressure required for phase separation of the solvent and the alcohol, introduced to a solvent separating tank 16 and the concentrated alcohol is taken out from the bottom and partially fed to the device 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発酵アルコール等から高純度のアルコール全
省エネルギー的に分離濃縮しうる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating and concentrating highly pure alcohol from fermented alcohol and the like in an energy-saving manner.

〔従来の技術〕[Conventional technology]

甘しよ、さつ1いも、とうもろこし等の炭水化物を原料
とする発酵アルコールは、飲料用及び工業用として重要
な出発原料であるが、発酵法で得ら扛るアルコール水溶
液のアルコール濃度は10〜20wt%と低いため、約
95〜100wt%まで濃縮する必要がある。
Fermented alcohol made from carbohydrates such as sweet potato and corn is an important starting material for beverages and industrial use, but the alcohol concentration of the alcohol aqueous solution obtained by the fermentation method is 10 to 10. Since it is as low as 20 wt%, it is necessary to concentrate it to about 95 to 100 wt%.

従来、この濃縮法として蒸留法が用いらnてき友が、大
部分を占める水も80〜100℃まで昇温せねばならず
、経済的に不利であり、こnに替わる省エネルギー型の
濃縮法の開発が望”inている。
Conventionally, distillation has been used as this concentration method, but water, which makes up most of the water, must be heated to 80 to 100°C, which is economically disadvantageous, and an energy-saving concentration method is needed instead. We are hoping for the development of

従来、省エネルギー型の@縮性として超臨界状態又は擬
臨界状態の炭酸ガス、エチレン、エタンを用いてアルコ
ールを水より抽出・分離して練絹する方法が提案さnて
いる。(特開昭56−56201及び同59−1415
28号公報)しかしながら、この濃縮さnた発酵アルコ
ール中には高沸点不純物(04〜C5系フーゼル油)等
の副生成物が混入しており、これらも分離除去する必要
があるが、この分離除去法として従来は蒸留法による精
留塔が用いらnており、この際、濃縮アルコール全再昇
温せねばならず、熱負荷か増大し、省エネルギー的な方
法とは云えないという欠点かあつt。
Conventionally, an energy-saving method has been proposed in which alcohol is extracted and separated from water using carbon dioxide, ethylene, or ethane in a supercritical or quasi-critical state and then kneaded. (Unexamined Japanese Patent Publication No. 56-56201 and No. 59-1415
(No. 28) However, this concentrated fermented alcohol contains by-products such as high-boiling point impurities (04-C5 fusel oil), and these also need to be separated and removed. Conventionally, a rectification column using a distillation method has been used as a removal method, but in this case, the entire concentrated alcohol must be heated again, which increases the heat load and has the disadvantage that it cannot be said to be an energy-saving method. t.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、アルコール、水、高沸点不純物等の混合物か
ら実質的に水、高沸点不純物が含まれないアルコールを
分離回収する際に、省エネルギー型の分離回収法を行う
ことができる方法を提供しようとするものである。
The present invention provides an energy-saving separation and recovery method when separating and recovering alcohol substantially free of water and high-boiling point impurities from a mixture of alcohol, water, high-boiling point impurities, etc. That is.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

すなわち、本発明はアルコール及び高沸点不純物からな
る有機液体溶質と水との原料混合物金回流接触抽出装置
の上部より供冶し、又臨界温度が該アルコールのS点よ
り低い浴剤を該自流接触抽出装置の下部より供給し、該
原料混合物と該溶剤金、該溶剤を超臨界状態又は擬臨界
状態になるような条件下で同流V:触させ、該向流接触
抽出装置の上部より軽液を、下部より重液を取り出し、
次に、核軽液は実質的に扁沸虞不純物が相分離するに必
要な圧力まで減圧後、不純物分離槽に導入し重質不純物
液と軽質梢製液に分離し、該重質不純物液を前記向流接
触抽出装置の原料混合物供給部分と溶剤供給部分との間
に導入するとともに、該軽質精製液を溶剤分離槽に導入
し、溶解溶剤と濃縮アルコールが相分離するに必要な圧
力まで減圧後、該疲、稲アルコールの一部を該原料混合
物供給部分よジ上部に導入することを特徴とするアルコ
ール濃縮精製法である。
That is, in the present invention, a raw material mixture of an organic liquid solute consisting of alcohol and high-boiling point impurities and water is prepared from the upper part of a gold circulation contact extraction apparatus, and a bath agent whose critical temperature is lower than the S point of the alcohol is prepared by the self-flow contact extraction. The raw material mixture, the solvent gold, and the solvent are brought into contact with each other in the same flow under conditions that bring them into a supercritical or quasi-critical state. Remove the heavy liquid from the bottom,
Next, the nuclear light liquid is depressurized to the pressure required to substantially phase-separate impurities that may cause flat boiling, and then introduced into an impurity separation tank where it is separated into a heavy impurity liquid and a light top liquid. is introduced between the raw material mixture supply section and the solvent supply section of the countercurrent contact extraction device, and the light purified liquid is introduced into the solvent separation tank, and the pressure is increased to the level required for phase separation of the dissolved solvent and concentrated alcohol. This alcohol concentration and purification method is characterized in that after pressure reduction, a part of the alcohol is introduced into the upper part of the raw material mixture supply section.

本発明の原料混合物は、主に発酵アルコールであり代表
的組成は テアル。アルコール類とは、メチルアルコール、エチル
アルコール、プロパツール、フタノール等である。
The raw material mixture of the present invention is mainly fermented alcohol, and a typical composition is theal. Alcohols include methyl alcohol, ethyl alcohol, propatool, phthanol, and the like.

又、溶解溶剤としては、特開昭56−56201号公報
にみらnるように、C02* C2H4* C2H4等
の他に、臨界温度かアルコールの沸点以下である無機又
は有機の溶剤が使用可能である。表1に、主な溶剤を示
す。
In addition, as a dissolving solvent, in addition to C02*C2H4*C2H4, etc., inorganic or organic solvents whose temperature is below the critical temperature or the boiling point of alcohol can be used, as seen in JP-A No. 56-56201. It is. Table 1 shows the main solvents.

表  1 溶剤名     臨界温度(℃) CO□       31.1 C2H49,7 0、H,32,4 a3as        l&8 C4HI0152.0 H2S       10I14 N20       36.5 特に、臨界温度が常温に近い程又アルコールとの親和力
の大きい溶剤程省エネルギー効果は大きく、好ましい溶
剤である。又、こnらは混合しても使用できる。一般に
溶解溶剤は原料アルコール1重量部に対して2〜10重
士部添加さnるが、アルコールとの親和力の大きい溶解
溶剤の場合は、その添加量は上記範囲より少にすること
ができる。
Table 1 Solvent name Critical temperature (℃) CO□ 31.1 C2H49,7 0, H, 32,4 a3as l&8 C4HI0152.0 H2S 10I14 N20 36.5 In particular, the closer the critical temperature is to room temperature, the lower the affinity with alcohol. The larger the solvent, the greater the energy saving effect, and is therefore a preferable solvent. Also, these can be used in combination. Generally, the dissolving solvent is added in an amount of 2 to 10 parts by weight per 1 part by weight of the raw material alcohol, but in the case of a dissolving solvent having a high affinity with alcohol, the amount added can be smaller than the above range.

本発明にいう超臨界状態とは、溶解溶剤の臨界温度以上
〃1つ臨界圧力以上の温度、圧力粂件での状Bを意味し
、擬臨界状悪とは、溶解溶剤の臨界温度Tc以下で、対
臨界温度TR=T/TO(但し、(190(Tr(1,
0)の温度Tで、圧力はその温度における溶解溶剤の飽
和蒸気圧以上の状態を意味する。擬臨界状態では超臨界
状態より溶解溶剤の溶解度が増す場合があるが、溶解速
度は減少する傾向にある。
The supercritical state as used in the present invention refers to state B under the condition of temperature and pressure that is higher than the critical temperature of the dissolving solvent and one level higher than the critical pressure, and the term "quasi-critical state" means the critical temperature Tc or lower of the dissolving solvent. Then, the critical temperature TR=T/TO (however, (190(Tr(1,
At a temperature T of 0), the pressure means a state equal to or higher than the saturated vapor pressure of the dissolving solvent at that temperature. Although the solubility of the dissolving solvent may increase in the quasi-critical state compared to the supercritical state, the dissolution rate tends to decrease.

向流接触装置は、充填塔、棚段塔又は多段抽出塔等が好
ましい。
The countercurrent contact device is preferably a packed column, a tray column, a multistage extraction column, or the like.

以下、本発明の一実施例全第1図に従って詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

原料混合物1重量部を上記向流接触装置3の上部1より
、又溶解溶剤2〜10重量部を下部2よジ供給し、該溶
解溶剤の臨界状態又は擬臨界状態で同流接触させること
により、軽質の溶解溶剤相は上昇しながら、原料混合物
相よりアルコール類を選択的に抽出し、上部6よジ軽液
として取り出さnる。溶解溶剤の添加量は、溶解溶剤が
アルコール類との親和力が大きい揚台は減することがで
きる。
By supplying 1 part by weight of the raw material mixture from the upper part 1 of the countercurrent contactor 3 and 2 to 10 parts by weight of the dissolving solvent from the lower part 2, and bringing them into contact in the same flow in the critical state or quasi-critical state of the dissolving solvent. As the light dissolved solvent phase rises, alcohols are selectively extracted from the raw material mixture phase and taken out as a light liquid from the upper part 6. The amount of the dissolving solvent added can be reduced if the dissolving solvent has a high affinity with alcohols.

一万、原料混合物相はアルコール類を抽出さnながら下
部へ重液となり下降し、下部5より抜き出さnる。
The raw material mixture phase descends to the lower part as a heavy liquid while extracting alcohol, and is extracted from the lower part 5.

上部6よりの軽液は、溶解溶剤及びアルコールの他に少
量の高沸点不純物と水を含んでおり、水と不純物は製品
の規格上野1しくないものであり、分離除去する必袂が
ある。
The light liquid from the upper part 6 contains a small amount of high-boiling point impurities and water in addition to the dissolving solvent and alcohol, and the water and impurities do not meet the product specifications and must be separated and removed.

溶解溶剤中への水及び不純物の溶解度は、溶解溶剤の密
度にほぼ比例しており、圧力を下げるか又は温度を上げ
て溶WIf6剤の密度の低下させることによジ、水及び
不純物の内、高沸点の物質がまず溶解溶剤から相分離す
る。
The solubility of water and impurities in a dissolving solvent is approximately proportional to the density of the dissolving solvent, and by lowering the pressure or increasing the temperature to reduce the density of the dissolving WIf6 agent, the solubility of water and impurities in the dissolving solvent can be reduced. , the high boiling point substance first phase separates from the dissolved solvent.

温度を上げることは、熱効率の低下をもたらすので好′
ましくないので、圧力・と下げることにより溶解溶剤の
ff1llを下げるのが好ましい。し刀駕し、圧力を下
げすぎると、溶解溶剤の浴が度が大巾に減少し、アルコ
ール類も多量相分離するのでその量を摺部して圧力を制
御する必要がある。
Raising the temperature is undesirable as it results in a decrease in thermal efficiency.
Therefore, it is preferable to lower the ff1ll of the dissolving solvent by lowering the pressure. However, if the pressure is lowered too much, the strength of the dissolving solvent bath will decrease significantly and a large amount of alcohol will phase separate, so it is necessary to control the pressure by controlling the amount.

本発明はかかる現象を利用することにニジ、濃縮アルコ
ールの純度を同上させるものである。
The present invention utilizes this phenomenon to improve the purity of concentrated alcohol.

即ち、前記軽液は減圧弁7により、高沸点不純物を選択
的に相分離するように減圧さrL、ライン8より不純物
分離槽9に導入さn、軽質稍製餞と重質不純物液とに分
離さfる。該軽質Tft製液は、溶解溶剤の他にアルコ
ールとごく微量の水及び高沸点不純物の混合物である。
That is, the light liquid is depressurized by a pressure reducing valve 7 so as to selectively phase-separate high-boiling point impurities, and is introduced into an impurity separation tank 9 through a line 8, where it is separated into light fine flour and heavy impurity liquid. Separate. The light Tft liquid is a mixture of alcohol, a very small amount of water, and high-boiling point impurities in addition to the dissolving solvent.

又、重質不純物液は、水及び高沸点不純物とごく少量の
アルコールと溶解溶剤からなる混合物である。
The heavy impurity liquid is a mixture of water, high boiling point impurities, a very small amount of alcohol, and a dissolving solvent.

該軽質精製液は、+3より抜き出さ扛、減圧弁14によ
り溶M溶剤とアルコールが相分離するに必要な圧力まで
減圧後、ライン15より溶解溶剤分離槽16に導入する
The light purified liquid is extracted from +3, reduced in pressure by a pressure reducing valve 14 to a pressure necessary for phase separation of the solvent M and the alcohol, and then introduced into the dissolved solvent separation tank 16 through a line 15.

該溶解溶剤分離槽16からライン17t−経由して取出
さnるアルコール中には微量の水及び高沸点不純物を含
んでいるが、該アルコールの一部全ライン20を介して
該同流接触装置4の上部に循環する。この還流効果によ
り、該アルコールの純度が大巾に向上する。又、該アル
コールの純度は循壌流桁の増加とともに同上する。
The alcohol taken out from the dissolved solvent separation tank 16 via the line 17t contains trace amounts of water and high boiling point impurities, but a portion of the alcohol is taken out via the line 20 to the cocurrent contactor. Circulate to the top of 4. This reflux effect greatly improves the purity of the alcohol. Also, the purity of the alcohol increases as the circulating flow order increases.

溶解溶剤分離P/J16の上部からは、ライン18、減
圧弁19全介し、ライン22よジ溶解浴剤が回収さn再
使用さnる。
From the upper part of the dissolving solvent separation P/J 16, the dissolving bath agent is recovered through a line 18, a pressure reducing valve 19, and a line 22 to be reused.

一万、不純物分1IiI槽9の下部からライン10を経
由して取出さnる重質不純物中には少量のアルコールが
溶解しており、製品アルコールの損失を防止する念めに
回収する必侠がある。
A small amount of alcohol is dissolved in the heavy impurities taken out from the bottom of the impurity tank 9 via the line 10, so it must be recovered to prevent loss of product alcohol. There is.

本発明においては、該重質不純物を前記向θ1f。In the present invention, the heavy impurities are moved in the direction θ1f.

接触装置5にライン11を経て再度導入することにより
、アルコールの損失ケ防止するとともに、高汚点重質不
純物を分離除去するものである。該重質不純物の導入部
は、その組成に応じて決定さnるが、好ましくは原料混
合物導入部1と溶解溶剤導入部2との間である。
By reintroducing the alcohol into the contacting device 5 via the line 11, loss of alcohol is prevented, and heavy impurities with high stains are separated and removed. The introduction section for the heavy impurities is determined depending on the composition thereof, but is preferably between the raw material mixture introduction section 1 and the dissolving solvent introduction section 2.

なお第1図中、21は製品アルコール取出しライン、1
2は重質不純物排出ラインである。
In Figure 1, 21 is the product alcohol removal line; 1
2 is a heavy impurity discharge line.

以下、本発明の実施例をあげて本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail by giving examples of the present invention.

実施例 エチルアルコール10wt%、04〜Os系フーゼル油
α1 wt%、水89.9 wt%の原料混合物1重量
部と、溶解溶剤として二酸化炭素全6重量部及びエタン
をα5重量部を、内径50wm、長さ3mの光填塔の上
部より1mの部位及び下部より50cmの部位に供給し
、圧力150atm、温度40℃で向流接触させ、塔頂
より軽液を塔底より重液を塩9出し、該軽液を不純物分
離槽で圧力90 atmに減圧し、軽質精製液と重質不
純物液に分離し、該重質不純物液は光填塔の下部から1
.5mの部位に全量戻した。
Example: 1 part by weight of a raw material mixture of 10 wt% ethyl alcohol, 1 wt% 04-Os fusel oil, 89.9 wt% water, a total of 6 parts by weight of carbon dioxide and 5 parts by weight of ethane as a dissolving solvent, an inner diameter of 50 wm. , was supplied to a part 1 m from the top and 50 cm from the bottom of a 3 m long optical packed column, and brought into countercurrent contact at a pressure of 150 atm and a temperature of 40°C, with light liquid coming from the top of the column and heavy liquid coming from the bottom of the column. The light liquid is depressurized to 90 atm in an impurity separation tank and separated into a light purified liquid and a heavy impurity liquid.
.. The entire amount was returned to the 5 m site.

又、該軽質精製液は溶解俗剤分離槽で圧力30atmに
減圧し、溶解溶剤と濃縮エチルアルコールに相分離し、
該濃縮エチルアルコールの90チを骸充填塔の上部に循
環し几。
In addition, the light purified liquid is reduced to a pressure of 30 atm in a dissolution solvent separation tank, and phase-separated into a dissolution solvent and concentrated ethyl alcohol.
90 g of the concentrated ethyl alcohol was circulated to the upper part of the packed column.

そして、全体が定常になるまで運転し、その結果原料エ
チルアルコールの99. Owt%が回収さn、その中
の水及び高沸点不純物の濃度は各々5.1 wtチ、9
8 ppmであつ次。
Then, the operation was continued until the whole became steady, and as a result, the raw material ethyl alcohol reached 99%. Owt% was recovered, in which the concentrations of water and high-boiling impurities were 5.1 wt% and 9%, respectively.
Next at 8 ppm.

比較例1 実施例1において、重質不純物液及び濃縮エチルアルコ
ールを充填塔に戻さずに運転したとこ口、原料エチルア
ルコールの9αOwt%しか回収さnなかつ九〇水及び
高沸点不純物の濃度は各々10 wt% 、  100
0 ppmであつ几。
Comparative Example 1 In Example 1, when the heavy impurity liquid and concentrated ethyl alcohol were operated without returning to the packed column, only 9αOwt% of the raw material ethyl alcohol was recovered, and the concentrations of water and high boiling point impurities were respectively 10 wt%, 100
Atsushi at 0 ppm.

比較例2 実施例1において、重質不純物液のみを充填塔に戻さず
に運転し九ところ、原料エチルアルコールの97. Q
 wt%が回収され几が、水及び高沸点不純物の濃度は
各々9 wt4. 800 ppmであった。
Comparative Example 2 In Example 1, when only the heavy impurity liquid was operated without returning to the packed column, 97% of the raw material ethyl alcohol was reduced. Q
The concentration of water and high boiling point impurities was 9 wt% each. It was 800 ppm.

〔本発明の効果J 本発明は、以上詳記したようにアルコール。[Effects of the present invention J As detailed above, the present invention relates to alcohol.

水、高沸点不純物の混合物を、臨界付近の溶解溶剤を使
用し常温付近で圧力を3段階に制何して、こnらの混合
物全分離するものであり、分離速度が早く装置のコンパ
クト化が可能となるとともに、熱的負荷が軽減さnて省
エネルギー効果を生ずるものである。
This method completely separates a mixture of water and high-boiling point impurities by controlling the pressure in three stages at room temperature using a near-critical dissolving solvent, resulting in a fast separation speed and compact equipment. In addition, the thermal load is reduced, resulting in an energy saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明1に:実施するためのフローシートで
ある。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a flow sheet for implementing the present invention 1. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] アルコール及び高沸点不純物からなる有機液体溶質と水
との原料混合物を向流接触抽出装置の上部より供給し、
又臨界温度が該アルコールの沸点より低い溶剤を該向流
接触抽出装置の下部より供給し、該原料混合物と該溶剤
を、該溶剤を超臨界状態又は擬臨界状態になるような条
件下で向流接触させ、該向流接触抽出装置の上部より軽
液を、下部より重液を取り出し、次に、該軽液は実質的
に高沸点不純物が相分離するに必要な圧力まで減圧後、
不純物分離槽に導入し重質不純物液と軽質精製液に分離
し、該重質不純物液を前記向流接触抽出装置の原料混合
物供給部分と溶剤供給部分との間に導入するとともに、
該軽質精製液を溶剤分離槽に導入し、溶解溶剤と濃縮ア
ルコールが相分離するに必要な圧力まで減圧後、該濃縮
アルコールの一部を前記向流接触抽出装置の原料混合物
供給部分より上部に導入することを特徴とするアルコー
ル濃縮精製法。
A raw material mixture of an organic liquid solute consisting of alcohol and high-boiling point impurities and water is supplied from the top of a countercurrent contact extraction device,
Further, a solvent whose critical temperature is lower than the boiling point of the alcohol is supplied from the lower part of the countercurrent contact extraction device, and the raw material mixture and the solvent are oriented under conditions that bring the solvent into a supercritical or pseudocritical state. A light liquid is taken out from the upper part of the countercurrent contact extraction device and a heavy liquid is taken out from the lower part.The light liquid is then depressurized to a pressure necessary for substantially phase separation of high-boiling point impurities.
Introducing into an impurity separation tank to separate into a heavy impurity liquid and a light purified liquid, and introducing the heavy impurity liquid between the raw material mixture supply part and the solvent supply part of the countercurrent contact extraction device,
The light purified liquid is introduced into a solvent separation tank, and after the pressure is reduced to the pressure necessary for phase separation of the dissolved solvent and the concentrated alcohol, a portion of the concentrated alcohol is transferred to the upper part of the raw material mixture supply section of the countercurrent catalytic extraction device. An alcohol concentration and purification method characterized by the introduction of
JP60275995A 1985-12-10 1985-12-10 Method for concentrating and purifying alcohol Granted JPS62135440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275995A JPS62135440A (en) 1985-12-10 1985-12-10 Method for concentrating and purifying alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275995A JPS62135440A (en) 1985-12-10 1985-12-10 Method for concentrating and purifying alcohol

Publications (2)

Publication Number Publication Date
JPS62135440A true JPS62135440A (en) 1987-06-18
JPH0578535B2 JPH0578535B2 (en) 1993-10-29

Family

ID=17563302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275995A Granted JPS62135440A (en) 1985-12-10 1985-12-10 Method for concentrating and purifying alcohol

Country Status (1)

Country Link
JP (1) JPS62135440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430592A (en) * 1987-07-24 1989-02-01 Tsusho Sangyo Daijin Concentration and purification of alcohol
WO1989001042A1 (en) * 1987-07-24 1989-02-09 Japan As Represented By Minister Of International Process for concentrating and purifying alcohol and apparatus therefor
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430592A (en) * 1987-07-24 1989-02-01 Tsusho Sangyo Daijin Concentration and purification of alcohol
WO1989001042A1 (en) * 1987-07-24 1989-02-09 Japan As Represented By Minister Of International Process for concentrating and purifying alcohol and apparatus therefor
JPH0329393B2 (en) * 1987-07-24 1991-04-24
US5053563A (en) * 1987-07-24 1991-10-01 Minister Of International Trade & Industry Method to concentrate and purify alcohol
US5250271A (en) * 1987-07-24 1993-10-05 Minister Of International Trade & Industry Apparatus to concentrate and purify alcohol

Also Published As

Publication number Publication date
JPH0578535B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JPH041147A (en) Separation of impurities in aqueous solution of crude ethanol
JPH0699341B2 (en) Purification method of crude ethanol aqueous solution
KR100513187B1 (en) Water Separation Process
JP2005531634A5 (en)
JPH0665139A (en) Method for recovering acetic acid
EP3820841A1 (en) Process for producing 4,4'-dichlorodiphenyl sulfone
JP3769505B2 (en) Method for separating and purifying an aqueous mixture consisting of the main components acetic acid and formic acid
JPS62135440A (en) Method for concentrating and purifying alcohol
JPS6225985A (en) Method of concentrating and purifying alcohol
JPH11349534A (en) Post treatment of liquid crude vinyl acetate
US3883642A (en) Producing concentrated hydrofluoric acid substantially free from impurities using polyether and polyol absorbents and nitrogen flushing gas
JPS6229988A (en) Purification of ethanol from aqueous solution thereof
JPS6157310B2 (en)
CN113548960A (en) Purification method of food-grade benzoic acid
JPS6225983A (en) Method of concentrating and purifying alcohol
JPH0334945A (en) Removal of acidic impurities from feedstock containing tertiary butylperoxide
JPH0329393B2 (en)
JPH02188411A (en) Recovery of hydrogen peroxide
TW502015B (en) Improved process for separating pure terephthalic acid
JPS63174997A (en) Extraction and separation of valuable substance from fat and oil raw material
JPH06166502A (en) Method of recovering hydrogen peroxide
JPS6225984A (en) Method of concentrating and purifying alcohol
JPH02184388A (en) Method and equipment for concentrating and purifying alcohol
JP2758207B2 (en) Method for oxidizing hydrocarbons using oxidizing gas split separation application method
KR20240031054A (en) Method for preparation of high purity acrylic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term