JPS61224270A - Manufacture of cadmium negative electrode plate for alkaline storage battery - Google Patents

Manufacture of cadmium negative electrode plate for alkaline storage battery

Info

Publication number
JPS61224270A
JPS61224270A JP60066247A JP6624785A JPS61224270A JP S61224270 A JPS61224270 A JP S61224270A JP 60066247 A JP60066247 A JP 60066247A JP 6624785 A JP6624785 A JP 6624785A JP S61224270 A JPS61224270 A JP S61224270A
Authority
JP
Japan
Prior art keywords
electrode plate
paste
solution
salt
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066247A
Other languages
Japanese (ja)
Other versions
JPH0555981B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60066247A priority Critical patent/JPS61224270A/en
Publication of JPS61224270A publication Critical patent/JPS61224270A/en
Publication of JPH0555981B2 publication Critical patent/JPH0555981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To give an adequate mechanical strength and improve performance of an electrode such as active substance utilization rate, by spreading a solution of a salt of monoatonic cation of a high polymer carboxylic acid over the surface, after soaking a solution of a metallic salt of diatomic or more, in the pores of a dried body of a metallic core spread with a specified paste, and then drying up it. CONSTITUTION:An active substance such as cadmium oxide, an electric conductor, an antialkaline short fiber, and a binder such as an organic paste or synthetic resin powder are mixed and kneaded together with a dispersion medium of water or an organic solvent to make up a paste. The paste is spread over a metallic core and dried up to form a dried body which has numerous pores remained after the dispersion medium evaporates. The pores of the body is soaked with a solution of a metallic salt of diatomic or more. Then a solution of a salt of monoatomic cation of a high polymer carboxylic acid is spread over the surface. In such a way, a membrane of a gel of solution of a high polymer carboxylic acid is formed over the electrode plate, and then dried up. Now a high polymer carboxylic acid salt is concentrated only over the surface of the electrode plate, causing to make the surface contain a large amount of binder to have a high strength, while the inner part of the plate contains little binder, resulting in a high porous property without losing a good active substance utilization rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケルーカドミウム蓄電池、銀−カドミウム
蓄電池等のアルカリ蓄電池に用いるペース1〜式カドミ
ウム負極板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a cadmium negative electrode plate of the PACE 1 type for use in alkaline storage batteries such as nickel-cadmium storage batteries and silver-cadmium storage batteries.

従来の技術・発明が解決しようどする問題点ニッケルー
カドミウム蓄電池等のアルカリ蓄電池に用いられる従来
のペース1〜式カドミウム負極板は焼結式カドミウム負
極板に比べて、製造が簡単で、エネルギー密度が高い等
の特徴を持っているが、機械的強度と活物質利用率等の
極板性能とが相反するという欠点を持っている。即ち、
従来のペースト式カドミウム負極板は酸化カドミウム等
の活物質、導電材、耐アルカリ性の短繊維、有機糊料や
合成樹脂粉末等の粘着剤を有機溶剤または水からなる分
散剤と共に混練してペースト状とし、このペーストを金
属芯体に塗着し乾燥させて形成した乾燥体として製造さ
れ、広く実用化されている。しかし、焼結式カドミウム
角極板では、金属ニッケル粉末を焼結して形成された強
固な三次元網目構造の東電体骨格の細孔中に活物質粉末
が保持されているのに対して、ペースト式カドミウム負
極板では、金属ニッケル粉末の焼結体に比べて機械的強
度が小さい有機糊料や合成樹脂粉末等の粘着剤が活物質
粉末の粒子間を結合したり、あるいは結着剤自体が三次
元網目構造の骨格を形成したりすることによって活物質
粉末が保持されている。従って、例えば円筒形密閉式ニ
ックルーカドミウム晶電池を製造するに際1ノで、負極
板を正極板およびヒバレータとともに巻回して極板群を
製作し、これを電池容器に収納するJ:うな電池組立の
工程が必要な場合には、負極板に強い曲げや摩擦力が印
加されるが、焼結式カドミウム負極板においては極板の
機械的強度が充分大ぎいので問題がなかった。ところが
、ペースト式カドミウム負極板においては、焼結式カド
ミウム負極板と同様の充分な機械的強度を得るに必要な
吊の結着剤を使用すると、極板の充放電に必要な電解液
が占有すべき極板中の細孔が結着剤によって塞がれたり
、活物質の表面が結着剤によって覆われてしまうために
活物質利用率が低下したり、あるいは電池を過充電した
時に正極板から発生する酸素によって結着剤が酸化され
て多聞の炭酸根が生成してしまうために放電電圧が低下
1′るという極板性能の低下を招き、ペース[・式カド
ミウムず1横板の長所である高エネルギー密度が充分に
得られないことになる。逆に極板性能が低下しないよう
に結着剤の量を少なくすると、極板の機械的強度が低下
して電池組立の工程で活物質の脱落が起こるために製品
の歩留まりが悪くなる。そのため、従来のペースト式カ
ドミウム負極板は機械的強度あるいは極板性能のどちら
か一方を犠牲にせざる11)なかった。従ってペースト
式カドミウム負極板としては、その長所である高エネル
ギー密度を保持しつつ、電池組立の工程において活物質
の脱落がない機械的強度の高いものが望まれていた。
Problems to be solved by conventional technology/inventions Conventional PACE 1-type cadmium negative electrode plates used in alkaline storage batteries such as nickel-cadmium storage batteries are easier to manufacture and have lower energy density than sintered cadmium negative electrode plates. However, it has the disadvantage that mechanical strength and plate performance such as active material utilization rate conflict with each other. That is,
Conventional paste-type cadmium negative electrode plates are made into a paste by kneading an active material such as cadmium oxide, a conductive material, alkali-resistant short fibers, and an adhesive such as an organic glue or synthetic resin powder with a dispersant consisting of an organic solvent or water. This paste is applied to a metal core and dried to form a dried product, which is manufactured and is widely put into practical use. However, in the sintered cadmium square plate, the active material powder is held in the pores of the TEPCO body skeleton, which has a strong three-dimensional network structure formed by sintering the metal nickel powder. In paste-type cadmium negative electrode plates, adhesives such as organic glues and synthetic resin powders, which have lower mechanical strength than sintered metal nickel powders, bind between particles of active material powder, or the binder itself The active material powder is held by forming a skeleton of a three-dimensional network structure. Therefore, for example, when manufacturing a cylindrical sealed nickel-cadmium crystal battery, in step 1, the negative electrode plate is wound together with the positive electrode plate and the hybarator to produce an electrode plate group, which is then stored in a battery container. When an assembly process is required, strong bending and frictional forces are applied to the negative electrode plate, but with the sintered cadmium negative electrode plate, there was no problem because the mechanical strength of the electrode plate was sufficiently high. However, in paste-type cadmium negative electrode plates, when using a binding agent necessary to obtain sufficient mechanical strength similar to that of sintered-type cadmium negative electrode plates, the electrolyte necessary for charging and discharging the electrode plate is occupied. The active material utilization rate may decrease because the pores in the electrode plate are blocked by the binder, the surface of the active material is covered with the binder, or when the battery is overcharged, the positive electrode The binder is oxidized by the oxygen generated from the plate and a large number of carbonate radicals are formed, resulting in a decrease in the discharge voltage and deterioration of the electrode plate performance. This means that the high energy density, which is an advantage, cannot be sufficiently obtained. On the other hand, if the amount of binder is reduced so as not to deteriorate the electrode plate performance, the mechanical strength of the electrode plate will be reduced and the active material will fall off during the battery assembly process, resulting in poor product yield. Therefore, conventional paste-type cadmium negative electrode plates had to sacrifice either mechanical strength or electrode plate performance11). Therefore, a paste-type cadmium negative electrode plate that maintains its advantage of high energy density and has high mechanical strength so that the active material does not fall off during the battery assembly process has been desired.

本発明は以上のような従来技術の問題点を解決すること
を目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 本発明は酸化力ドミウ11等の活物質、1!電材。Means to solve problems The present invention uses an active material such as oxidizing power Domiu 11, 1! Electrical materials.

短lJi維および結着剤を水または有機溶剤からなる分
散剤と共に混練してペースト状とし、このペーストを金
属芯体に塗着し乾燥させて形成した乾燥体の孔中に、2
価以上の金属の塩の溶液を含浸させた後に、高分子カル
ボン酸の1価カチオンの地の溶液を表面に塗布し乾燥す
ることにより、上述の問題点を解決するようにしたもの
である。
Short LJ fibers and a binder are kneaded together with a dispersant made of water or an organic solvent to form a paste, and this paste is applied to a metal core and dried.
The above-mentioned problem is solved by impregnating the surface with a solution of a metal salt having a higher valence and then applying a solution of a monovalent cation of a polymeric carboxylic acid to the surface and drying it.

作  用 結着剤の量が少なくて機械的強度の低いペースト式カド
ミウム負極板を上述のJ、うな電池組立の1稈に供した
どきの活物質の脱落は、極板を強く曲げたときに極板の
表面に亀裂が発生することから生じたり、あるいは極板
を強く摩擦したときに極板の表面が削られることから生
ずるものである。
Effect When a paste-type cadmium negative electrode plate with a small amount of binder and low mechanical strength is used in one culm of the above-mentioned J-Una battery assembly, the active material falls off when the plate is bent strongly. It occurs when cracks form on the surface of the electrode plate, or when the surface of the electrode plate is scraped when the plate is rubbed strongly.

従って、N池組立の工程における活物質の脱落を防ぐた
めには、ペースト式カドミウム負極板の表面の機械的強
度を大ぎくすることで充分[(的が達せられる。本発明
は極板中の結着剤の爾の分布を適切にすることによって
、このことを実現したものである。
Therefore, in order to prevent the active material from falling off during the N pond assembly process, it is sufficient to increase the mechanical strength of the surface of the paste-type cadmium negative electrode plate. This is achieved by optimizing the distribution of the adhesive.

即ち、酸化カドミウム等の活物質、導電材、耐アルカリ
性の短iim、有機糊料や合成樹脂粉末等の@着剤を水
または有機溶剤からなる分散剤とともに混練してペース
ト状とし、このペーストを金属芯体に塗着し乾燥させて
形成した乾燥体は、分散剤が蒸発した後に残る多路の孔
部を有するので、この孔中に2価以−にの金属の塩の溶
液を含浸する。
That is, an active material such as cadmium oxide, a conductive material, an alkali-resistant short IIM, and an adhesive such as an organic glue or a synthetic resin powder are kneaded together with a dispersant made of water or an organic solvent to form a paste. The dried material formed by coating on a metal core and drying has multiple pores that remain after the dispersant evaporates, so a solution of a divalent or higher metal salt is impregnated into these pores. .

次いでぞの表面に高分子カルボン酸の1価カチオンの塩
の溶液を塗布すると、高分子カルボン酸の塩の溶液が2
価以上の金属の塩の溶液と接触するのであるが、このと
き高分子カルボン酸の塩の1価カチオンは21iIIi
以上の金属イオンによって置換され、この2価以上の金
属イオンはその原子価と当用のカルボキシル基と結合す
るので、高分子カルボン酸は2価以上の金属イオンによ
って架橋されて三次元の網目構造を形成し、高分子カル
ボン酸溶液はゲル化する。このようなゲル化は上述の2
種類の溶液の接触部、即ち極板の表面において起こり、
一旦ゲル化が起こると高分子カルボン酸塩の拡散速度が
著しく小さくなるので、極板内部への高分子カルボン酸
塩の拡散は確実に抑制される。
Next, when a solution of a salt of a monovalent cation of a polymeric carboxylic acid is applied to the surface of the groove, the solution of a salt of a polymeric carboxylic acid becomes 2
The monovalent cation of the polymeric carboxylic acid salt is 21iIIIi.
The polymeric carboxylic acid is substituted by the above metal ions, and the divalent or higher valence metal ions combine with the valence and the corresponding carboxyl group, so the polymeric carboxylic acid is crosslinked by the divalent or higher valence metal ions and forms a three-dimensional network structure. is formed, and the polymeric carboxylic acid solution turns into a gel. This kind of gelation is caused by the above-mentioned 2
Occurs at the contact point of different solutions, that is, the surface of the electrode plate,
Once gelation occurs, the diffusion rate of the polymer carboxylate becomes extremely low, so that the diffusion of the polymer carboxylate into the interior of the electrode plate is reliably suppressed.

このようにして極板の表面に高分子カルボン酸塩の溶液
のゲルからなる被膜を形成した後に乾燥すると、高分子
カルボン酸塩は極板の表面にのみ局在化して活物質の結
着剤として作用する。その結果、極板の表面は結着剤の
量が多くて強度が高くなり、一方極板の内部は結着剤の
量が少なく、高多孔度が保持されて、活物質利用率が低
下1!ず口つ多用の炭R根を!1成Jることb41いた
め、機械的強度と極板性能の両方を満屋さ1↓るペース
1〜式カドミウム負極板が4−7られる。
When a gel film of a solution of polymer carboxylate is formed on the surface of the electrode plate in this way and then dried, the polymer carboxylate is localized only on the surface of the electrode plate and acts as a binder for the active material. It acts as. As a result, the surface of the electrode plate has a large amount of binder and has high strength, while the inside of the electrode plate has a small amount of binder and maintains high porosity, reducing the active material utilization rate. ! A charcoal root that is often used! Since the cadmium negative electrode plate of the Pace 1 to 4-7 type is inferior in both mechanical strength and electrode plate performance by 1↓, a cadmium negative electrode plate of the 4-7 type is used.

なお、2価以」−の金属の塩における金属イオンとして
、C,1!1. ZnP+、△+ ++ 、 M[+2
4− 、 C,,2’1等を用いることができるが、c
d ”は極板を電池に組立ててアルカリ電解液を注入し
たどきにカドミウム負極板の活物質であるCd (Ol
−1) 2に変換されるので特に好適である。また2価
以上の金属の塩にJ3けるアニオンとしては無機および
有機のものの何れら用いることができるが、蟻酸イオン
、酢酸イオンのような低分子カルボン酸は比較的多聞に
用いても電池性能に及ぼす影響が小さいので特に好適で
ある。まlζ2価以上の金属の塩の溶液のm麻は0、O
1mol/ 1以上であれば高分子カルボン酸の1価カ
チオンの塩の溶液をゲル化させるに充分である。また高
分子カルボン酸の1価カチオンの塩としては、アルギン
酸ナトリウム、カルボキシルメチルセルロースのナトリ
ウム塩、ポリアクリル酸ナトリウム等が好適であり、そ
の溶液の濃度は0.1重量バーレント以上であれば極板
の強度を高くするに充分である。
In addition, as a metal ion in the salt of a divalent or higher metal, C, 1!1. ZnP+, △+ ++, M[+2
4-, C,,2'1 etc. can be used, but c
d'' is the active material of the cadmium negative electrode plate, Cd (Ol
-1) It is particularly suitable because it is converted to 2. In addition, both inorganic and organic anions can be used as J3 anions in salts of divalent or higher metals, but low-molecular-weight carboxylic acids such as formate ions and acetate ions have a negative impact on battery performance even if used relatively frequently. This is particularly suitable since it has little influence. The m of a solution of a salt of a metal with a valence of 2 or more is 0, O
If it is 1 mol/1 or more, it is sufficient to gel a solution of a monovalent cation salt of a polymeric carboxylic acid. In addition, as a salt of a monovalent cation of a polymeric carboxylic acid, sodium alginate, sodium salt of carboxymethylcellulose, sodium polyacrylate, etc. are suitable, and if the concentration of the solution is 0.1 weight valent or more, it is suitable for the electrode plate. This is sufficient to increase the strength.

実施例 以下、本発明の実施例について詳述する。Example Examples of the present invention will be described in detail below.

エチレングリコール45ccにポリビニルアルコールを
0.82溶解して、これに長さ1mmの塩化ビニル−ア
クリロニトリル共重合体の短!l維0.5gを加えて撹
拌して練液とし、これに酸化カドミウム1009、カー
ボニルニッケル粉末153を添加して混練し、ペースト
状にする。このペーストを直径2.5mll1の穿孔を
有する多孔性の鉄板にニッケルメッキを施した厚さ0.
09mmの金属芯体に厚さ 1.3IIII11で塗着
し、約120℃の熱風によってエチレングリコールを蒸
発させて乾燥する。乾燥の後に、0.3 mol/見の
酢酸カドミウム水溶液に浸漬して、乾燥体の孔中にこの
水溶液を含浸させた後、表面に付着した余剰の液膜をガ
ラス棒の円n面で軽くぬぐって除去し、次いで1重量パ
ーセント以上のカルボキシルメチルセルロースのナトリ
ウム塩水溶液をロールコーティングし、約90℃の熱風
で水分を蒸発させて乾燥する。乾燥後にプレス成形して
厚さ0.6+amにするという方法で本発明による極板
△を製作した。比較のために、極板Aと同一のペースト
を金属芯体に塗着し乾燥した後、プレス成形Jるという
方法で従来法による極板Bを製作した。また極板Aにお
けるペーストのエチレングリコール45ccに対するポ
リビニルアルコールを2.01に地間して作ったペース
トを金属芯体に塗着し乾燥した後、プレス成形するとい
う方法で従来法による極板Cを製作した。
Dissolve 0.82% of polyvinyl alcohol in 45cc of ethylene glycol, and add a 1mm length of vinyl chloride-acrylonitrile copolymer to it. 0.5 g of l fiber is added and stirred to make a paste, and cadmium oxide 1009 and carbonyl nickel powder 153 are added and kneaded to form a paste. This paste was applied to a nickel-plated porous iron plate with holes of 2.5ml in diameter and a thickness of 0.5ml.
It is applied to a metal core of 0.09 mm in thickness to a thickness of 1.3III11, and dried by evaporating the ethylene glycol with hot air at about 120°C. After drying, the dried body was immersed in a cadmium acetate aqueous solution of 0.3 mol/ml to impregnate the pores of the dried body with this aqueous solution, and then the excess liquid film adhering to the surface was gently removed using the circular n side of a glass rod. It is removed by wiping, and then roll-coated with an aqueous solution of sodium salt of carboxymethyl cellulose of 1% by weight or more, and dried by evaporating the moisture with hot air at about 90°C. The electrode plate Δ according to the present invention was manufactured by press-molding it to a thickness of 0.6+am after drying. For comparison, a conventional electrode plate B was manufactured by applying the same paste as the electrode plate A to a metal core, drying it, and then press-molding it. In addition, a paste made by mixing polyvinyl alcohol to 45 cc of ethylene glycol in the paste for electrode plate A was applied to the metal core, dried, and then press-molded. Manufactured.

このようにして製作したペースト式カドミウム負極板を
良さ270Il1m 、幅36+1111に切断して焼
結式水酸化ニッケル正極板およびポリアミド不織布から
なるセパレータとともに巻回して単2形の円筒形密閉式
ニッケルーカドミウム蓄電池を製作したときの負極板の
活物質の脱落量を測定した結果を比較して下表に示す。
The paste-type cadmium negative electrode plate manufactured in this way was cut into pieces of 270Il1m in height and 36+1111cm in width, and wound together with a sintered nickel hydroxide positive electrode plate and a separator made of polyamide nonwoven fabric to form a cylindrical sealed nickel-cadmium plate. The table below shows a comparison of the results of measuring the amount of active material falling off the negative electrode plate when the storage battery was manufactured.

上表から明らかなように、本発明による極板Aは、結着
剤の開が少ない従来法による極板Bよりも活物質脱落量
が著しく少なく、結着剤の量が多い従来法による極板C
とほぼ同等の横板強度を有することがわかる。
As is clear from the above table, the electrode plate A according to the present invention has a significantly lower amount of active material falling off than the electrode plate B manufactured by the conventional method in which the binder is less released, and the electrode plate manufactured by the conventional method in which the amount of binder is large. Board C
It can be seen that the horizontal plate strength is almost the same.

また上記のペースト式カドミウム負極板を40IIII
IIX 40111に切断してこれを試験極とし、試験
極と同寸法の焼結式水酸化ニッケル正極板2枚を対極と
し、5.8M (7) K O)(水溶液を電解液とし
、酸化水銀電極を参照極として用いた試験用の電池を構
成して、試験極の理論容量的0.47Ahに対し、5時
間率の通電電流で充放電を繰り返したときの酸化水銀電
極基準でO■までの放電時の活物質利用率を図に示す。
In addition, the above paste type cadmium negative electrode plate was used as 40III.
IIX 40111 and used it as a test electrode, and two sintered nickel hydroxide positive electrode plates of the same size as the test electrode were used as counter electrodes. A test battery was constructed using the electrode as a reference electrode, and the theoretical capacity of the test electrode was 0.47Ah, and when charging and discharging were repeated at a 5-hour rate, the mercury oxide electrode standard reached O■. The figure shows the active material utilization rate during discharge.

図から本発明による極板Aは、結着剤の開が多い従来法
による極板Cよりも活物質利用率が高く、結着剤の量が
少ない従来法による極板Bとほぼ同等の活物質利用率を
有り−ることがわかる。
As can be seen from the figure, the electrode plate A according to the present invention has a higher active material utilization rate than the electrode plate C manufactured by the conventional method in which a large amount of binder is released, and has almost the same activity as the electrode plate B manufactured by the conventional method in which the amount of binder is small. It can be seen that the material utilization rate is high.

発明の効宋 以上のように本発明では、機械的強度が充分で、且つ活
物質利用率等の極板性能の良好なアルカリ蓄電池用ペー
スト式カドミウム負極板が1qられる。1
EFFECTS OF THE INVENTION As described above, the present invention provides 1q of paste-type cadmium negative electrode plates for alkaline storage batteries that have sufficient mechanical strength and good plate performance such as active material utilization. 1

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明製造法および従来の製造法ににり得られたペ
ースト式カドミウム負極板の放電時の活物質利用率を比
較して示す特性図である。 サイクル敦(回)
The figure is a characteristic diagram showing a comparison of active material utilization rates during discharge of paste-type cadmium negative electrode plates obtained by the manufacturing method of the present invention and the conventional manufacturing method. Cycle Atsushi (times)

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウム等の活物質、導電材、短繊維および結着
剤を有機溶剤または水からなる分散剤と共に混練してペ
ースト状とし、このペーストを金属芯体に塗着し乾燥さ
せて形成した乾燥体の孔中に、2価以上の金属の塩の溶
液を含浸させた後に、高分子カルボン酸の1価カチオン
の塩の溶液を表面に塗布し乾燥することを特徴とするア
ルカリ蓄電池用カドミウム負極板の製造法。
A dried product made by kneading an active material such as cadmium oxide, a conductive material, short fibers, and a binder with a dispersant consisting of an organic solvent or water to form a paste, and applying this paste to a metal core and drying it. A cadmium negative electrode plate for an alkaline storage battery, characterized in that the pores of the plate are impregnated with a solution of a salt of a divalent metal or higher, and then a solution of a salt of a monovalent cation of a polymeric carboxylic acid is applied to the surface and dried. manufacturing method.
JP60066247A 1985-03-28 1985-03-28 Manufacture of cadmium negative electrode plate for alkaline storage battery Granted JPS61224270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066247A JPS61224270A (en) 1985-03-28 1985-03-28 Manufacture of cadmium negative electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066247A JPS61224270A (en) 1985-03-28 1985-03-28 Manufacture of cadmium negative electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS61224270A true JPS61224270A (en) 1986-10-04
JPH0555981B2 JPH0555981B2 (en) 1993-08-18

Family

ID=13310346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066247A Granted JPS61224270A (en) 1985-03-28 1985-03-28 Manufacture of cadmium negative electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61224270A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186164A (en) * 1982-04-22 1983-10-31 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for alkaline battery
JPS5942779A (en) * 1982-08-31 1984-03-09 Toshiba Battery Co Ltd Manufacture of alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186164A (en) * 1982-04-22 1983-10-31 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for alkaline battery
JPS5942779A (en) * 1982-08-31 1984-03-09 Toshiba Battery Co Ltd Manufacture of alkaline battery

Also Published As

Publication number Publication date
JPH0555981B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US20230121023A1 (en) Continuous manufacture ofa nickel-iron battery
JPH02244557A (en) Cadmium electrode and its manufacture
AU2014212256A1 (en) Coated iron electrode and method of making same
JPS61224270A (en) Manufacture of cadmium negative electrode plate for alkaline storage battery
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPH0429189B2 (en)
JPS645421B2 (en)
JP2871058B2 (en) Electrodes for alkaline storage batteries
JPH0582027B2 (en)
JPS61110966A (en) Electrode for cell
JP3095236B2 (en) Paste nickel positive electrode
JPH0412455A (en) Electrode for alkaline storage battery
JPS5951714B2 (en) Manufacturing method of paste-type electrode plates for alkaline storage batteries
JP3145392B2 (en) Paste nickel positive electrode
JPH01264170A (en) Manufacture of zinc electrode for alkaline storage battery
JPH02244555A (en) Zinc electrode for alkaline storage battery
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS61203569A (en) Pasted negative plate for alkaline storage battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JPH01239764A (en) Paste type positive plate for alkaline storage battery and manufacture thereof
JPS63266766A (en) Manufacture of nickel electrode for battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS5923464A (en) Manufacture of nickel electrode for battery
JPS60158552A (en) Manufacture of paste type cadmium anode