JPS5951714B2 - Manufacturing method of paste-type electrode plates for alkaline storage batteries - Google Patents

Manufacturing method of paste-type electrode plates for alkaline storage batteries

Info

Publication number
JPS5951714B2
JPS5951714B2 JP53017312A JP1731278A JPS5951714B2 JP S5951714 B2 JPS5951714 B2 JP S5951714B2 JP 53017312 A JP53017312 A JP 53017312A JP 1731278 A JP1731278 A JP 1731278A JP S5951714 B2 JPS5951714 B2 JP S5951714B2
Authority
JP
Japan
Prior art keywords
paste
active material
type electrode
alkaline storage
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53017312A
Other languages
Japanese (ja)
Other versions
JPS54109142A (en
Inventor
吉尚 稲葉
栄成 北村
敬一 安田
昌男 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53017312A priority Critical patent/JPS5951714B2/en
Publication of JPS54109142A publication Critical patent/JPS54109142A/en
Publication of JPS5951714B2 publication Critical patent/JPS5951714B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、ペースト式極板の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a paste-type electrode plate.

アルカリ蓄電池用極板として従来より製造されているも
のには、ニッケル焼結基板に活物質を充填した焼結式極
板、活物質と導電材との混合成型体をニッケル多孔性容
器内に入れ、被覆したポケット式極板、活物質を合成樹
脂結着剤(糊料)で練合し、金属製の多孔性支持体上に
塗着、乾燥したペースト式極板がある。
Conventionally manufactured electrode plates for alkaline storage batteries include sintered electrode plates in which a nickel sintered substrate is filled with active material, and a molded mixture of active material and conductive material placed in a nickel porous container. , coated pocket-type electrode plates, and paste-type electrode plates in which active materials are kneaded with a synthetic resin binder (glue), coated on a porous metal support, and dried.

このうち焼結式極板は、薄形で厚み特性および、高率放
電特性が優れている反面、極板中に占めるニッケル基板
の重量が大きく、体積効率が低い。またポケット式極板
は、厚みが大きいことと活物質利用率が低いため容積効
率が低い。一方ペースト式極板は、活物質利用率も高く
、容積効率も高いが、結着剤に難点があり、アルカリ電
解液に弱く、充放電の繰返しにより活物質の脱落現象が
著しくなり、短寿命であるなど、それぞれに問題があつ
た。これらのうち、ペースト式極板については、活物質
利用率も高く、容積効率も高いことなどから、焼結式極
板ともども比較的多く製造されている。
Among these, the sintered electrode plate is thin and has excellent thickness characteristics and high rate discharge characteristics, but on the other hand, the weight of the nickel substrate in the electrode plate is large and the volumetric efficiency is low. Furthermore, the pocket type electrode plate has low volumetric efficiency due to its large thickness and low active material utilization rate. On the other hand, paste-type electrode plates have a high active material utilization rate and a high volumetric efficiency, but they have problems with the binder, are weak against alkaline electrolytes, and have a short lifespan due to the significant shedding of the active material due to repeated charging and discharging. Each of them had their own problems. Among these, paste-type electrode plates are manufactured in relatively large numbers together with sintered-type electrode plates because of their high active material utilization rate and high volumetric efficiency.

また活物質の脱落防止、長寿命化を図るために、種々の
合成樹脂結着剤を用いることが考案されている。活物質
としてカドミウムを用いる陰極においては、ポリビニル
アルコールを糊料として使用する処方があり、一部には
製造もされている。しかしポリビニルアルコールを使用
する場合、カドミウム陰極の特性上、その添加量は1w
t%程度が限度であり、これ以上添加すると活物質利用
率の低下および密閉形電池では酸素ガス吸収能の低下が
顕著となる。
Furthermore, in order to prevent the active material from falling off and extend the life of the active material, the use of various synthetic resin binders has been proposed. For cathodes that use cadmium as an active material, there are formulations that use polyvinyl alcohol as a glue, and some are even manufactured. However, when using polyvinyl alcohol, the amount added is 1w due to the characteristics of the cadmium cathode.
The limit is about t%, and if more than this is added, the active material utilization rate will decrease and the oxygen gas absorption ability will noticeably decrease in sealed batteries.

そして1wt%よりもはるかに少量の添加では、ポリビ
ニルアルコールの結着剤としての効果はほとんどなく、
ペーストを金属支持体の両側に均一に塗着するための湖
料として役目をはたしているにすぎず、塗着、乾燥後の
極板の強度は著しく弱い。これに対して出来上がつた極
板の強度、寿命を高めるためにポリエチレン、ポリテト
ラフロロエチレン等、種々の合成樹脂結着剤を用いるこ
とが試みられているが、ポリビニルアルコール同様所定
の極板強度、寿命を得るためには、5〜10Wt%程度
添加しなければならず、極板の性能も著しく低下するこ
とになる。例えば、ポリビニルアルコールを極板全重量
の0.38wt%添加した場合の活物質利用率が70%
であるのに対して、5〜10wt%添加すると40〜5
0%の利用率しか得られなくなつてしまう。この傾向は
カドミウム陰極だけに限らず、亜鉛陰極、ニツケル陽極
等、アルカリ蓄電池用ペースト式極板に共通したもので
ある。本発明は、ペースト式極板の高い利用率を維持し
つつ、極板強度・寿命を高めることを目的として、合成
樹脂結着剤としての熱可塑性樹脂の最小限の添加で、所
定の性能を得ようとするものであ5る。
When added in a much smaller amount than 1wt%, polyvinyl alcohol has little effect as a binder.
It merely serves as a coating material to uniformly apply the paste to both sides of the metal support, and the strength of the electrode plate after application and drying is extremely weak. In response, attempts have been made to use various synthetic resin binders such as polyethylene and polytetrafluoroethylene to increase the strength and lifespan of the finished electrode plates, but similar to polyvinyl alcohol, they In order to obtain sufficient strength and service life, it is necessary to add about 5 to 10 Wt%, and the performance of the electrode plate will also be significantly reduced. For example, when polyvinyl alcohol is added at 0.38 wt% of the total weight of the electrode plate, the active material utilization rate is 70%.
However, when 5-10 wt% is added, 40-5
You end up getting only a 0% utilization rate. This tendency is common not only to cadmium cathodes, but also to paste-type electrode plates for alkaline storage batteries, such as zinc cathodes and nickel anodes. The present invention aims to increase the strength and lifespan of paste-type electrode plates while maintaining a high utilization rate.The present invention aims to achieve specified performance with a minimum amount of thermoplastic resin as a synthetic resin binder. It's what you're trying to get.

すなわち、活物質粉末と湖料と熱可塑性樹脂とを混合し
てペースト状として、練合する際に、練合時のペースト
温度を、添加する熱可塑性樹脂の軟化点以上に保つて練
合することによつて、熱可5塑性樹脂を均一に拡散せし
め、活物質粒子間を強固に結着させるものである。
That is, the active material powder, the additive, and the thermoplastic resin are mixed to form a paste, and when kneaded, the temperature of the paste during kneading is maintained at or above the softening point of the thermoplastic resin to be added. In particular, the thermoplastic resin is uniformly diffused and the active material particles are firmly bound together.

以下、本発明における実施例を説明する。Examples of the present invention will be described below.

(実施例 1) 電極活物質として酸化カドミウムを用ある密閉4形ニツ
ケルーカドミウム蓄電池用陰極板を次のような方法で作
り、従来例との比較を行なつた。
(Example 1) A cathode plate for a sealed 4-type nickel-cadmium storage battery using cadmium oxide as the electrode active material was produced by the following method, and compared with a conventional example.

酸化カドミウム粉末100重量部に対してニツケル粉末
20重量部と、熱可塑性樹脂として粒径20〜50μの
ポリエチレン粉末(軟化点120〜130℃) 0〜5
重量部とを均一に混合し、この混合粉末にポリビニルア
ルコール0.4重量部を120〜130℃に加熱された
エチレングリコール(沸点197℃)30重量部中に溶
解した溶液を投入して、練合温度を120〜130℃に
保ちながら、ペーストの粘度が、孔径10mmの孔より
5〜50g/分の比率で落下するようになるまで高速で
十分に練合する。このペーストを孔径2mmのパンチン
グメタルの両側に塗着し、乾燥後、プレスして陰極板A
を得る。この陰極板Aに対して、比較のためにポリビ\
ルアルコールを結着剤として用いる従来より製造されて
いる陰極板を従来例1とし、さらにポリエチレン粉末0
〜10wwt%を含む電極活物質を金属支持体の両側に
シート状に塗布して加圧成形し、150℃の温度で2時
間熱処理を施して得られる極板を従来例2として用意し
た。
20 parts by weight of nickel powder per 100 parts by weight of cadmium oxide powder, and polyethylene powder with a particle size of 20 to 50 μm (softening point 120 to 130°C) as a thermoplastic resin 0 to 5
A solution of 0.4 parts by weight of polyvinyl alcohol dissolved in 30 parts by weight of ethylene glycol (boiling point 197°C) heated to 120 to 130°C was added to the mixed powder, and kneaded. While maintaining the mixing temperature at 120 to 130° C., the paste is sufficiently kneaded at high speed until the viscosity of the paste drops at a rate of 5 to 50 g/min through holes with a diameter of 10 mm. Apply this paste to both sides of a punched metal with a hole diameter of 2 mm, and after drying, press it to form a cathode plate A.
get. For this cathode plate A, for comparison, polyvinyl
Conventional Example 1 is a conventionally manufactured cathode plate using polyalcohol as a binder, and
An electrode plate was prepared as Conventional Example 2 by coating an electrode active material containing ~10 wwt% in a sheet shape on both sides of a metal support, press-molding the sheet, and heat-treating the sheet at a temperature of 150° C. for 2 hours.

これらの陰極板について、アルカリ溶液中での充放電利
用率、充放電サイクル寿命、および極板の強度を求めた
For these cathode plates, the charge/discharge utilization rate in an alkaline solution, charge/discharge cycle life, and strength of the plates were determined.

充放電利用率は20℃に保つた濃度7モルのKOH水溶
液中で、陰極板の理論容量の0.1Cで15時間の充電
、放電は0.1Cでニツケル対極に対して−1.0まで
の充放電を行ない求めた。その結果を第1図に示す。充
放電サイクル寿命は、前記の条件を繰返して求めた。そ
の結果を第2図に示す。尚本発明Aはポリエチレンを0
.5wt%添加したもの、従来例2はポリエチレンを0
.5wt%、同2″は7wt加したものである。また極
板強度は陰極板の周囲を0.2mm厚さのポリアミド不
織布で覆いこれを外径5mmの丸棒の周囲に巻きつけ、
このときの活物質の脱落量の割合から脱落率として求め
た。その結果を第3図に示す。これらの結果から本発明
における陰極板Aは、ポリエチレン粉末の添加量0.2
〜1Wt%の範囲で、充放電利用率は、命70〜75%
と従来例1の陰極板と同等の性能が得られ、また充放電
サイクル寿命および極板強度については、従来例2″の
陰極板におけるポリエチレン粉末5〜10Wt%添加と
同等の性能が得られ、本発明における効果が大きいこと
が確かめられた。実施例1以外に次の活物質、熱可塑性
樹脂においても同様の効果が得られた。
The charge/discharge utilization rate was 15 hours at 0.1C, which is the theoretical capacity of the cathode plate, in a 7M KOH aqueous solution kept at 20℃, and discharged at 0.1C to -1.0 with respect to the nickel counter electrode. It was determined by charging and discharging. The results are shown in FIG. The charge/discharge cycle life was determined by repeating the above conditions. The results are shown in FIG. In addition, the present invention A uses 0 polyethylene.
.. 5 wt% added, Conventional Example 2 has 0 polyethylene added.
.. 5wt%, 2" is the addition of 7wt.The strength of the electrode plate is determined by covering the circumference of the cathode plate with a 0.2mm thick polyamide nonwoven fabric and wrapping it around a round bar with an outer diameter of 5mm.
The falling rate was determined from the ratio of the amount of active material falling off at this time. The results are shown in FIG. From these results, the cathode plate A in the present invention has an added amount of polyethylene powder of 0.2
In the range of ~1 Wt%, the charge/discharge utilization rate is 70-75%
Performance equivalent to that of the cathode plate of Conventional Example 1 was obtained, and in terms of charge/discharge cycle life and electrode plate strength, performance equivalent to that of the addition of 5 to 10 Wt% of polyethylene powder in the cathode plate of Conventional Example 2'' was obtained. It was confirmed that the effects of the present invention were significant. In addition to Example 1, similar effects were obtained with the following active materials and thermoplastic resins.

その代表例を以下に示す。(実施例 2) 実施例1におけるポリエチレン粉末の代わりに、エチレ
ン一酢酸ビニル共重合物(重合比100:0〜90:1
0)を使用して同様にペーストを調整し、陰極板を作成
した場合にも同様の効果が得られた。
Representative examples are shown below. (Example 2) Instead of the polyethylene powder in Example 1, ethylene monovinyl acetate copolymer (polymerization ratio 100:0 to 90:1) was used.
A similar effect was obtained when the paste was similarly prepared using 0) to create a cathode plate.

(実施例 3) 活物質としてカドミウムの代わりに亜鉛あるいはニツケ
ルを使用しても同様である。
(Example 3) The same effect can be obtained even if zinc or nickel is used instead of cadmium as the active material.

例えば、密閉形ニツケル一亜鉛蓄電池用陰極板としての
亜鉛陰極については、酸化亜鉛粉末100重量部、金属
亜鉛粉末50重量部と従来例1におけるポリエチレン粉
末0.5〜1重量部とを均一に混合し、この粉末にポリ
ビニルアルコール1重量部を120〜130℃の温度に
加熱されたエチレングリコール35重量部中に溶融溶解
した溶液を投入して、練合温度を120〜130℃に保
ちながら十分に練合して、得られたペーストをパンチン
グメタルの両側に塗着させ、乾燥後プレスして、亜鉛陰
極板を得、これを用いて、陽極に焼結式ニツケル極を使
つた密閉形ニツケル一亜鉛蓄電池を作つた場合、この電
池の;サイクル寿命は、ポリエチレンを含まない従来の
亜鉛陰極を用いた電池の約1.5倍であるし、ポリエチ
レンを含む従来の亜鉛陰極を用いた電池と比較しても寿
命はほぼ同等であり、しかも利用率が向したためエネル
ギー重量効率を向上させること二ができた。一方、電極
活物質にニツケルを使用した場合も同様であり、水酸化
二ツケル粉末を使用して本発明における作り方をした場
合も、利用率を下げることなしに長寿命化を図ることが
できた。
For example, for a zinc cathode as a cathode plate for a sealed nickel-zinc storage battery, 100 parts by weight of zinc oxide powder, 50 parts by weight of metal zinc powder, and 0.5 to 1 part by weight of polyethylene powder in Conventional Example 1 are uniformly mixed. Then, a solution obtained by melting and dissolving 1 part by weight of polyvinyl alcohol in 35 parts by weight of ethylene glycol heated to a temperature of 120 to 130°C was added to this powder, and the mixture was thoroughly mixed while keeping the kneading temperature at 120 to 130°C. After kneading, the resulting paste is applied to both sides of the punched metal, dried and pressed to obtain a zinc cathode plate, which is used to manufacture a sealed nickel metal plate using a sintered nickel electrode as the anode. When a zinc storage battery is made, the cycle life of this battery is approximately 1.5 times that of a battery using a conventional zinc cathode that does not contain polyethylene, and compared to a battery that uses a conventional zinc cathode that contains polyethylene. However, the lifespan is almost the same, and the utilization rate has improved, making it possible to improve energy and weight efficiency. On the other hand, the same is true when nickel is used as the electrode active material, and even when nickel hydroxide powder is used and the method of the present invention is used, the lifespan can be extended without reducing the utilization rate. .

以上の実施例において述べた効果は、熱可塑性樹脂を、
その軟化点以上に沸点をもつ有機溶媒にペーストへ粘着
性を付与する糊料を溶解しブ溶液を加えた状態で軟化点
以上の温度で電極活t電とともに十分練合することによ
つて、熱可塑性樹脂が電極活物質内に均一に拡散するこ
とによる。
The effects described in the above examples can be obtained by using thermoplastic resin,
By dissolving the glue that gives the paste tackiness in an organic solvent with a boiling point higher than the softening point, and adding the solution, the mixture is thoroughly kneaded with the electrode live electric current at a temperature higher than the softening point. This is due to the uniform diffusion of the thermoplastic resin into the electrode active material.

従つて極く微量の樹脂を添加することによつても、結着
強度が高まり極板としての強度向上、長寿命化を図るこ
とが可能である。又これとともに樹脂添加量が少ないた
めに、活物質利用率の低下もほとんどなく、その効果は
非常に大きい。以上の如く、本発明は従来からのペース
ト式極板の欠点である極板の強度、寿命を利用率を下げ
ることなく向上させるものである。
Therefore, even by adding a very small amount of resin, it is possible to increase the binding strength, improve the strength of the electrode plate, and extend its life. In addition, since the amount of resin added is small, there is almost no decrease in the active material utilization rate, and the effect is very large. As described above, the present invention improves the strength and life of the electrode plate, which are drawbacks of conventional paste-type electrode plates, without reducing the utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により作られたペースト式カドミ
ウム陰極板の充放電利用率を示し、第2図は同じく充放
電サイタル寿命を、第3図は極板強度を示す。
FIG. 1 shows the charge/discharge utilization rate of a paste-type cadmium cathode plate made by the method of the present invention, FIG. 2 shows the charge/discharge cycle life, and FIG. 3 shows the plate strength.

Claims (1)

【特許請求の範囲】 1 電極活物質粉末に熱可塑性樹脂を混入し、かつ前記
熱可塑性樹脂の軟化点以上の沸点を有する有機溶媒に糊
料を溶解した溶液を加えて前記熱可塑性樹脂の軟化点以
上の温度で加熱しながら練合して得られたペーストを、
多孔性支持体の両側に塗着して乾燥することを特徴とす
るアルカリ蓄電池用ペースト式極板の製造法。 2 熱可塑性樹脂が、ポリエチレン又はエチレン−酢酸
ビニル共重合物からなる特許請求の範囲第1項記載のア
ルカリ蓄電池用ペースト式極板の製造法。 3 電極活物質粉末が、酸化カドミウム、水酸化カドミ
ウム、およびそれらの混合物からなる群のうちの一つで
ある特許請求の範囲第1項記載のアルカリ蓄電池用ペー
スト式極板の製造法。 4 電極活物質粉末が酸化亜鉛、または酸化亜鉛と金属
亜鉛との混合物である特許請求の範囲第1項記載のアル
カリ蓄電池用ペースト式極板の製造法。 5 電極活物質粉末が、水酸化ニッケルである特許請求
の範囲第1項記載のアルカリ蓄電池用ペースト式極板の
製造法。
[Scope of Claims] 1. A thermoplastic resin is mixed into an electrode active material powder, and a solution of a glue dissolved in an organic solvent having a boiling point higher than the softening point of the thermoplastic resin is added to soften the thermoplastic resin. The paste obtained by kneading while heating at a temperature above the point,
1. A method for producing a paste-type electrode plate for an alkaline storage battery, which comprises coating on both sides of a porous support and drying. 2. The method for producing a paste-type electrode plate for an alkaline storage battery according to claim 1, wherein the thermoplastic resin is made of polyethylene or an ethylene-vinyl acetate copolymer. 3. The method for producing a paste-type electrode plate for an alkaline storage battery according to claim 1, wherein the electrode active material powder is one of the group consisting of cadmium oxide, cadmium hydroxide, and mixtures thereof. 4. The method for producing a paste-type electrode plate for an alkaline storage battery according to claim 1, wherein the electrode active material powder is zinc oxide or a mixture of zinc oxide and metal zinc. 5. The method for producing a paste-type electrode plate for an alkaline storage battery according to claim 1, wherein the electrode active material powder is nickel hydroxide.
JP53017312A 1978-02-16 1978-02-16 Manufacturing method of paste-type electrode plates for alkaline storage batteries Expired JPS5951714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53017312A JPS5951714B2 (en) 1978-02-16 1978-02-16 Manufacturing method of paste-type electrode plates for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53017312A JPS5951714B2 (en) 1978-02-16 1978-02-16 Manufacturing method of paste-type electrode plates for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPS54109142A JPS54109142A (en) 1979-08-27
JPS5951714B2 true JPS5951714B2 (en) 1984-12-15

Family

ID=11940481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53017312A Expired JPS5951714B2 (en) 1978-02-16 1978-02-16 Manufacturing method of paste-type electrode plates for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JPS5951714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024718U (en) * 1983-07-25 1985-02-20 株式会社 宮崎一一計画工房 Simple beverage container
JPS6321224U (en) * 1986-07-22 1988-02-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024718U (en) * 1983-07-25 1985-02-20 株式会社 宮崎一一計画工房 Simple beverage container
JPS6321224U (en) * 1986-07-22 1988-02-12

Also Published As

Publication number Publication date
JPS54109142A (en) 1979-08-27

Similar Documents

Publication Publication Date Title
KR920007381B1 (en) Making method of akaline battery
CN111029559A (en) Lithium titanate battery and preparation method thereof
JPS5951714B2 (en) Manufacturing method of paste-type electrode plates for alkaline storage batteries
JPH08167411A (en) Nickel electrode and its manufacture
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPH0429189B2 (en)
JP2000182611A (en) Alkaline storage battery and its manufacture
JPS63160166A (en) Manufacture of cadmium anode plate for alkaline storage battery
JPS63160167A (en) Manufacture of cadmium anode plate for alkaline storage battery
CA1102409A (en) Battery plates covered with porous thermoplastic resin
JP2546694B2 (en) Method for manufacturing electrode plate for alkaline battery
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
CN116404274A (en) Nickel-hydrogen battery and preparation method thereof
JPS61198561A (en) Nickel electrode for alkaline secondary battery
JPS62243255A (en) Manufacture of anode plate for alkaline storage battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH0315165A (en) Manufacture of solid state secondary battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS6298563A (en) Manufacture of anode plate for nickel-cadmium alkaline storage battery
JPH04337246A (en) Nickel-zinc battery
JPS60264049A (en) Alkali zinc battery
JPS61224270A (en) Manufacture of cadmium negative electrode plate for alkaline storage battery
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS6337566A (en) Paste type plate for alkaline storage battery