JPS6298563A - Manufacture of anode plate for nickel-cadmium alkaline storage battery - Google Patents

Manufacture of anode plate for nickel-cadmium alkaline storage battery

Info

Publication number
JPS6298563A
JPS6298563A JP60238725A JP23872585A JPS6298563A JP S6298563 A JPS6298563 A JP S6298563A JP 60238725 A JP60238725 A JP 60238725A JP 23872585 A JP23872585 A JP 23872585A JP S6298563 A JPS6298563 A JP S6298563A
Authority
JP
Japan
Prior art keywords
paste
binder
kneaded
battery
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60238725A
Other languages
Japanese (ja)
Inventor
Takao Ogura
孝夫 小倉
Masakazu Shimoda
下田 雅一
Akihiko Katayama
片山 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60238725A priority Critical patent/JPS6298563A/en
Publication of JPS6298563A publication Critical patent/JPS6298563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase oxygen gas absorbing capability to reduce an increase in internal pressure in a battery during quick charge-discharge by using hydrophilic and hydrophobic binders. CONSTITUTION:Cadmium oxide powder and a hydrophobic binder are mixed in a dry process, and the mixture is kneaded with a solvent in which a hydrophilic binder is dissolved, then the kneaded mixture is applied to a grid to manufacture an anode plate. For example, 73pts. cadmium oxide powder and 2pts. polytetrafluoroethylene are mixed for 30min in a dry process. A solution obtained by dissolving 23pts. ethylene glycol and 2pts. polyvinyl alcohol is added to the mixture, and they are kneaded 2hr at 20+ or -2 deg.C to obtain paste. 11.8g of the paste is applied to punched nickel plate measuring 34mmX200mm and dried at 100 deg.C until generation of white vapor of ethylene glycol stops. 11.8g of the paste is equivalent to 3.6Ah of the capacity of anode active material. This anode plate is coupled with a cathode plate having a capacity of 1.2Ah to form a battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル・カドミウムアルカリ蓄電池用陰極
板の製造法の改良に関し、特に急速充電時の充電特性に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in the manufacturing method of a cathode plate for a nickel-cadmium alkaline storage battery, and particularly relates to charging characteristics during rapid charging.

従来の技術 従来ニッケル・カドオウムアルカリ蓄電池において、陰
極板は、ニッケル焼結体の細孔中に活物質である水酸化
カド2ウムあるいは金属カドミウムを化学的あるいは電
気化学的に保持させる焼結式がほとんどであった。最近
番こなって、電池の高容量化、製造方法の開力)ら、酸
化カドミウム粉末をバインダー粗末Fil”溶融させた
溶離あるいはバインダー粉末のデイスページョンで混練
し、芯材として用いるバンチングメタルIこ塗布する方
法いわゆるペースト式あるいはスラリ一式と呼ばれる陰
極板製造方法が注目されてきている。
Conventional technology In conventional nickel-cadmium alkaline storage batteries, the cathode plate is a sintered type in which the active material cadmium hydroxide or metal cadmium is chemically or electrochemically retained in the pores of a nickel sintered body. was the majority. Recently, due to the increase in the capacity of batteries and the development of new manufacturing methods, bunching metal I is produced by kneading cadmium oxide powder with melted binder powder or dispersion of binder powder and using it as a core material. A cathode plate manufacturing method called a paste method or a slurry method is attracting attention.

発明が解決しようとする問題点 ペースト式あるいはスラリ一式陰極板製造法において使
用さ几るバインダー粉末は親水性と疎水性のものがある
。前述したように、親水性のバインダーはメチルセルロ
ースやポリビニルアルコール等が知られており、これを
水やエチレングリコール等に溶融して用いている。この
ため、活物質である酸化カドミウム粉末の表面にコーテ
ィングされる。
Problems to be Solved by the Invention The binder powder used in the paste type or slurry type cathode plate manufacturing method can be either hydrophilic or hydrophobic. As mentioned above, methylcellulose, polyvinyl alcohol, and the like are known as hydrophilic binders, which are used by melting them in water, ethylene glycol, or the like. Therefore, the surface of the cadmium oxide powder, which is the active material, is coated.

一方、急速充電特性は陽極力)ら発生した酸素乞陰極板
でい7))に効率よく吸収するかにか力きっている。こ
のガス吸収は@極活物質と電解液と酩°素の三相界面で
最も効率的に起こる。このため、前述したように活物質
表面が親水性のバインダーで覆わnると、この膜により
、酸素ガスのカドミウム表面への移動が遅くなるば力)
りで11 < 、バインダーが電解液によって完全に漏
tてしま一″lため、前述したような三相界面が非常に
できにくい。このため、親水性バインダー7便用した場
せには、急速充電特性を満足下る陰極板を製造すること
は、非常lこ難力)しい、こnfこ対し、疎水性バイン
ダー粉末には、ポリテトラフルオロエチレンがあり、こ
れを水マたはエチレン・トルエン等の混合溶媒に分散さ
せて使用している。このバインダーは、活物質表面を完
全にはコーティングすることなく、また表面が電解液で
覆われにくいため、三相界面ができやTい○このため、
陰極板での酸素ガス吸収能が増大し、急速充電が可能で
ある。し力きし、このバインダーのディスパージョンで
酸化カドきラムを混練すると、ガム状となり、実験レベ
ルでは問題ないが、冥際の製造は非常に難刀)しい。
On the other hand, the rapid charging characteristics depend on how efficiently the cathode plate absorbs the oxygen generated from the anode force (7)). This gas absorption occurs most efficiently at the three-phase interface of @polar active material, electrolyte, and intoxicant. Therefore, as mentioned above, if the surface of the active material is covered with a hydrophilic binder, this film will slow down the movement of oxygen gas to the cadmium surface.
At 11<, the binder is completely leaked by the electrolyte, making it very difficult to form the three-phase interface described above.For this reason, when using a hydrophilic binder, it is difficult to form a three-phase interface. It is extremely difficult to manufacture a cathode plate that satisfies the charging characteristics.On the other hand, hydrophobic binder powders include polytetrafluoroethylene, which can be mixed with water or ethylene/toluene. This binder does not completely coat the surface of the active material and is difficult to cover with the electrolyte, making it difficult to form a three-phase interface. ,
The ability of the cathode plate to absorb oxygen gas increases, allowing rapid charging. However, when oxidized rum is kneaded with a dispersion of this binder, it becomes gum-like, which is no problem at the experimental level, but it is extremely difficult to produce at the final stage.

このよう3こ、急速充電可能な陰極板乞作成するにあた
っては、バインダーの種類をこより、性能上あるいは製
造上の問題を有していた。
In producing these three cathode plates capable of rapid charging, there have been problems in terms of performance and manufacturing, depending on the type of binder.

問題?解決下るための手段 本発明は上記の如き点に鑑み、酸化カドミウム粉末と疎
水性バインダー粉末を乾式混合し、その後親水性バイン
ダーン溶融させた溶媒で混練し、芯材に塗布下ることl
こよって陰極板を製造Tることにゐる0 作用 親水性バインダーで覆われているカドミウム表面上に疎
水性バインダービ分散させることができ、酸素ガス吸収
のための三相界面を形成させることができる。また、疎
水性バインダーは乾式混合しているため、ディスパージ
ョンと異なり、ガム状おはならず、ペーストあるいはス
ラリー状であり、?!造而面も全く問題ないものである
problem? Means for Solving the Problem In view of the above-mentioned problems, the present invention involves dry mixing cadmium oxide powder and hydrophobic binder powder, then kneading with a solvent in which the hydrophilic binder is melted, and applying the mixture to the core material.
Thus, when producing a cathode plate, a hydrophobic binder can be dispersed on the cadmium surface covered with a hydrophilic binder, forming a three-phase interface for oxygen gas absorption. . Also, since the hydrophobic binder is dry mixed, unlike a dispersion, it does not come out in the form of a gum, but rather in the form of a paste or slurry. ! There is no problem with the physical aspect.

実施例 酸化カドミウム粉末73部おポリテトラフルオロエチレ
ン2部を30分分間式混合下る。その後エチレングリコ
ール23部にポリビニルアルコール2部?溶融させた溶
液ン加え、2時間混練する。この時の温度は、20部2
℃である。
EXAMPLE 73 parts of cadmium oxide powder and 2 parts of polytetrafluoroethylene were mixed for 30 minutes. Then 23 parts of ethylene glycol and 2 parts of polyvinyl alcohol? Add the molten solution and knead for 2 hours. The temperature at this time is 20 parts 2
It is ℃.

このペースト’i:’ 34 ram X 200 m
mの太! サ’)ニッケルパンチングメタルに11.8
fのペーストを塗布し、乾燥温H1oo℃でエチレング
リコールの白色蒸気が出なくなるまで乾燥した。ペース
ト量11.8SFは陰極活物賓客t3゜5Ahに相当下
る。この陰極板と1,2Ahcv陽極板とを組み曾わせ
電池を作成した。
This paste 'i:' 34 ram X 200 m
Thick m! 11.8 on nickel punched metal
The paste of f was applied and dried at a drying temperature of H1oo°C until no white vapor of ethylene glycol was emitted. The paste amount of 11.8SF is equivalent to the cathode active material guest t3°5Ah. This cathode plate and a 1,2 Ahcv anode plate were assembled to form a battery.

このようにして、製造して得た本発明による電池Aと従
来の親水性バインダーのみ乞使用して作製した陰極板を
用いた電池Bの充電時における電池内圧を比較した結果
を南面に示す。このときの光電電流は0.5 crrA
である。 光電時間2時間後で陽極板がほぼ完全に充電
されるため、それ以後陽極乃)・ら酸素ガスが発生する
。従来の電池Bでは、陰極板での酸素ガス吸収があまり
進まないため電池缶の内部圧力が上昇下る。これ番こ対
し、本発明lこよる電油Aでは酸素ガス吸収反応が丁み
や力)lこ進行下るため、電池缶の内部圧力が約2 K
q / triでほぼ一定おなる。
The south side shows the results of comparing the battery internal pressures during charging between Battery A according to the present invention manufactured in this manner and Battery B using a cathode plate manufactured using only a conventional hydrophilic binder. The photoelectric current at this time is 0.5 crrA
It is. Since the anode plate is almost completely charged after 2 hours of photovoltaic time, oxygen gas is generated from the anode. In conventional battery B, the internal pressure of the battery can rises and falls because the absorption of oxygen gas by the cathode plate does not proceed much. On the other hand, in the electrolyte oil A according to the present invention, the oxygen gas absorption reaction progresses at a lower rate, so the internal pressure of the battery can decreases to about 2 K.
It is almost constant at q/tri.

発明の効果 止述の、Cうに、本発明に;れば陰極板の酸素ガス吸収
能を向上させ、急速充電時のit電池缶内部圧力?低く
抑えることができ、疎水性バインダーディスパージョン
を用いた時のようfこ製造が著しく困難Gこなることも
ない等工業釣部1値きわめて大なるものである。
As stated above, the present invention improves the oxygen gas absorption ability of the cathode plate and reduces the internal pressure of the IT battery can during rapid charging. The industrial value can be kept low, and the production value is not extremely difficult or difficult to produce as when a hydrophobic binder dispersion is used.

【図面の簡単な説明】[Brief explanation of drawings]

シ1面は従来の極板を用いた電池Bと本発明Eこよる極
板を用いた電池Aとり〕電池缶内圧の経時変化を示T曲
線図である。
Figure 1 is a T-curve diagram showing the change in battery can internal pressure over time for battery B using a conventional electrode plate and battery A using an electrode plate according to the present invention E.

Claims (1)

【特許請求の範囲】[Claims] 親水性と疎水性のバインダーを使用することを特徴とす
るニッケル・カドミウムアルカリ蓄電池用陰極板の製造
法。
A method for producing a cathode plate for a nickel-cadmium alkaline storage battery, characterized by using a hydrophilic and hydrophobic binder.
JP60238725A 1985-10-25 1985-10-25 Manufacture of anode plate for nickel-cadmium alkaline storage battery Pending JPS6298563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238725A JPS6298563A (en) 1985-10-25 1985-10-25 Manufacture of anode plate for nickel-cadmium alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238725A JPS6298563A (en) 1985-10-25 1985-10-25 Manufacture of anode plate for nickel-cadmium alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6298563A true JPS6298563A (en) 1987-05-08

Family

ID=17034329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238725A Pending JPS6298563A (en) 1985-10-25 1985-10-25 Manufacture of anode plate for nickel-cadmium alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6298563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267960A (en) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption alloy electrode and its manufacture
JPH0676010U (en) * 1993-04-09 1994-10-25 有限会社吉川工業 Sandbag manufacturing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01267960A (en) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption alloy electrode and its manufacture
JP2689473B2 (en) * 1988-04-20 1997-12-10 松下電器産業株式会社 Hydrogen storage alloy electrode and its manufacturing method
JPH0676010U (en) * 1993-04-09 1994-10-25 有限会社吉川工業 Sandbag manufacturing equipment

Similar Documents

Publication Publication Date Title
KR20180032988A (en) cathode active material, method of preparing the cathode active material, and all solid state battery comprising the same
US3625765A (en) Production of battery electrode
US3671319A (en) Battery electrode and battery embodying same
JPS6298563A (en) Manufacture of anode plate for nickel-cadmium alkaline storage battery
KR101709168B1 (en) High power thin film cathode for thermal batteries and a manufacturing method therefor
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP2000348715A (en) Manufacture of lead-acid battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2968813B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS6113564A (en) Negative plate for alkaline battery
JP2553624B2 (en) Paste type cadmium negative electrode
JPS62256373A (en) Manufacture of anode plate for nickel-cadmium alkaline storage battery
JPS58225582A (en) Button-type air cell
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH08255630A (en) Lithium secondary battery
JPS59189559A (en) Manufacture of electrode plate for battery
JPH071694B2 (en) Cathode plate for sealed nickel-cadmium storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
JPH0318304B2 (en)
JPS5838460A (en) Manufacture of paste type nickel-cadmium storage battery
JPH02132760A (en) Nonaqueous solvent secondary battery
JPH0799052A (en) Alkaline storage battery
JPH01146253A (en) Manufacture of cadmium electrode for battery