JPS61223683A - Ultrasonic device and its driving method - Google Patents

Ultrasonic device and its driving method

Info

Publication number
JPS61223683A
JPS61223683A JP6535985A JP6535985A JPS61223683A JP S61223683 A JPS61223683 A JP S61223683A JP 6535985 A JP6535985 A JP 6535985A JP 6535985 A JP6535985 A JP 6535985A JP S61223683 A JPS61223683 A JP S61223683A
Authority
JP
Japan
Prior art keywords
voltage
electrode
ultrasonic
waveform
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6535985A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanigawa
紘 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6535985A priority Critical patent/JPS61223683A/en
Publication of JPS61223683A publication Critical patent/JPS61223683A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the distance detecting capability for short distance by providing a means which detects the mechanical deformation of an element of an ultrasonic device provided with the element which can be oscillated mechanically and a means which oscillates this element mechanically. CONSTITUTION:When an amplified voltage is applied to electrodes 3 and 5, forces attracting them to each other are generated electrostatically to deflect an element 1. Since the deflection of the element 1 is approximately proportional to the momentary value of this voltage, the element 1 is deflected in accordance with the frequency of an exciting waveform to radiate an ultrasonic wave. When this deformation of the element 1 is induced, the electrostatic capacity value between the second and the third electrodes 4 and 5 is changed. This change value of the capacity is converted to a voltage change value by a capacity-voltage converting circuit 6 in a driving circuit. That is, the second electrode 4 constitutes the means which detects the mechanical deformation of this element. This voltage change value is compared with the exciting waveform in a driving circuit 6, and the voltage momentary value to the first electrode 3 is so changed that the voltage change value is always equal to the exciting waveform. As the result, the detection capability for a short distance is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波を放射する超音波素子およびその超音
波素子を駆動する方法に関する〇(従来技術とその問題
点) 従来、監視、測距の分野では、超音波素子による音波の
伝播時間計測が広く用いられてきた。第9図は、単一の
超音波素子を用いた伝播時間計測法を示す図である0図
において、101は当該超音波素子、102は駆動回路
、103は検出回路、104はスイッチ、105は対象
物体、106は101と105との距fiLであるG第
10図は第9図の動作を示す図である。図において、1
1Oは超音波素子101から放射された超音波の放射波
形であシ、該超音波素子の該対象物体側の伝播媒体(例
えば空気)中に発生した音圧の時間変化が概念的に示さ
れている。放射波形110は駆動回路102により生成
される。即ち、基本的にはスイッチ104が図示した位
置にある期間内で駆動回路102で発生された。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an ultrasonic element that emits ultrasonic waves and a method for driving the ultrasonic element. In the field of distance measurement, measurement of the propagation time of sound waves using ultrasonic elements has been widely used. FIG. 9 is a diagram showing a propagation time measurement method using a single ultrasonic element, in which 101 is the ultrasonic element, 102 is a drive circuit, 103 is a detection circuit, 104 is a switch, and 105 is a The target object, 106 is the distance fiL between 101 and 105.G FIG. 10 is a diagram showing the operation of FIG. 9. In the figure, 1
1O is the radiation waveform of the ultrasonic wave emitted from the ultrasonic element 101, which conceptually shows the time change of the sound pressure generated in the propagation medium (for example, air) on the target object side of the ultrasonic element. ing. Radiated waveform 110 is generated by drive circuit 102 . That is, essentially the signal generated by the drive circuit 102 during the period when the switch 104 is in the position shown.

110と類似(後述)した電圧あるいは電流波形が10
1 K印加され、波形110が放射される。かかる動作
により放射された超音波は、前記媒体中を。
A voltage or current waveform similar to 110 (described later) is 10
1 K is applied and waveform 110 is emitted. The ultrasonic waves emitted by such operation travel through the medium.

該媒体およびその温度等により決定される音速で対象物
体105の方へ伝播し、物体105の表面等で反射され
る。当該反射は、媒体の音響インピーダンス、物体10
5の音響インピーダンス、物体105の表面形状2表面
粗さ等に依存する反射率でもって達成される。かかる反
射により、前記放射された超音波は、媒体中を前記超音
波素子に向って逆方向に伝播する。111は、超音波素
子101に到達する超音波の音圧変化を概念的に示して
いる。この音圧変化は超音波素子101にて検出される
検出波形である。例えば1周知のピエゾ圧電効果を利用
すれば、検出波形111に類似した電気信号が検出され
る。勿論、かかる検出時においては、スイッチ104は
図示した位置とは逆の位置に設定され、当該電気信号は
検出回路103に導かれる。放射波形110が生成され
てから、検出波形111が発生するまでの伝播時間t 
(112にて図示)は、超音波素子101と対象物体1
05との距離りに依存する。
The sound propagates toward the target object 105 at a sound speed determined by the medium and its temperature, and is reflected by the surface of the object 105. The reflection is caused by the acoustic impedance of the medium, the object 10
This is achieved with an acoustic impedance of 5, a reflectance that depends on the surface shape of the object 105, 2 surface roughness, etc. Such reflection causes the emitted ultrasound waves to propagate in the medium in the opposite direction towards the ultrasound element. Reference numeral 111 conceptually indicates a change in the sound pressure of the ultrasonic wave that reaches the ultrasonic element 101. This sound pressure change is a detection waveform detected by the ultrasonic element 101. For example, if the well-known piezoelectric effect is used, an electrical signal similar to the detection waveform 111 can be detected. Of course, at the time of such detection, the switch 104 is set to a position opposite to that shown, and the electrical signal is guided to the detection circuit 103. Propagation time t from generation of radiation waveform 110 until generation of detection waveform 111
(illustrated at 112) is the ultrasonic element 101 and the target object 1.
It depends on the distance from 05.

即ち、媒体中での音速をVとすれば、t=2L/vなる
関係が成立することが知られている。距離りが短かくな
ると1時間tも短かくなる0第11図は前記放射波形1
10の発生について、より詳細にg明するための図であ
る。図において、113は駆動回路lO2にて発生され
た波形、即ち、スイッチ104を介して、超音波素子1
01に供給される電圧あるいは電流の励振波形である。
That is, it is known that if the speed of sound in the medium is V, then the relationship t=2L/v holds true. As the distance becomes shorter, 1 hour t also becomes shorter.0 Figure 11 shows the radiation waveform 1.
10 is a diagram for explaining the occurrence of No. 10 in more detail. FIG. In the figure, reference numeral 113 indicates a waveform generated by the drive circuit lO2, that is, a waveform generated by the ultrasonic element 1 via the switch 104.
This is the excitation waveform of the voltage or current supplied to 01.

また、114は。Also, 114 is.

前述した放射波形を詳細に、かつ、励振波形113と対
応させた放射波形である。一般に、超音波素子は超音波
放射時において、電気・機械変換部の機械的特性、電気
的特性に支配される。即ち、機械的な振動は、その超音
波素子の構成材料、構成方法9寸法等により、励振波形
に追随できないことが知られている0かかる理出により
、電気信号である励振波形113と、機械的振動に対応
する放射波形114とは一致しない。放射波形114を
構成する個々のパルス振幅は徐々に増大し、また、励振
波形が零になった時刻T0後に、放射波形Inは徐々に
減衰する0即ち、T0直後に、スイッチ104を検出側
に切り換えても、超音波素子101の残留振動のために
、超音波の放射は続行する0もし。
This is a radiation waveform that corresponds to the excitation waveform 113 in detail of the radiation waveform described above. Generally, when an ultrasonic element emits ultrasonic waves, it is governed by the mechanical characteristics and electrical characteristics of the electro-mechanical converter. That is, it is known that mechanical vibrations cannot follow the excitation waveform due to the constituent materials, construction methods, and dimensions of the ultrasonic element. It does not match the radiation waveform 114 corresponding to the target vibration. The amplitude of each pulse constituting the radiation waveform 114 gradually increases, and after time T0 when the excitation waveform becomes zero, the radiation waveform In gradually attenuates to 0, that is, immediately after T0, the switch 104 is set to the detection side. Even if the switch is switched, ultrasonic emission continues due to residual vibration of the ultrasonic element 101.

前記した距離りが小さいと、かかる超音波放射の続行す
る期間に、該対象物体からの反射超音波が到来し、当該
超音波による前記検出波形が嵐畳するために、距離りの
検出が不可能となる。かかる動作が、従来の超音波素子
を用いた伝播時間計測法において、近距離側の距離検出
限界を決定していた。
If the above-mentioned distance is small, the reflected ultrasound from the target object arrives during the period when the ultrasound emission continues, and the detected waveform due to the ultrasound becomes chaotic, resulting in failure to detect the distance. It becomes possible. Such an operation determines the distance detection limit on the short distance side in the conventional propagation time measurement method using an ultrasonic element.

なお、上記の説明に際しては、単一の超音波素子を送受
兼用として用いた場合が例示されたが、二つの超音波素
子を用い、一方は超音波の放射に。
In addition, in the above explanation, the case where a single ultrasonic element is used for both transmission and reception was illustrated, but it is also possible to use two ultrasonic elements, one of which is used for emitting ultrasonic waves.

他の一方は超音波の検出に用いるような場合においても
、超音波を放射する素子での励振直後の残留振動のため
に、同様な、近距離側での距離検出限界を決定していた
口 以上のように、近距離側での距jll!検出限界を向上
させるために、前記した超音波素子の残留振動を低減せ
しめることが重要な課題となっていたO(発明の目的) 本発明の目的は、かかる従来技術の欠点を排除し、近距
離での距離検出能力を向上せしめた超音波素子と、その
超音波素子を駆動する方法を提供することにある。
On the other hand, even when used for ultrasonic detection, the distance detection limit was determined on the short distance side due to the residual vibration immediately after excitation in the element that emits ultrasonic waves. As mentioned above, the distance on the near side is jll! In order to improve the detection limit, it has become an important issue to reduce the residual vibration of the ultrasonic element described above. An object of the present invention is to provide an ultrasonic element with improved distance detection ability and a method for driving the ultrasonic element.

(発明の構成) 本発明の超音波素子は、機械的に振動できる要素と当該
要素を機械的に振動させる手段とを有する超音波素子に
おいて、該要素の機械的な変形を検出する手段を備えた
ことを特徴とする。
(Structure of the Invention) The ultrasonic element of the present invention has an element that can be mechanically vibrated and a means for mechanically vibrating the element, and includes means for detecting mechanical deformation of the element. It is characterized by:

本発明の超音波素子を駆動する方法は1機械的に振動で
きる要素と当該要素を機械的に振動させる手段と該i!
素の機械的な変形を検出する手段を備えた超音波素子を
連動手段を用いて駆動する際に当該要素の機械的表変形
を検出する手段より得られた検出信号で当該駆動手段を
制御することを特徴とするり (実施例) 以下、実施例によp本発明の詳細な説明する0第1図は
本発明の−実り例を示す図でおるり図において、1は周
辺領域が絶縁体から成るスペーサ2により固定されてい
る薄膜から成る機械的に振動できる要素である0要素1
の材質は1例えばポリエステル、ポリフッ化ビニリデン
等である口3.4は当該要素1の表面に設けられた導電
体から成るそれぞれ第1.第2の11L極である。5は
当該要素1と対向する導電性の第3の電極であり。
A method for driving an ultrasonic element according to the present invention includes: (1) an element that can be mechanically vibrated; a means for mechanically vibrating the element; and the i!
When driving an ultrasonic element equipped with means for detecting mechanical deformation of the element using interlocking means, the driving means is controlled by a detection signal obtained from the means for detecting mechanical surface deformation of the element. (Embodiment) Hereinafter, the present invention will be explained in detail by way of an embodiment.0 Figure 1 is a diagram showing a practical example of the present invention. 0 element 1 which is a mechanically vibrating element consisting of a thin film fixed by a spacer 2 consisting of a body
The material of the element 1 is, for example, polyester, polyvinylidene fluoride, etc. The openings 3 and 4 are each made of a conductor provided on the surface of the element 1. This is the second 11L pole. 5 is a conductive third electrode facing the element 1;

接地されている。また、スペーサ2はm3の電極5とm
44的に結合されている。かかる構成においては、第1
.第3の電極群は互いに対向しておシ。
Grounded. Moreover, the spacer 2 is connected to the electrode 5 of m3 and m
44 connected. In such a configuration, the first
.. The third electrode group faces each other.

静電容重の電極群を構成している0同様に、第2゜第3
の電極群も互いに対向しておシ、静電容量の電解群を構
成しているコ第1の電極3は駆動回路6の出力に接続さ
れ、また、第20′鑞極4は駆動回路6の第1の入力に
接続されている口駆動回路6の第2の入力は端子7に接
続され、励振波形が印加される0当該励振改形は駆動回
路6により所望の電圧レベルまで増幅され、電極3,5
間で形成される静11L容量の電極群へ供給される。即
ち、第1の電極3は超音波素子の駆動電極として作用し
該駆動回路と相まって、当該要素を機械的振動させる手
段を構成している。電極3,5には該増幅された゛電圧
が印加されると、互いに引き合う力が静電的に発生し、
要素184MませるO当該j!!!素lの撓み(即ち、
該要素の機械的変形)は該電圧の瞬時値に大略比列する
ので、4!素1は当該励振波形の周波数に応じて撓み、
超音波が放射される。一方、かかる当該要素lの変形が
誘起されると、第2、第3の電極4,5間の静電容量値
は変化する。
Similarly to 0, which constitutes the capacitive electrode group, the 2nd and 3rd electrodes
The electrode groups also face each other, and the first electrode 3 constituting the capacitance electrolytic group is connected to the output of the drive circuit 6, and the 20th electrode 4 is connected to the drive circuit 6. The second input of the drive circuit 6, which is connected to the first input of the drive circuit 6, is connected to the terminal 7, to which an excitation waveform is applied, which is amplified by the drive circuit 6 to the desired voltage level; Electrodes 3, 5
It is supplied to a group of electrodes with a static 11L capacitance formed between them. That is, the first electrode 3 acts as a drive electrode for the ultrasonic element, and together with the drive circuit constitutes means for mechanically vibrating the element. When the amplified voltage is applied to the electrodes 3 and 5, a mutually attracting force is generated electrostatically,
Let element 184M be O concerned j! ! ! The deflection of element l (i.e.
(mechanical deformation of the element) is roughly proportional to the instantaneous value of the voltage, so 4! Element 1 is deflected according to the frequency of the excitation waveform,
Ultrasonic waves are emitted. On the other hand, when such deformation of the element 1 is induced, the capacitance value between the second and third electrodes 4 and 5 changes.

かかる容量の変化値は駆動回路内の容量・電圧変換回路
(図示せず)によフ電圧変化値に変換される。即ち、第
2の電極4は、当該要素の機械的な変形を検出する手段
を構成している。この電圧変化値は、駆動回路6内部に
て、前記励振波形と比較され、常に該励振波形と等しく
なるように第1の電極3への電圧瞬時値が変化する◎か
かる動作は電気制御分野で多用されているフィードバッ
ク技術の一形態である0該励撮波形が印加されている周
期内では、該励振波形と大略類似した波形が第1の電極
3に供給されているが、該励振波形が消滅した以後の周
期では、当該要素lの残留振動を強制的に消滅せしめる
ような波形が駆動回路6内で生成される0かかる動作の
結果、当該要素で発生する有害な残留振動が除去され、
励振波形と等しい放射波形を有する超音波が放射される
◎第2図は本実施例(第1図)の主要部分の平面図であ
)、第1図と同一番号は同一構成要素を示している。第
2図で明らかなように、第1.第2の電極群は同心円状
に配列されている。第1.第2の電極の寸法、および電
極間隔等については何ら制限が無い。勿論、前述した超
音波放射状況が良好になるよう1例えば、該第2の電極
から得られる信号成分が該要素1の機械的な変形と線形
な関係にあるような第2の電極4の形状が適宜選択され
ても良い。
This capacitance change value is converted into a voltage change value by a capacitance/voltage conversion circuit (not shown) in the drive circuit. That is, the second electrode 4 constitutes means for detecting mechanical deformation of the element. This voltage change value is compared with the excitation waveform inside the drive circuit 6, and the instantaneous voltage value applied to the first electrode 3 is changed so that it is always equal to the excitation waveform. ◎Such an operation is used in the electrical control field. One form of feedback technology that is frequently used is that during the period in which the excitation waveform is applied, a waveform roughly similar to the excitation waveform is supplied to the first electrode 3; In the period after the disappearance, a waveform that forcibly causes the residual vibration of the element l to disappear is generated in the drive circuit 6. As a result of this operation, the harmful residual vibration generated in the element l is removed,
Ultrasonic waves having a radiation waveform equal to the excitation waveform are emitted. ◎Figure 2 is a plan view of the main parts of this embodiment (Figure 1), and the same numbers as in Figure 1 indicate the same components. There is. As is clear from Figure 2, 1. The second electrode group is arranged concentrically. 1st. There are no restrictions on the dimensions of the second electrode, the electrode spacing, etc. Of course, the shape of the second electrode 4 is such that, for example, the signal component obtained from the second electrode has a linear relationship with the mechanical deformation of the element 1, so that the above-mentioned ultrasonic radiation situation is favorable. may be selected as appropriate.

第3図は第1.第2の電極群の形状を変えた実施例を示
す図である口同図(、)では、第2の電極4を中央部に
、第1の電極3を周辺部に配置した実施例である0円図
(b)では、第2の電極を周辺部に分割して配置し、第
1の電極を中央から周辺部にかけて配置した例である0
勿論、当該実施例においては、複数個の第2の電極を並
列的に接続したシ、単一の電極のみを利用したシするこ
とができる0更に、第1.第2の電極間にシールド電極
(図示せず)を配置し、駆動回路6の入出力結合を低減
せしめることも本発明に含まれる0また。
Figure 3 is 1. The figure (,) showing an example in which the shape of the second electrode group is changed shows an example in which the second electrode 4 is placed in the center and the first electrode 3 is placed in the periphery. 0 circle diagram (b) is an example in which the second electrode is divided and arranged in the peripheral part, and the first electrode is arranged from the center to the peripheral part.
Of course, in this embodiment, a plurality of second electrodes may be connected in parallel, or a single electrode may be used. The present invention also includes arranging a shield electrode (not shown) between the second electrodes to reduce input/output coupling of the drive circuit 6.

第2.3図の例では、電極パターンは円、同心円形状の
本のを例示したが、これに限ることはなく。
In the example of FIG. 2.3, the electrode pattern is a circle or a concentric book, but the electrode pattern is not limited to this.

正方形を含む多角形の当該要素l上に1円、同心円以外
の形状、例えば多角形の電極パターンを配置しても良い
〇 第4図は本発明の他の実施例を示す。本実施例において
は1機械的に振動できる要素11が圧電性材質、例えば
無機圧電体や有機圧電膜や複合圧電膜で構成されている
。当該要素の下側の面全部あるいは一部には1例えば傍
地された導電体層12が蒸着等周知の方法によ)形成さ
れている〇一方。
An electrode pattern having a shape other than one circle or concentric circles, for example, a polygon, may be arranged on the polygonal element l including a square. FIG. 4 shows another embodiment of the present invention. In this embodiment, one mechanically vibrating element 11 is made of a piezoelectric material, such as an inorganic piezoelectric material, an organic piezoelectric film, or a composite piezoelectric film. On the whole or a part of the lower surface of the element, a conductive layer 12 (for example, a ground conductor layer 12) is formed (by a well-known method such as vapor deposition).

当該要素11の上側の面には、前記3,4に対応する第
1.第2の電極8v−(それぞれ13.14にて示す)
が形成されている。さらに、当該要素の周辺は導体ある
いは絶縁体のサポート15に固定されている。本実施例
においては、当該要素11の両面に配置された電極13
と12間に交流電圧(直流電圧が重量されていても良い
)が印加されると1周知の圧電逆効果により該要素11
が撓み超音波の放射が達成される0かかる撓み、即ち機
械的な変形が発生すると、圧電効果により、第2の電極
14には、導電体層12を基準とした電位が誘起される
。当該電位は、前記した駆動回路の第1の入力に接続さ
れる(図示せず)。本実施例においては、第1図で示し
た第1の実施例と異なシ、当該機械的表変形は電圧信号
として直接検出されるので、容量・電圧変換回路が不要
となる利点がらる・ さらに、第1図、第4図とを組み合わせた構成。
On the upper surface of the element 11, a first. Second electrode 8v- (respectively indicated at 13.14)
is formed. Furthermore, the periphery of the element is fixed to a conductor or insulator support 15. In this embodiment, electrodes 13 arranged on both sides of the element 11
When an alternating current voltage (or a direct current voltage may be applied) is applied between element 11 and 12, the well-known piezoelectric inverse effect causes the element 11 to
When the deflection occurs, that is, mechanical deformation occurs, a potential based on the conductive layer 12 is induced in the second electrode 14 due to the piezoelectric effect. The potential is connected to the first input of the drive circuit described above (not shown). In this embodiment, unlike the first embodiment shown in FIG. 1, the mechanical surface deformation is directly detected as a voltage signal, so there is an advantage that a capacitance/voltage conversion circuit is not required. , FIG. 1, and FIG. 4 are combined.

例えば、当該要素を静電的に振動させ、当該変形の検出
を圧電的に行なう構成、あるいは、逆の構成も本発明に
含まれる◎勿論、振動、検出のいずれかを圧電的に行な
う構成では、当該要素は圧電物質で構成されていなけれ
ばならない。なお、R追上の複雑さを考えないならば、
尚該要素の一表面(上側、下側いずれでも良vh)に圧
電物質を接着等の手段で設けても良い・かかる構成は、
第1図と対応させて、第5図に示されている。図におい
て、21は当該要素1上に設けられた圧電物質であシ、
電気的接続手段(図示せず)が施こされている・ 第6図はシリコン技術を用いた他の実施例である0同図
は第1図に対応させ、主要部分のみを例示してお)、第
1図と同一番号は同一構成要素を示している。図におい
て、31は周知のシリコン加工技術を用いて加工された
スペーサである◎31の二つの主面は導電性物質である
シリコンが露出していても良く、また、酸化膜等の絶縁
膜で被覆されていても良い。異方性エツチングを用いる
と、深い穴(シリコンが厚i場合に対応)を精度良く貫
通させることができる◎本実施例では、シリコン加工技
術を利用しているので、第6図に示した構成を微小化し
九〕、アレイ化したシする際には有利である。
For example, the present invention also includes a configuration in which the element is electrostatically vibrated and the deformation is detected piezoelectrically, or a configuration in which the deformation is detected piezoelectrically. , the element must be composed of piezoelectric material. Furthermore, if we do not consider the complexity of R follow-up,
It should be noted that a piezoelectric material may be provided on one surface of the element (either the upper or lower side) by adhesive or other means.In such a configuration,
It is shown in FIG. 5 in correspondence with FIG. 1. In the figure, 21 is a piezoelectric material provided on the element 1;
Electrical connection means (not shown) are provided. Figure 6 shows another embodiment using silicon technology. This figure corresponds to Figure 1 and only the main parts are illustrated. ), the same numbers as in FIG. 1 indicate the same components. In the figure, 31 is a spacer processed using a well-known silicon processing technology. ◎The two main surfaces of 31 may have exposed silicon, which is a conductive material, or may be made of an insulating film such as an oxide film. It may be covered. By using anisotropic etching, it is possible to penetrate a deep hole (corresponding to a case where the silicon thickness is i) with high accuracy. In this example, silicon processing technology is used, so the configuration shown in Figure 6 is possible. This is advantageous when miniaturizing and forming an array.

第7図はシリコン技術を用いた他の実施例でちゃ、第1
図に対応させ主要部分のみが示されている0図において
、菖1図と同一番号は同一構成要素を示している。図に
おいて、32はシリコンを用いたスペーサ兼用の保持台
である。本実施例は。
Figure 7 shows another embodiment using silicon technology.
In Figure 0, in which only the main parts are shown in correspondence with the figures, the same numbers as in Figure 1 indicate the same components. In the figure, numeral 32 is a holding base made of silicon and also used as a spacer. This example is.

第6図の例とは異なルウシリコンの一主面側から穴を堀
〕こみ、当該穴の底に第3の電極5を配置した点に特徴
がある口当該電極群の絶縁のために。
Unlike the example shown in FIG. 6, a hole is drilled from one main surface side of the roux silicon, and a third electrode 5 is placed at the bottom of the hole to insulate the group of electrodes.

32の底表面は酸化膜等の絶縁膜が被覆されていても良
いが、この限りではない・本実施例では、第6図と同様
、微小化、アレイ化がより簡便にできる。
The bottom surface of 32 may be covered with an insulating film such as an oxide film, but this is not limited to this. In this embodiment, miniaturization and array formation can be made more easily as in FIG. 6.

第6,7図はいずれも第1図と対応させる形で図示して
いるが、これに限ることなく、前述した圧電効果等を組
み合わせても良い。
Although both FIGS. 6 and 7 are shown in a manner corresponding to FIG. 1, the present invention is not limited to this, and the piezoelectric effect described above may be combined.

第8図は、第1図に示した駆動回路の構成例である0図
において、40は容量・電圧変換回路。
FIG. 8 is a configuration example of the drive circuit shown in FIG. 1, and in FIG. 0, 40 is a capacitance/voltage conversion circuit.

41は演算増幅器等を用いた増幅回路である0図示した
構成は当該分野の技術者には周知でメジ。
41 is an amplification circuit using an operational amplifier, etc. The configuration shown in the figure is well known to those skilled in the art.

種々の具体的構成が公知であるので詳述し危い0以上、
実施例を挙げて本発明の詳細な説明を行りたO (発明の効果) このように本発明によれば近距離での距離検出特性が向
上する◎またそればかシでなく急峻なパルス波形あるい
は単発の超音波放射波形を発生でき、近距離に限らず距
離検出の精度を向上できる利点がある。
Since various specific configurations are publicly known, it is difficult to describe them in detail.
The present invention has been explained in detail by giving examples. (Effects of the invention) As described above, according to the present invention, the distance detection characteristics at short distances are improved. Alternatively, a single ultrasonic radiation waveform can be generated, which has the advantage of improving the accuracy of distance detection not only at short distances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明の詳細な説明する図である。第
9図〜第11図は従来例を示す図である。 図において。 1.11・・・要素、2・・・スペーサ、3.13・・
・第1の電極、4.14・・・第2の電極、5・・・第
3の電極、 6. 102・・・駆動回路S7・・・端
子、12・・・導電体層、15・・・サポー)、21・
・・圧電物質%31゜32・・・シリコン%40・・・
変換回路%41・・・増幅回路、 101・・・超音波
素子、103・・・検出回路、104・・・スイッチ、
105・・・対象物体、106・・・距離、 110゜
114・・・放射我形、 111・・・検出波形、 1
12・・・時間。 113・・・励振波形O l−:\ 亭  1  図 半   2   面 不  4  圀 半   5   図 亭   b   図 半  q  図 m、従動O距 101.M音液巌J廚、六龜力市半 t
o   図
1 to 8 are diagrams for explaining the present invention in detail. 9 to 11 are diagrams showing conventional examples. In fig. 1.11... Element, 2... Spacer, 3.13...
- First electrode, 4.14... Second electrode, 5... Third electrode, 6. 102... Drive circuit S7... Terminal, 12... Conductor layer, 15... Support), 21...
...Piezoelectric material%31゜32...Silicon%40...
Conversion circuit %41...Amplification circuit, 101...Ultrasonic element, 103...Detection circuit, 104...Switch,
105...Target object, 106...Distance, 110°114...Radiation shape, 111...Detection waveform, 1
12... hours. 113... Excitation waveform O l-:\ Tei 1 Figure half 2 Surface missing 4 Circle half 5 Figure bow b Figure half q Figure m, driven O distance 101. M Sound Liquid Iwao J 廚, Rokkaku Rikiichi Han t
o diagram

Claims (1)

【特許請求の範囲】 1、機械的に振動できる要素と当該要素を機械的に振動
させる手段とを有する超音波素子において、該要素の機
械的な変形を検出する手段を備えたことを特徴とする前
記超音波素子。 2、機械的に振動できる要素と当該要素を機械的に振動
させる手段と該要素の機械的な変形を検出する手段を備
えた超音波素子を駆動手段を用いて駆動する際に当該要
素の機械的な変形を検出する手段より得られた検出信号
で当該駆動手段を制御することを特徴とする前記超音波
素子の駆動方法。
[Claims] 1. An ultrasonic element having an element that can be mechanically vibrated and a means for mechanically vibrating the element, characterized in that it is equipped with means for detecting mechanical deformation of the element. The ultrasonic element. 2. When driving an ultrasonic element equipped with an element that can be mechanically vibrated, a means for mechanically vibrating the element, and a means for detecting mechanical deformation of the element using a driving means, the mechanical vibration of the element is A method for driving an ultrasonic element, characterized in that the driving means is controlled by a detection signal obtained from a means for detecting physical deformation.
JP6535985A 1985-03-29 1985-03-29 Ultrasonic device and its driving method Pending JPS61223683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6535985A JPS61223683A (en) 1985-03-29 1985-03-29 Ultrasonic device and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6535985A JPS61223683A (en) 1985-03-29 1985-03-29 Ultrasonic device and its driving method

Publications (1)

Publication Number Publication Date
JPS61223683A true JPS61223683A (en) 1986-10-04

Family

ID=13284685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6535985A Pending JPS61223683A (en) 1985-03-29 1985-03-29 Ultrasonic device and its driving method

Country Status (1)

Country Link
JP (1) JPS61223683A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126401A1 (en) * 2005-05-25 2006-11-30 Osaka University Oscillation controller for piezoelectric resonant sensor element
JP2009004916A (en) * 2007-06-19 2009-01-08 Ricoh Elemex Corp Ultrasonic output device
WO2016167003A1 (en) * 2015-04-13 2016-10-20 株式会社村田製作所 Ultrasonic sensor and method for controlling same
JP2022511179A (en) * 2018-05-21 2022-01-31 エコー イメージング,インク. Ultrasonic transducer with Q value reduction
US11774280B2 (en) 2018-04-11 2023-10-03 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers
US11794209B2 (en) 2019-09-12 2023-10-24 Exo Imaging, Inc. Increased MUT coupling efficiency and bandwidth via edge groove, virtual pivots, and free boundaries
US11819881B2 (en) 2021-03-31 2023-11-21 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers with harmonic characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629590B2 (en) * 1974-06-26 1981-07-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629590B2 (en) * 1974-06-26 1981-07-09

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126401A1 (en) * 2005-05-25 2006-11-30 Osaka University Oscillation controller for piezoelectric resonant sensor element
JP2009004916A (en) * 2007-06-19 2009-01-08 Ricoh Elemex Corp Ultrasonic output device
WO2016167003A1 (en) * 2015-04-13 2016-10-20 株式会社村田製作所 Ultrasonic sensor and method for controlling same
JPWO2016167003A1 (en) * 2015-04-13 2017-05-25 株式会社村田製作所 Ultrasonic sensor and control method thereof
CN107533129A (en) * 2015-04-13 2018-01-02 株式会社村田制作所 Ultrasonic sensor and its control method
US10639675B2 (en) 2015-04-13 2020-05-05 Murata Manufacturing Co., Ltd. Ultrasonic sensor and control method therefor
CN107533129B (en) * 2015-04-13 2021-03-19 株式会社村田制作所 Ultrasonic sensor and control method thereof
US11774280B2 (en) 2018-04-11 2023-10-03 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers
JP2022511179A (en) * 2018-05-21 2022-01-31 エコー イメージング,インク. Ultrasonic transducer with Q value reduction
US11794209B2 (en) 2019-09-12 2023-10-24 Exo Imaging, Inc. Increased MUT coupling efficiency and bandwidth via edge groove, virtual pivots, and free boundaries
US11819881B2 (en) 2021-03-31 2023-11-21 Exo Imaging, Inc. Imaging devices having piezoelectric transceivers with harmonic characteristics

Similar Documents

Publication Publication Date Title
JP5594435B2 (en) Ultrasonic transducer
CA2119954C (en) Ultrasound transducers with reduced sidelobes and method for manufacture thereof
CN106198724B (en) A kind of multistable ultrasound detection sensor
US11950511B2 (en) Micromachined ultrasonic transducer (MUT), method for manufacturing the MUT, and method for designing the MUT
EP0440491A1 (en) Vibration wave driven motor
CN109909140B (en) Piezoelectric micromechanical ultrasonic transducer and preparation method thereof
US20020096973A1 (en) Class V flextensional transducer with directional beam patterns
JPS61223683A (en) Ultrasonic device and its driving method
GB2234110A (en) Piezo-electric transducer
CN114269484B (en) Frequency tunable ultrasonic device
WO2020222212A1 (en) Actuation of piezoelectric structures with ferroelectric thin films having multiple elements
CN109848021B (en) Ultrasonic device and ultrasonic measuring apparatus
US9853578B2 (en) Ultrasonic generator
JPH0252599A (en) Ultrasonic transducer and its manufacture
JPS61220596A (en) Ultrasonic wave transducer
JPH05292598A (en) Sound wave transducer
US11039255B2 (en) Wide-passband capacitive vibrating-membrane ultrasonic transducer
JPS59178378A (en) Ultrasonic probe
WO2022219716A1 (en) Ultrasound transducer, distance measurement device, and ultrasound transducer manufacturing method
JPS6330575B2 (en)
JP6595280B2 (en) Sound generator
JP2022103942A (en) Ultrasonic transducer
CN117644022A (en) MEMS ultrasonic transducer device and manufacturing process thereof
JPH0563032B2 (en)
CN116793424A (en) MEMS sensor and electronic device