JPS59178378A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS59178378A
JPS59178378A JP58051425A JP5142583A JPS59178378A JP S59178378 A JPS59178378 A JP S59178378A JP 58051425 A JP58051425 A JP 58051425A JP 5142583 A JP5142583 A JP 5142583A JP S59178378 A JPS59178378 A JP S59178378A
Authority
JP
Japan
Prior art keywords
intermediate layer
ultrasonic probe
piezoelectric element
operation surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58051425A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Kiyoko Ikeuchi
池内 潔子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58051425A priority Critical patent/JPS59178378A/en
Publication of JPS59178378A publication Critical patent/JPS59178378A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent danger of electric leakage to a sample (organism) by providing an insulating intermediate layer on the opposite side of an acoustic operation surface of a piezo-electric element. CONSTITUTION:A metal thin film electrode 1 is provided on an acoustic operation surface employing a high molecular piezo-electric body as a piezo-electric body 3 while a strip-shaped electrode 2 on a non-acoustic operation surface thereof. An insulating intermediate layer 5 which is higher than the natural acoustic impedance of the piezo-electric element and about quarter or odd times the wavelength of excitation ultrasonic wave in the thickness is applied on the non-acoustic operation surface and fixed on a support 4. The intermediate layer uses glass, a ceramic substrate or a substrate obtained by mixing epoxy resin or the like with an insulating powder such as Al2O3, SiO2. As a high voltage pulse for excitation can be applied to the non-acoustic operation surface, the electrode on the side of a sample (organism) as acoustic operation surface can be grounded thereby preventing danger of electric leakage or the like.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、複数の単位超音波発・受信素子が配列されて
なる超音波探触子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an ultrasonic probe in which a plurality of unit ultrasonic wave emitting/receiving elements are arranged.

〔従来技術とその問題点〕[Prior art and its problems]

超音波診断、超音波探傷などの超音波を用いた映像装置
の超音波発・受信素子としては、1)ZTなどの無機系
圧電体やポリフッ化ビニリチンなどの高分子圧電体が用
いられている。特に高分子圧電体の場合は、ヤング率が
小さく、振動の減衰が大きいために、PZTなどの無機
系圧電体に比較して短いパルスを発・受信できる特長が
ある。このために、高分子圧電体を用いて俊数の単位超
音波発・受信素子が配列されてなる、いわゆるリニア・
アレイ凭超音波探触子においては、PZT々どの無機系
圧電体では必ず必要であった圧電体素子の切断が不必要
であり、一枚の連続した高分子圧電体の少なくとも一方
に短冊状の電極を設けることで所期の機能を達成するこ
とができる。
1) Inorganic piezoelectric materials such as ZT and polymeric piezoelectric materials such as polyvinyritine fluoride are used as ultrasonic emitting/receiving elements in imaging equipment that uses ultrasound for ultrasound diagnosis, ultrasonic flaw detection, etc. . In particular, polymer piezoelectric materials have a small Young's modulus and large vibration damping, so they have the advantage of being able to emit and receive shorter pulses than inorganic piezoelectric materials such as PZT. For this purpose, so-called linear
In the array canopy ultrasonic probe, there is no need to cut the piezoelectric element, which is always necessary with inorganic piezoelectric materials such as PZT, and a strip-shaped By providing electrodes, the desired function can be achieved.

即ち、PZTなとの無機系圧電体を用いたリニア・アレ
イ型超音波探触子は、第1図に示す如く、電極tl+ 
、 (2+を有する圧電体(3)をバッキング材(4)
に貼付させ、ダイシングソウなどでm分割している。
That is, in a linear array type ultrasonic probe using an inorganic piezoelectric material such as PZT, as shown in FIG.
, (2+ piezoelectric body (3) with backing material (4)
The sheet is pasted on the sheet and divided into m pieces using a dicing saw.

この場合、ダイシングソウで分割する時に圧電振動子カ
割れたり、バッキング材との部分から剥離したりするな
どの問題を抱え、作業性も困難などの欠点がある。−丈
高分子圧電体の場合には、第2図に示す如く、電極(1
) 、 (2>を有する高分子圧電体(3)を支持体(
4)に貼付するだけで、PZTなどの無機系圧電体を用
いたリニア・アレイ型超音波探触子と同等の機能を発揮
する。
In this case, there are problems such as the piezoelectric vibrator cracking or peeling off from the backing material when it is divided with a dicing saw, and the workability is also difficult. - In the case of a long polymer piezoelectric material, the electrode (1
), (2>) on a support (
4) Just by pasting it on the surface, it will perform the same function as a linear array type ultrasonic probe using an inorganic piezoelectric material such as PZT.

更に高分子圧電体は、固有音響インピーダンスがPZT
なとの無機系圧電体に比較して小さいため、該高分子圧
電体よシも固有音響インピーダンスが大きく、かつ高分
子圧電体の発・受信する超音波の波長の四分の1もしく
はその奇数倍の厚みのある中間基板で音響動作の反対側
を裏打ちすること(以−ドλ/4板という)により、更
に効率よく超音波を発・受することが知られている。(
特開昭53−25390) この方法を高分子圧電体を用いたリニア・アレイ型超音
波探触子に適用する場合は、第3図(a)に示すごとく
、音響動作面の電極(1)を短冊状に設置し、圧電体(
3)の非音響動作面の電極(2)を共通電極(2)とし
て設け、更にこの面にλ/4板(5)を介して支持体(
4)を設ける方法、もしくは、第3図(b)に示すごと
く、音響動作面の電極(1)を共通電極とし、圧電体(
3)の非音響動作面の電極(2)を短冊状とし相対する
同形のλ/4板(5)を介して支持体(4)を設ける方
法が考えられる。リニア・アレイ型超音波の製造に関し
ては、前述した第3図(a)の構成は簡単で容易に製造
できるが、音響動作側即ち、超音波診断装置においては
被検体側(生体側)に圧電素子励振の150〜600■
程度の高電圧パルスが印加されるため、万一の電気漏洩
等を考慮すれば実用的とは言えない、このため、リニア
・アレイ型超音波探触子の構成においては、専ら第3図
(b)に示す如く、音響動作側即ち生体側の電極は圧電
素子励振時は接地される様にし、非音響動作側に設けら
れた短冊状電極もしくは電極兼用としたλ/4板を介し
て励振用高圧電パルスを印加する。
Furthermore, the polymer piezoelectric material has a characteristic acoustic impedance of PZT.
Because it is smaller than other inorganic piezoelectric materials, the polymer piezoelectric material also has a large specific acoustic impedance, and is one quarter of the wavelength of the ultrasonic waves emitted and received by the polymer piezoelectric material or an odd number thereof. It is known that ultrasonic waves can be emitted and received more efficiently by lining the opposite side of the acoustically active substrate with an intermediate substrate that is twice as thick (hereinafter referred to as a λ/4 plate). (
JP-A-53-25390) When this method is applied to a linear array type ultrasonic probe using a polymer piezoelectric material, as shown in Fig. 3(a), the electrode (1) on the acoustically active surface is The piezoelectric material (
The electrode (2) on the non-acoustic operation surface of 3) is provided as a common electrode (2), and a support (
4), or as shown in Fig. 3(b), the electrode (1) on the acoustically active surface is used as a common electrode,
A conceivable method is 3) in which the electrode (2) on the non-acoustic operating surface is shaped like a strip and the supporting body (4) is provided via an opposing λ/4 plate (5) of the same shape. Regarding the manufacture of linear array type ultrasound, the configuration shown in FIG. 150-600■ element excitation
Since a high voltage pulse of about 100 mL is applied, it cannot be said to be practical if we take into account electrical leakage, etc. For this reason, in the configuration of a linear array type ultrasonic probe, the configuration shown in Figure 3 ( As shown in b), the electrode on the acoustically active side, that is, the living body side, is grounded when the piezoelectric element is excited, and the excitation is carried out via a strip-shaped electrode or a λ/4 plate that also serves as an electrode provided on the non-acoustically active side. Apply a high-voltage electric pulse.

この場合、リニア・アレイ型超音波探触子のλ/4板は
、高分子圧電膜に設置した短冊状電極と同形状に分割さ
れているため、探触子の製造に際して短冊状電極とλ/
4板のパターン位置合せが困難であったり、また短冊状
λ/4板の間隔にそって高分子圧電膜が変形しやすく、
その結果、短冊状電極から発・受信する超音波が散乱し
分解能の低下を招くなどの問題が発生する。
In this case, the λ/4 plate of the linear array type ultrasonic probe is divided into the same shape as the strip-shaped electrode installed on the polymer piezoelectric film, so when manufacturing the probe, the λ/4 plate is divided into strip-shaped electrodes and λ /
It is difficult to align the patterns of the four plates, and the polymer piezoelectric film is easily deformed along the spacing between the strip-shaped λ/4 plates.
As a result, problems arise such as the ultrasonic waves emitted and received from the strip-shaped electrodes are scattered, leading to a decrease in resolution.

〔本発明の目的〕[Object of the present invention]

本発明は圧電振動子の少なくとも一方に短冊状薄膜電極
を形成し、複数の単位超音波発・受信素子が配列されて
なる超音波探触子に係るもので、上述した被検体(生体
+ (Illの電気漏洩の危険や超音波探触子の製造を
簡易化しかつ高分解能をもたらす超音波探触子を提供す
ることを目的とするものである。
The present invention relates to an ultrasonic probe in which a strip-shaped thin film electrode is formed on at least one side of a piezoelectric vibrator, and a plurality of unit ultrasonic wave emitting/receiving elements are arranged. The object of the present invention is to provide an ultrasonic probe that eliminates the risk of electric leakage of Ill, simplifies the manufacture of the ultrasonic probe, and provides high resolution.

〔本発明の概要〕[Summary of the invention]

本発明は、少々くとも一方が短冊状に分割された薄膜電
極を有する圧電素子からなる超音波探触子において、前
記圧電素子の音響動作面の反対側に前記圧電素子の固有
インピーダンスより高くかつ使用する前記圧電素子の超
音波の波長のほぼ4分の1あるいはその奇数倍の厚みを
有する連続した絶縁性の中間層を設けることを特長とし
ている。
The present invention provides an ultrasonic probe comprising a piezoelectric element having a thin film electrode divided into strips on at least one side thereof, wherein a side opposite to an acoustically active surface of the piezoelectric element has a characteristic impedance higher than the intrinsic impedance of the piezoelectric element. It is characterized by providing a continuous insulating intermediate layer having a thickness of approximately one-fourth of the wavelength of the ultrasonic wave of the piezoelectric element used or an odd multiple thereof.

本発明について、第4図を用いて説明する。The present invention will be explained using FIG. 4.

高分子圧電体を圧電体(3)とする音響動作面にはAg
、A4.Ni、Cr  などの金属薄膜電極(1)が蒸
着法、スパングー法あるいはメッキ法などによって全面
に設けられてお9、対向する音響非動作面には同様な方
法により設けられた短冊状の電極(2)が設けられてい
る。この場合、短冊状の電極(2)は、蒸着法、スパッ
ター法あるいはメッキ法などにおいて、予め不必要な部
分をマスクなどで覆い、必。
Ag
, A4. A metal thin film electrode (1) made of Ni, Cr, etc. is provided on the entire surface by vapor deposition, Spangoo method, or plating method. 2) is provided. In this case, the strip-shaped electrode (2) is made by covering unnecessary parts with a mask or the like in advance in a vapor deposition method, sputtering method, plating method, etc.

要な部分にのみ短冊状の電極を設置しても良いし、また
全面に薄膜金属電極を設けた後、エッチングなどにより
不必要な部分の薄膜電極を除去しても良い。
Strip-shaped electrodes may be provided only in important parts, or thin film metal electrodes may be provided on the entire surface and then unnecessary parts of the thin film electrodes may be removed by etching or the like.

次にこの圧電素子の非音響動作面に、前記圧電素子の固
有音響インピーダンスより高くかつ使用する前記圧電素
子の励振超音波の波長のほぼ4分の1あるいはその奇数
倍の厚みを有する連続した絶縁性の中間層(5)を貼付
し、さらにこれを支持体(4)に固定する。この中間層
は、短冊状電極(2)に印加された高圧電の振動子発掘
パルスを絶縁し、隣接する圧電素子への電気的クロスト
ークを防止すると共に、振動子の超音波エネルギーを効
率良く音響動作面に放射することを目的とするものであ
り、用いられる中間層は次の様なものが挙げられる。
Next, on the non-acoustic operating surface of the piezoelectric element, a continuous insulator having a thickness higher than the characteristic acoustic impedance of the piezoelectric element and approximately one quarter of the wavelength of the ultrasonic wave used to excite the piezoelectric element or an odd number multiple thereof is applied. A transparent intermediate layer (5) is applied and further fixed to the support (4). This intermediate layer insulates the high-voltage transducer excavation pulse applied to the strip-shaped electrode (2), prevents electrical crosstalk to adjacent piezoelectric elements, and efficiently uses the ultrasonic energy of the transducer. The purpose is to radiate the sound to the operating surface, and the following intermediate layers may be used.

即ち高分子圧電体として有用なポリフッ化ビニリデンの
固有音響インピーダンスは約4X10#/−・sec 
 であり、との固有音響インピーダンスよりも高いガラ
ス・セラミクス基板、あるいは表面に絶縁性酸化物被膜
を形成した各種金属板1表面に絶縁性の高いフッ素樹脂
などを塗布または結句した各種金属基板、もしくはAt
20s、SiC,Si。
That is, the specific acoustic impedance of polyvinylidene fluoride, which is useful as a polymeric piezoelectric material, is approximately 4X10#/-sec.
glass/ceramic substrates with a higher specific acoustic impedance than that, or various metal plates with an insulating oxide film formed on their surfaces, or various metal substrates whose surfaces are coated with highly insulating fluororesin or the like; At
20s, SiC, Si.

N4,5i02などの絶縁性粉体をエポキシ樹脂等に混
入して得た基体などが用いられる。
A substrate obtained by mixing insulating powder such as N4, 5i02 into epoxy resin or the like is used.

〔本発明の効果〕[Effects of the present invention]

本発明は、圧電素子の高置動作面の反対側に前記圧電素
子の固有インピーダンスよシ高くかつ、使用する前記圧
電素子の超音波の波長のほぼ4分の1あるいはその奇数
倍の厚みを有する連続した絶縁性の中間層を設けること
によシ次の様な効果を生み出すことができる。
In the present invention, the piezoelectric element has a thickness that is higher than the intrinsic impedance of the piezoelectric element and approximately one-fourth of the wavelength of the ultrasonic wave of the piezoelectric element used, or an odd number multiple thereof, on the opposite side of the elevated operating surface of the piezoelectric element. By providing a continuous insulating intermediate layer, the following effects can be produced.

即ち連続した絶縁性の中間層を用いることにより圧電素
子の非音響動作面に励振用高電圧パルスを印加すること
ができるので、音響動作面である被検体側(生体側)の
電極は接地することが出来、電気漏洩等の危険を防止す
ることができる。また、この絶縁性の中間層は連続して
いるため非音響動作面に設置した短冊状電極のパターン
と合わせる必要が全くなく、単に圧電素子と絶縁性中間
層を貼付するだけで機能をはたすことが可能となシ。
That is, by using a continuous insulating intermediate layer, it is possible to apply a high voltage pulse for excitation to the non-acoustic active surface of the piezoelectric element, so the electrode on the subject side (living body side), which is the acoustic active surface, is grounded. It is possible to prevent dangers such as electrical leakage. In addition, since this insulating intermediate layer is continuous, there is no need to match it with the strip-shaped electrode pattern installed on the non-acoustic operation surface, and it can function simply by pasting the piezoelectric element and the insulating intermediate layer. is possible.

このことは製造上簡単になる。さらに、絶縁性中間層は
連続した平板状で用いることが可能であるため、高分子
圧電膜を用いた際に生じやすい短冊状のパターン凹凸が
完全になくなり、この結果、圧電素子によって発・受信
される超音波ビームは散乱や屈曲することがなくなり、
高分解能の超音波探触子を得ることができるなどの利点
をもたらす。
This simplifies manufacturing. Furthermore, since the insulating intermediate layer can be used in the form of a continuous flat plate, the unevenness of the rectangular pattern that tends to occur when using a polymeric piezoelectric film is completely eliminated, and as a result, the piezoelectric element can transmit and receive signals. The ultrasonic beam generated will no longer be scattered or bent,
This brings about advantages such as being able to obtain a high-resolution ultrasonic probe.

〔発明の実施例〕[Embodiments of the invention]

次に具体的な実施例を説明する。 Next, a specific example will be described.

実施例1 厚さ65μの一軸延伸したポリフッ化ビニリデンフィル
ムの両面にAgを真空蒸着(厚さ01〜02μ)し、分
離してなる圧電素子を得た。この一方を長さ13mm、
幅0,9問、ピッチ0.1輔からなる短冊状電極を64
本エッチソング法で形成した。
Example 1 Ag was vacuum-deposited (thickness: 01 to 02 μm) on both sides of a uniaxially stretched polyvinylidene fluoride film having a thickness of 65 μm, and a piezoelectric element was obtained by separating the films. This one side is 13mm long,
64 strip-shaped electrodes with a width of 0.9 and a pitch of 0.1
It was formed using this Etch Song method.

次に厚さ100μに研磨した石英ガラス基板音響インピ
ーダンスを短冊状電極を設置した圧電素子側にエポキシ
接着剤(エボテック301−2)で貼付し更にこの石英
ガラス基板の他面をアクリル基板(5t)に貼付してリ
ニア・アレイ型超音波探触子を作成した。
Next, a quartz glass substrate acoustic impedance polished to a thickness of 100 μm was attached to the piezoelectric element side on which the strip electrode was installed using epoxy adhesive (Evotech 301-2), and the other side of this quartz glass substrate was attached to an acrylic substrate (5t). A linear array type ultrasonic probe was created by attaching it to the

リニア・アレイ型超音波探触子の音響動作側となる全面
薄膜電極部分を接地電極とし、更に短冊状電極部分には
リード線を介して各素子同時駆動となる様にせしめエア
ロチック社MUTA−3(入出力インピーダンス50Ω
)に接続し150Vのストライクパルス駆動した時に水
中70調の深さに設けたメタアクリル樹脂ブロックから
の超音波反射波は45dB  を示した。
The entire thin film electrode part on the acoustically active side of the linear array type ultrasonic probe is used as a ground electrode, and the strip-shaped electrode part is connected to a lead wire so that each element can be driven simultaneously. 3 (input/output impedance 50Ω
) and driven by a 150V strike pulse, the ultrasonic reflected wave from the methacrylic resin block placed at a depth of 70 degrees underwater was 45 dB.

次に水中同じ条件下において水中50mmに設置したハ
イドロホンを用い、リニア・アレイ型超音波探触子から
発振された超音波ビームを測定したところ、超音波ビー
ムの幅は8.5囚(−10(IB)。
Next, under the same underwater conditions, we measured the ultrasonic beam emitted from the linear array ultrasonic probe using a hydrophone installed 50 mm underwater, and found that the width of the ultrasonic beam was 8.5 cm (- 10 (IB).

あり、駆動している圧電素子の隣接した素子からの超音
波ビームの発振は認められなかった。
However, no ultrasonic beam oscillation was observed from the elements adjacent to the piezoelectric element being driven.

実施例2 実施例1で用いた圧電素子に厚さ100μの銅板に更に
有機シラン化合物を塗布、焼成して形成したS + 0
2酸化被膜を全曲に20μの厚さで設けた中間層、また
両面をコロナ処理により接着性を向」二せしめた厚さ1
2μの47フ化エチレンフイルムを厚さ100μの銅板
に貼付した中間層を用いて同様に二種の超音波探触子を
得た。
Example 2 S + 0 was formed by applying an organic silane compound to the piezoelectric element used in Example 1 on a copper plate with a thickness of 100μ and firing it.
An intermediate layer with a 20μ thick dioxide coating on all tracks, and a thickness of 1 which has been treated with corona treatment on both sides to improve adhesion.
Two types of ultrasonic probes were similarly obtained using an intermediate layer in which a 2μ 47 fluoride ethylene film was attached to a 100μ thick copper plate.

この二種について実施例1で用いた同じ測足法で評価し
たところ、感度はそれぞれ43dB、42dBであり、
超音波ビームの散乱や屈曲は見られなかった。
When these two types were evaluated using the same foot measurement method used in Example 1, the sensitivity was 43 dB and 42 dB, respectively.
No scattering or bending of the ultrasound beam was observed.

節水実施例で用いた中間層は、λ/4板の効果を発揮し
ていることが確認された。更にこの二種の超音波探触子
の1素子に電圧700Vの直流填圧を30秒間印加して
も隣接する素子への電気的漏洩は全く認められなかった
It was confirmed that the intermediate layer used in the water-saving example exhibited the effect of a λ/4 plate. Further, even when a direct current filling pressure of 700 V was applied to one element of these two types of ultrasonic probes for 30 seconds, no electrical leakage to the adjacent element was observed.

本発明は、両面に薄膜電極を有する圧電素子の少なくと
も一方の電極が複数の短冊状電極に分割されているか、
もしくは、前記圧電素子が両面に電極を有する複数の短
冊状素子に分割されているいわゆるリニア・アレイ型超
音波探触子について主に説明したが、本発明は他に両面
に薄膜′電極を有する圧電素子の少なくとも一方の電極
が複数の円形状電極に分割されているかもしくは前記圧
電素子が両面に電極を有する複数の円形状素子に分割さ
れているいわゆるアニンアル・アレイ型超音波探触子に
ついても適用できることは云う丑でもない。
In the present invention, at least one electrode of a piezoelectric element having thin film electrodes on both sides is divided into a plurality of strip-shaped electrodes, or
Alternatively, although the so-called linear array type ultrasonic probe in which the piezoelectric element is divided into a plurality of strip-shaped elements having electrodes on both sides has been mainly described, the present invention also includes a so-called linear array type ultrasonic probe having thin film electrodes on both sides. Also regarding a so-called annular array type ultrasonic probe in which at least one electrode of a piezoelectric element is divided into a plurality of circular electrodes, or the piezoelectric element is divided into a plurality of circular elements having electrodes on both sides. It goes without saying that it can be applied.

寸だ本発明による中間層は円面状もしくは内設状に加工
し、いわゆる超音波ビームを特定位置に集束せしめる集
束型超音波探触子に適用できる。
The intermediate layer according to the present invention can be processed into a circular shape or an internal shape, and can be applied to a so-called focusing type ultrasonic probe that focuses an ultrasonic beam on a specific position.

更に本実施例では、圧電素子が1枚の場合について説明
したが、圧電素子を多数枚積層してなる積層型アレイ探
触子においても同様な効果を得ることができる。
Further, in this embodiment, the case where there is only one piezoelectric element has been described, but similar effects can be obtained in a stacked array probe formed by stacking a large number of piezoelectric elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無機系圧電体を用いたリニア・アレイ型
超音波探触子の断面図、第2図は従来の高分子圧電体を
用いたリニア・アレイ型超音波探触子の断面図、第3図
はλ/4中間層を用いた場合の高分子圧電体からなるリ
ニア・アレイ型超音波探触子の断面図、−第4図は本発
明によるリニア・プレイ型超音波探触子の断面図である
。 1.2・・電極、3・・・圧電体、4・・・ノクツキン
グ材(支持体)、5・・・λ/4板。
Figure 1 is a cross-sectional view of a linear array type ultrasound probe using a conventional inorganic piezoelectric material, and Figure 2 is a cross-sectional view of a conventional linear array type ultrasound probe using a polymer piezoelectric material. Figure 3 is a cross-sectional view of a linear array type ultrasonic probe made of polymer piezoelectric material when a λ/4 intermediate layer is used, - Figure 4 is a cross-sectional view of a linear play type ultrasonic probe according to the present invention. It is a sectional view of a feeler. 1.2... Electrode, 3... Piezoelectric body, 4... Knocking material (support body), 5... λ/4 plate.

Claims (4)

【特許請求の範囲】[Claims] (1)両面に薄膜電極を有する圧電素子の少なくとも一
方の面の電極が複数の短冊状電極に分割されているか、
もしくは前記圧電素子が両面に′電極を有する複数の短
冊状素子に分割されている超音波探触子において、前記
圧電素子の音響動作面の反対(1!Iに前記圧電素子の
固有音・Wインピーダンスより高くかつ使用する前記圧
電素子の超音波の波長のほぼ4分の1あるいはその奇数
倍の厚みを有する連続した絶縁性の中間層を設けること
を特徴とする超音波探触子。
(1) Is the electrode on at least one side of a piezoelectric element having thin film electrodes on both sides divided into a plurality of strip-shaped electrodes?
Alternatively, in an ultrasonic probe in which the piezoelectric element is divided into a plurality of strip-shaped elements having electrodes on both sides, the opposite side of the acoustic operation surface of the piezoelectric element (1!I is the characteristic sound W of the piezoelectric element An ultrasonic probe comprising a continuous insulating intermediate layer having a thickness higher than an impedance and having a thickness of approximately one quarter of the wavelength of the ultrasonic wave of the piezoelectric element used or an odd number multiple thereof.
(2)絶縁性の中間層としてセラミクス基板を用いるこ
とを特徴とする特許Bl’f求の範囲の第1項記載の超
音波探触子。
(2) The ultrasonic probe according to item 1 of the scope of patent Bl'f, characterized in that a ceramic substrate is used as the insulating intermediate layer.
(3)絶縁性の中間層として絶縁性金属酸化物もしぐは
絶縁性基体を設けた金属基鈑を用いること全特徴とする
特許請求の範囲の第1項記載の超音波探触子。
(3) The ultrasonic probe according to claim 1, characterized in that an insulating metal oxide or a metal substrate provided with an insulating substrate is used as the insulating intermediate layer.
(4)絶縁性の中間層として絶縁性粉体を混入したプラ
スチックを用いることを特徴とする特許請求の範囲の第
1項記載の超音波探触子。
(4) The ultrasonic probe according to claim 1, characterized in that the insulating intermediate layer is made of plastic mixed with insulating powder.
JP58051425A 1983-03-29 1983-03-29 Ultrasonic probe Pending JPS59178378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051425A JPS59178378A (en) 1983-03-29 1983-03-29 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051425A JPS59178378A (en) 1983-03-29 1983-03-29 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS59178378A true JPS59178378A (en) 1984-10-09

Family

ID=12886566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051425A Pending JPS59178378A (en) 1983-03-29 1983-03-29 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS59178378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092916A1 (en) * 2002-05-01 2003-11-13 Koninklijke Philips Electronics N.V. Ultrasonic membrane transducer
WO2004008432A1 (en) * 2002-07-11 2004-01-22 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the acoustic adaptation of an active element of an electroacoustic transducer for emitting and receiving ultrasound waves, and device for emitting and receiving ultrasound waves
WO2009069379A1 (en) * 2007-11-26 2009-06-04 Konica Minolta Medical & Graphic, Inc. Ultrasound probe, method for manufacturing the same, and ultrasound diagnostic apparatus
JP2011030062A (en) * 2009-07-28 2011-02-10 Toshiba Corp Ultrasonic probe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092916A1 (en) * 2002-05-01 2003-11-13 Koninklijke Philips Electronics N.V. Ultrasonic membrane transducer
CN100438992C (en) * 2002-05-01 2008-12-03 皇家飞利浦电子股份有限公司 Ultrasonic membrane transducer
WO2004008432A1 (en) * 2002-07-11 2004-01-22 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the acoustic adaptation of an active element of an electroacoustic transducer for emitting and receiving ultrasound waves, and device for emitting and receiving ultrasound waves
WO2009069379A1 (en) * 2007-11-26 2009-06-04 Konica Minolta Medical & Graphic, Inc. Ultrasound probe, method for manufacturing the same, and ultrasound diagnostic apparatus
JP5282309B2 (en) * 2007-11-26 2013-09-04 コニカミノルタ株式会社 Ultrasonic probe, manufacturing method thereof, and ultrasonic diagnostic apparatus
US8531178B2 (en) 2007-11-26 2013-09-10 Konica Minolta Medical & Graphic, Inc. Ultrasound probe, method for manufacturing the same, and ultrasound diagnostic apparatus
JP2011030062A (en) * 2009-07-28 2011-02-10 Toshiba Corp Ultrasonic probe

Similar Documents

Publication Publication Date Title
US10013969B2 (en) Acoustic lens for micromachined ultrasound transducers
US4326418A (en) Acoustic impedance matching device
US5410208A (en) Ultrasound transducers with reduced sidelobes and method for manufacture thereof
JP3478874B2 (en) Ultrasonic phased array converter and method of manufacturing the same
US4658176A (en) Ultrasonic transducer using piezoelectric composite
US5371717A (en) Microgrooves for apodization and focussing of wideband clinical ultrasonic transducers
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
JPH07298398A (en) Acoustic transducer and its preparation
JPH10507600A (en) Ultrasonic transducer array with snake-shaped elevation focus
US4406967A (en) Ultrasonic probe
Powell et al. Flexible ultrasonic transducer arrays for nondestructive evaluation applications. II. Performance assessment of different array configurations
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
JPS59178378A (en) Ultrasonic probe
JPH03133300A (en) Composite piezoelectric ultrasonic wave probe
Savoia et al. A low frequency broadband flexural mode ultrasonic transducer for immersion applications
JPS6059899A (en) Ultrasonic wave probe
WO1991015090A1 (en) Ultrasonic probe
JPS60138457A (en) Transmission and reception separating type ultrasonic probe
JPS62131700A (en) Ultrasonic wave probe and its manufacture
JP3171715B2 (en) Array type ultrasonic probe for high frequency
JPH04203994A (en) Ultrasonic probe
JP2720731B2 (en) Composite piezoelectric
JP3101461B2 (en) Ultrasonic probe
JPS60251798A (en) Piezoelectric vibrator
JPS61292550A (en) Array type ultrasonic probe