JPS61223168A - High strength steel having superior delayed fracture resistance - Google Patents

High strength steel having superior delayed fracture resistance

Info

Publication number
JPS61223168A
JPS61223168A JP6513285A JP6513285A JPS61223168A JP S61223168 A JPS61223168 A JP S61223168A JP 6513285 A JP6513285 A JP 6513285A JP 6513285 A JP6513285 A JP 6513285A JP S61223168 A JPS61223168 A JP S61223168A
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
less
temperature
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6513285A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6513285A priority Critical patent/JPS61223168A/en
Publication of JPS61223168A publication Critical patent/JPS61223168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the delayed fracture resistance and strength of a steel contg. prescribed percentages of C, Si, Mn, Cr, Mo, etc. by restricting the amounts of P, S and Ni as impurities in the steel and heat treating the steel at a prescribed temp. CONSTITUTION:A steel contg. 0.15-0.45% C, <=1.5% Si, 0.01-1.5% Mn, 0.5-2% Cr, 0.3-1.5% Mo+1/2W, 0.01-0.2% V, etc., is manufactured. The amounts of P, S and Ni as impurities in the steel are restricted to <=0.02% P, <=0.01% S and <=0.1% Ni. The steel is heated to the Ac3 point or below, quenched and tempered at 580 deg.C - the Ac point under conditions which satisfy >=16.8X10<3> PLM value represented by a formula PLM=T(20+logt) [where T is the tempering temp. ( deg.K) and (t) is the holding time (hr)]. The resulting steel has ASTM austenite grain size No. >=8.5, superior delayed fracture resistance and strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、150ksi (105,5kgf/mm”
 )を越える降伏強さく0.2%耐力)を有しかつ耐遅
れ破壊性に優れ、油井管等の用途に好適な高強度鋼に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a
The present invention relates to a high-strength steel that has a yield strength exceeding 0.2% yield strength) and excellent delayed fracture resistance, and is suitable for uses such as oil country tubular goods.

従来の技術 近年、長期的展望に立ったエネルギー確保の必要性が各
方面から叫ばれるようになってきたことに呼応して、世
界の各地に於いて新たな油田やガス田の開発が盛んに行
なわれるようになって来ており、従来は放置されていた
地表深層部のような苛酷な環境の石油や天然ガスにまで
開発の目が向けられるようになるなど、エネルギー採取
にもこれまで以上に高度な技術が必要となってきている
Conventional technology In recent years, in response to the growing need to secure energy from a long-term perspective, the development of new oil and gas fields has become active in various parts of the world. Energy extraction is becoming more common than ever, and development is now being focused on oil and natural gas in harsh environments such as those deep beneath the surface of the earth, which had previously been abandoned. Advanced technology is becoming necessary.

例えば最近では、深さが15000フイ一ト以上という
極めて深い場所や、深さ1フイート当たり0.5psi
 (OJ515gf/mm” )以上の圧力増加が見込
まれるところの、所謂“標準状態”よりも高い地圧を持
つ地層にも、石油や天然ガス採取用の井戸を掘ることが
多くなってきている。このような環1      境下
で安定した作業を行なうには、V−150クラス以上[
S M Y S (Specified MiniII
Ium YieldStrength、規格最小降伏強
さ)が150ksi (105,5kgf10+m”)
以上〕の極めて高い強度を有する油井管が必要であると
され、その安定供給に対する要望がとみに高まって来て
いるのが現状である。
For example, in recent years, extremely deep areas (over 15,000 feet deep) and 0.5 psi per foot of depth have been
Wells for oil and natural gas extraction are increasingly being drilled into geological formations with higher ground pressure than the so-called "standard state", where pressure increases of more than 515 gf/mm" (OJ) are expected. To perform stable work in such an environment, a vehicle of V-150 class or higher [
S M Y S (Specified Mini II
Ium YieldStrength (standard minimum yield strength) is 150ksi (105,5kgf10+m”)
It is believed that oil country tubular goods having extremely high strength as described above are necessary, and the current situation is that the demand for a stable supply thereof is increasing.

しかし、従来から油井管として使用されている低合金鋼
では、V−150クラス以上の高強度を有するようなも
のになると、オーステナイト粒界が脆化することにも起
因して降伏点以下の静荷重でも破壊に至るという“遅れ
破壊”の危険を内在するようになるものであった。また
一般に油田では井戸が古くなって自噴しなくなって来る
と、2次回収と称して、水圧やガス圧をかけたり酸を添
加(Acidizing) して汲み上げ効率を向上し
ているが、このように酸の添加を行なう場合や、酸性環
境下の油田においては、低合金鋼では従来は水素の彩管
によって遅れ破壊の危険性が大きくなるという問題があ
った。
However, when low-alloy steel, which has traditionally been used as oil country tubular goods, has a high strength of V-150 class or higher, the static temperature drops below the yield point due to embrittlement of the austenite grain boundaries. There was an inherent risk of ``delayed failure'' in which failure occurred even under heavy loads. Generally speaking, in oil fields, when a well becomes old and no longer produces self-gushing water, the pumping efficiency is improved by applying water or gas pressure or adding acid (acidizing), which is called secondary recovery. When adding acid or in oil fields under acidic environments, low alloy steels have conventionally had the problem of increasing the risk of delayed fracture due to the presence of hydrogen.

一方、18Ni −5Mo −7,5Co系等のマルエ
ージング鋼やオーステナイト系の高合金や高合金鋼は、
通常の低合金鋼よりも耐遅れ破壊性に優れていることが
知られている。しかしながら、マルエージング鋼は%C
Oを含有しているのでコストが高く、低温靭性が良くな
い等の問題がある。他方、オーステナイト系の高合金や
高合金鋼には、強度を得るために大きな加工量で冷間加
工を施さねばならず非能率的であり、NiやCr等の含
有量が高いので、コスト高となるといった問題があって
、いずれも単なる高強度油井管用として用いられること
はなく、特に経済性の点から一部の極く限られた環境下
で実用に供されているにすぎないものであった。
On the other hand, maraging steels such as 18Ni-5Mo-7,5Co and austenitic high alloys and high alloy steels
It is known to have better delayed fracture resistance than ordinary low alloy steel. However, maraging steel has %C
Since it contains O, there are problems such as high cost and poor low temperature toughness. On the other hand, austenitic high-alloys and high-alloy steels require a large amount of cold working to obtain strength, which is inefficient, and the high content of Ni and Cr makes them expensive. Because of these problems, none of them are used simply for high-strength oil country tubular goods, and are only put into practical use in some extremely limited environments, especially from the economic point of view. there were.

一方、特開昭58−61219号及び特開昭58−84
960号に耐遅れ破壊性の優れた高強度鋼が開示されて
いる。しかしながら、特開昭58−61219号に記載
の鋼では、専らP及びNを低減して結晶粒界の清浄化の
効果を追求するのみであり、更にオーステナイト粒度が
大きいために、上記した苛酷な環境で十分な耐遅れ破壊
性を発揮することができない。
On the other hand, JP-A-58-61219 and JP-A-58-84
No. 960 discloses a high-strength steel with excellent delayed fracture resistance. However, the steel described in JP-A No. 58-61219 only pursues the effect of cleaning grain boundaries by reducing P and N, and furthermore, since the austenite grain size is large, the above-mentioned severe It cannot exhibit sufficient delayed fracture resistance in the environment.

他方、特開昭58−84960号に記載の鋼も、専らL
xによるPの偏析抑制とCaによる硫化物形態の制御の
効果を追求するのみで、この公開公報に記載の鋼も上記
した苛酷な環境で十分な耐遅れ破壊性を発揮することが
できない。
On the other hand, the steel described in JP-A-58-84960 is also exclusively L.
The steel described in this publication is also unable to exhibit sufficient delayed fracture resistance in the above-mentioned harsh environment by only pursuing the effects of suppressing segregation of P by x and controlling sulfide morphology by Ca.

本発明の解決しようとする問題点 本発明は、上述の如き従来技術の問題点に鑑み、150
ksi (105,5kgf/mm”)を越える降伏強
さを有するとともに、耐遅れ破壊性が従来の低合金鋼を
用いたものよりも一段と優れ、且つ18Niマルエージ
ング鋼やオーステナイト系の高合金や高合金鋼よりもは
るかに廉価な、油井管としての用途に好適な高強度鋼を
提供することを目的とする。
Problems to be Solved by the Present Invention The present invention has been made in view of the problems of the prior art as described above.
ksi (105,5 kgf/mm"), its delayed fracture resistance is far superior to that of conventional low-alloy steels, and it The purpose of the present invention is to provide a high-strength steel that is much cheaper than alloy steel and is suitable for use as oil country tubular goods.

問題点を解決するための手段 本発明者等は、上述の目的を達成するため、鋼材の化学
成分、熱処理をはじめとする製造条件、それによって得
られる組織と特性との関係について詳細な研究を重ねた
結果、以下(a)〜(0に示すような知見を得るに至っ
た。即ち、 (a)  遅れ破壊は、静荷重下に右かれた鋼が成る時
間を経過後、突然に脆性的な破断を呈する現象であり、
外部環境から鋼中に侵入した水素や、メッキ等によって
侵入した鋼中水素等により発生する一種の水素脆性とさ
れているものであるが、鋼のオーステナイト粒度をAS
TMN(Lで8.5以上の細粒に調整して焼入れし、マ
ルテンサイトあるいは低温ベイナイトの組織を得て焼戻
し処理すれば、遅れ破壊の発生が抑制されることが判っ
た。
Means for Solving the Problems In order to achieve the above objectives, the inventors conducted detailed research on the chemical composition of steel materials, manufacturing conditions including heat treatment, and the relationship between the resulting structure and properties. As a result of repeated efforts, we have obtained the findings shown in (a) to (0) below. Namely, (a) Delayed fracture occurs when steel suddenly becomes brittle after a period of time when the steel is bent under a static load. This is a phenomenon in which a large amount of rupture occurs.
It is said to be a type of hydrogen embrittlement that occurs due to hydrogen that has entered the steel from the external environment or hydrogen that has entered the steel due to plating, etc., but the austenite grain size of the steel is
It has been found that the occurrence of delayed fracture can be suppressed by adjusting the TMN (L) to fine grains of 8.5 or more and quenching to obtain a martensite or low-temperature bainite structure and then tempering.

υ 鋼中の炭化物は水素の集積場所となり、従ってこの
炭化物が針状、棒状等切欠欠陥形状を呈したり、粗大に
凝集したりする場合には、そこが起点となって遅れ破壊
が発生しやすいが、鋼中にZrを含有せしめると炭化物
が球状微細に分散されて耐遅れ破壊性が著しく改善され
ることが判った。
υ Carbides in steel serve as a place for hydrogen to accumulate. Therefore, if these carbides exhibit a notch defect shape such as needles or rods, or coarsely aggregate, this becomes the starting point and delayed fracture is likely to occur. However, it has been found that when Zr is contained in steel, the carbides are finely dispersed into spherical shapes and the delayed fracture resistance is significantly improved.

(C)  焼入れした鋼を580℃以上でAc1点以下
の高温でPLM≧16.8X103[但しP LM =
 T (20+ log t)で、T:焼戻し温度じK
)、t:保持時間(hr))の条件で焼戻しすれば、炭
化物の球状化がなされて、遅れ破壊の発生が抑制される
ことが判った。
(C) PLM≧16.8X103 [however, PLM=
T (20+ log t), T: tempering temperature K
), t: holding time (hr)), it was found that the carbides were spheroidized and the occurrence of delayed fracture was suppressed.

”       (d)  C:0.15〜0.45%
、Si:1.50%以下、Mn:0.01〜1.50%
を含む鋼に、合金成分として、Cr : 0.50〜2
.00%、Mo+各W:OJO〜1.50%、V:0.
01〜0.20%、Nb: 0.005〜0.20%を
含有させれば、Acs点以点心上熱して焼入れの後、5
80℃以上でAc1点以下の温度で且つ上記P0値がP
0≧16.8X1G’の条件で焼戻し処理しても、オー
ステナイト粒度のASTMNαが8.5以上であれば、
降伏強さで150ksi (105,5kgf/mm”
)を越す高強度゛が安定して得られ、耐遅れ破壊性にも
優れていることが判った。
” (d) C: 0.15-0.45%
, Si: 1.50% or less, Mn: 0.01 to 1.50%
Cr: 0.50 to 2 as an alloy component to steel containing
.. 00%, Mo + each W: OJO ~ 1.50%, V: 0.
01 to 0.20%, Nb: 0.005 to 0.20%, after quenching by heating above the Acs point,
At a temperature of 80°C or above and below Ac1 point, and the above P0 value is P
Even if the tempering treatment is performed under the conditions of 0≧16.8X1G', if the austenite grain size ASTMNα is 8.5 or more,
Yield strength: 150ksi (105.5kgf/mm)
It was found that a high strength exceeding that of

(e)  鋼中のNiは特に低pHm境下でピッティン
グ(孔食)の発生を促し、そこが起点となって遅れ破壊
が起るが、Ni含有量を0.10%以下に抑えるとピッ
ティングの発生が抑制され、従って耐遅れ破壊性も改善
されることが判った。
(e) Ni in steel promotes pitting (pitting corrosion), especially under low pH conditions, which becomes the starting point for delayed fracture, but if the Ni content is kept below 0.10%, It was found that the occurrence of pitting was suppressed and, therefore, delayed fracture resistance was improved.

(0オーステナイト粒の微細化は降伏比(降伏強さ/引
張強さ)を上昇させ、従って、同じ降伏強さに対して引
張強さを抑えることができるという点からも耐遅れ破壊
性改善に有効であることが判った。
(0) Refinement of austenite grains increases the yield ratio (yield strength/tensile strength), and therefore improves delayed fracture resistance because the tensile strength can be suppressed for the same yield strength. It was found to be effective.

本発明は上記知見に基づいてなされたものであって、 C:0.15〜0.45%、 Si:1.50%以下、 Mn :0.01〜1.50%、 Cr : 0.50〜2.00%、 MoまたはWのいずれか一方または双方:勤+1/2W
で0.30〜1.50%、V:0.01〜0.20%、 Nb : 0.005〜0.20%、 Zr:0.01〜0.15%、 Al:Q、Ql〜0.10%、 を含有し、必要に応じてさらに、 第1区分:Ti:0.01〜0.10%第2区分: B
 :0.0003〜0.0050%第3区分: Ca 
: 0.001〜0.030%01種以上を含み、残部
がFe及び不可避不純物からなり、かつ不純物中のPs
、Ntの含有量が夫々、P : 0.020%以下、 S : 0.010%以下、 Ni:0.10%以下、 であり、Acs点以点心上熱後焼入れされ、その後58
0℃以上でAc+点以下の温度で且つPLM≧16.8
 X103〔但しP L、= T (20+ log 
t)で、T:焼戻し温度じK)、t:保持時間(hr)
 )を満たす条件で焼戻された、オーステナイト粒度が
ASTMNαで8.5以上の耐遅れ破壊性の優れた高強
度鋼を提供する点に特徴を有するものである。
The present invention was made based on the above findings, and includes: C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Cr: 0.50. ~2.00%, Mo or W or both: Mo+1/2W
0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: Q, Ql~0 Contains:
:0.0003~0.0050% 3rd category: Ca
: 0.001~0.030% 01 or more, the balance consists of Fe and unavoidable impurities, and Ps in the impurities
, Nt content is P: 0.020% or less, S: 0.010% or less, Ni: 0.10% or less, and is heat-quenched on a dot core above the Acs point, and then 58
At a temperature of 0°C or above and below the Ac+ point, and PLM≧16.8
X103 [However, P L, = T (20+ log
t), T: tempering temperature K), t: holding time (hr)
) is characterized in that it provides a high strength steel with an austenite grain size of 8.5 or more in ASTM Na and excellent delayed fracture resistance.

作用 次に本発明において、鋼の成分組成及び熱処理と粒度を
上記の通りに限定した理由を説明する。
Function Next, in the present invention, the reason why the chemical composition, heat treatment, and grain size of the steel are limited as described above will be explained.

(1)  成分組成の限定理由 C: Cは鋼の焼入性増加、強度増加に加えて細粒化の
ためにも有効な成分であるが、0.15%未満では強度
低下及d焼入性劣化をきたし、従って所望強度に対して
、炭゛化物球状化のための高温での焼戻し処理が行なえ
ず、又所望の細粒鋼を得難くなり、遅れ破壊感受性が大
きくなる。
(1) Reason for limiting the composition C: C is an effective component for increasing the hardenability and strength of steel, as well as refining the grains, but if it is less than 0.15%, it will cause a decrease in strength and hardening. Therefore, the desired strength cannot be tempered at a high temperature to make the carbide spheroidized, and it becomes difficult to obtain the desired fine-grained steel, resulting in increased delayed fracture susceptibility.

一方、0.45%を越えてCを含有すると、焼入れ時の
焼割れ感受性が増加し、また靭性劣化をも招くことから
C含有量を0.15〜0.45%と定めた。
On the other hand, if C content exceeds 0.45%, susceptibility to quench cracking during quenching increases and also causes deterioration of toughness, so the C content is set at 0.15 to 0.45%.

Si:Siは鋼の脱酸及び強度を高めるのに必要な元素
であるほか、変態点を上げて高温焼戻しが安定して行な
えるようにするためにも有効である。
Si: Si is an element necessary for deoxidizing steel and increasing its strength, and is also effective for raising the transformation point so that high temperature tempering can be performed stably.

しかしながら、Siの含有量が1.50%を越えると靭
性の劣化が著しくなり、又低pHE!境では耐遅れ破壊
性を劣化させることともなるので、その上限を1.50
%とした。
However, if the Si content exceeds 1.50%, the toughness will deteriorate significantly and the pH will be low! At the boundary, the delayed fracture resistance may deteriorate, so the upper limit is set to 1.50.
%.

なお、オーステナイト粒を可及的に小さくして、耐遅れ
破壊性を一層向上させるためにはSi含有量を0.80
%以下とすることが好ましく、更に低pH環境下での耐
遅れ破壊性をより一層向上させるためには、(Si +
Mn )の値を0.80%以下とすることが好ましい。
In addition, in order to further improve delayed fracture resistance by making the austenite grains as small as possible, the Si content should be set to 0.80.
% or less, and in order to further improve delayed fracture resistance in a low pH environment, (Si +
It is preferable that the value of Mn ) is 0.80% or less.

Mn:Mnは脱酸、脱硫のほか焼入性の向上に有効な元
素であるが、多量に含有させると鋼の加工性や耐遅れ破
壊性を劣化するようになることから、その上限を1.5
0%とした。低合金鋼の場合、低PH1環境下での遅れ
破壊感受性低減のためには(Si+Mn)の値を0.8
0%以下に低減することが有効であるが、In含有量を
0.01%未満とすることは鋼の製造上極めて困難であ
り、コストアップを招くことから、Mnの含有量を0.
01〜1.50%とした。安定した細粒鋼を得るには0
.20%以上の添加が好ましい。
Mn: Mn is an effective element for deoxidizing, desulfurizing, and improving hardenability, but if it is contained in large amounts, it will deteriorate the workability and delayed fracture resistance of steel, so the upper limit has been set to 1. .5
It was set to 0%. In the case of low alloy steel, the value of (Si+Mn) should be set to 0.8 in order to reduce delayed fracture susceptibility in a low PH1 environment.
Although it is effective to reduce the In content to 0.01% or less, it is extremely difficult to reduce the In content to less than 0.01% in terms of manufacturing steel and increases costs.
01 to 1.50%. 0 to obtain stable fine grain steel
.. It is preferable to add 20% or more.

Cr:Crは鋼の焼入性、強度及び焼戻し軟化抵抗性を
増大させる作用があり、高温焼戻し処理して高強度鋼を
得るのに有効な元素であるが、その含有量が0.5%未
満では前記作用に所望の効果を得ることができず、一方
、2.0θ%を超えて含有させると靭性の劣化及び焼割
れ感受性の増大を来すことから0.50〜2.00%と
した。
Cr: Cr has the effect of increasing the hardenability, strength, and temper softening resistance of steel, and is an effective element for obtaining high-strength steel by high-temperature tempering treatment, but its content is 0.5%. If the content is less than 0.50 to 2.00%, the desired effect cannot be obtained, while if the content exceeds 2.0θ%, the toughness will deteriorate and the susceptibility to quench cracking will increase. did.

Mo5W:MoとWはいずれも鋼の焼入性、強度、靭性
、耐食性および焼戻し軟化抵抗性を増大させ、高温焼戻
し処理を可能にして耐遅れ破壊性を向上させる効果を有
するので、MoまたはWのいずれか一方または双方を含
有することとした。
Mo5W: Both Mo and W have the effect of increasing the hardenability, strength, toughness, corrosion resistance, and temper softening resistance of steel, enabling high-temperature tempering treatment, and improving delayed fracture resistance. It was decided to contain either one or both of the following.

MoとWの含有量に関して(Mo十″/AW)で規定す
るのは、WがMoに対して原子量が約2倍で、上記した
効果の点ではMoの約半分となるからである。
The content of Mo and W is defined as (Mo1''/AW) because the atomic weight of W is about twice that of Mo, and is about half that of Mo in terms of the above-mentioned effects.

(Mo十%W)の値が0,30%未満では上記作用に所
望の効果が得られず、他方この値が1.50%を越える
とそれらの添加効果が飽和してしまい、より一層の強度
上昇効果を得ることができず、実質的に不必要な量のM
o及びWの含有となってコスト上昇を招くので、Moお
よび/またはWの含有量を、(Mo + ’A W)の
値で0.30〜1.50%とした。
If the value of (Mo 10%W) is less than 0.30%, the desired effect cannot be obtained in the above actions, while if this value exceeds 1.50%, the effects of addition will be saturated, and even more A substantially unnecessary amount of M that cannot obtain the effect of increasing strength
The content of Mo and/or W is set to 0.30 to 1.50% in terms of (Mo + 'A W), since the content of Mo and W causes an increase in cost.

■: ■は鋼の強度上昇、焼戻し軟化抵抗の付与と細粒
化に有効な元素であり、高温焼戻し処理を可能にして耐
遅れ破壊性を向上させるのに有効であるが、0.01%
未満では前記効果が得られず、一方、0.20%を越え
る多量の■の添加をすると靭性の劣化を招くこととなる
ので0.01〜0.20%とした。
■: ■ is an element that is effective in increasing the strength of steel, imparting resistance to temper softening, and refining the grain, and is effective in enabling high-temperature tempering treatment and improving delayed fracture resistance, but 0.01%
If it is less than 0.2%, the above effect cannot be obtained, and on the other hand, if it is added in a large amount exceeding 0.20%, the toughness will be deteriorated, so it is set at 0.01 to 0.20%.

Nb:Nbは鋼の強度、靭性の向上と焼戻し軟化抵抗の
付与、細粒化に対して効果を有し、耐遅れ破壊性の向上
に対しても効果があるが、0.005%未満ではその効
果が十分でなく、一方、0.20%を越えて含有させて
も前記効果が飽和してしまい、また靭性の劣化をも招く
こととなるので、0.005〜0.20%とした。
Nb: Nb is effective in improving the strength and toughness of steel, imparting temper softening resistance, and grain refinement, and is also effective in improving delayed fracture resistance, but if it is less than 0.005%, The effect was not sufficient, and on the other hand, if the content exceeded 0.20%, the effect would be saturated, and it would also cause deterioration of toughness, so it was set at 0.005 to 0.20%. .

Zr:Zrは本発明において重要な元素であって鋼中に
炭化物を球状微細に分散させて耐遅れ破壊性を著しく改
善させる効果を有するが、0.01%未満ではその効果
が小さく、一方0.15%を超えると靭性劣化をきたす
ので0.01〜0.15%とした。
Zr: Zr is an important element in the present invention and has the effect of dispersing carbides into fine spherical particles in the steel and significantly improving delayed fracture resistance, but if it is less than 0.01%, the effect is small; If it exceeds .15%, toughness will deteriorate, so it is set at 0.01 to 0.15%.

Al:  Alは鋼の脱酸の安定化、均質化および細粒
化を図る゛のに有効であるが、0.01%未満では所望
の効果を得ることができず、他方、0,10%を越えて
含有させてもその効果は飽和してしまい、また介在物の
増大により疵が発生し、靭性も劣化するので0.01〜
0.10%とした。
Al: Al is effective in stabilizing deoxidation of steel, homogenizing it, and refining the grains, but if it is less than 0.01%, the desired effect cannot be obtained; on the other hand, if it is less than 0.10% If the content exceeds 0.01, the effect will be saturated, and the increase in inclusions will cause cracks and deteriorate toughness.
It was set to 0.10%.

P及びS: 降伏強さが特に150ksi (105,
5kgf/m+s”)を超える“低合金高強度鋼におい
ては、鋼の靭性向上を図り、又耐遅れ破壊性向上のため
には不純物であるP及びSの量を可及的に少なくするの
が望ましいが、鋼の製造コストとのバランスを考慮して
、P及びSの含有量の上限を夫々0.020%、0.0
10%とした。
P and S: Yield strength is particularly 150 ksi (105,
In order to improve the toughness of the steel and to improve its delayed fracture resistance, it is important to reduce the amount of impurities P and S as much as possible in low-alloy high-strength steels exceeding 5 kgf/m+s. It is desirable to set the upper limits of P and S contents to 0.020% and 0.0%, respectively, in consideration of the balance with the manufacturing cost of steel.
It was set at 10%.

Ni:Niは特に低pH環境下でのピッティングの発生
を促し、そこが起点となって遅れ破壊を発生させるので
、耐遅れ破壊性改善のため不純物としてのNiを0.1
0%以下と定めた。
Ni: Ni promotes the occurrence of pitting especially in a low pH environment, which becomes the starting point for delayed fracture, so in order to improve delayed fracture resistance, Ni as an impurity was added to 0.1
It was set as 0% or less.

Ti:Tiは鋼の強度上昇と微細化に有効な元素である
が、0.01%未満では前記効果が得られず、一方0.
10%を越えて添加すると靭性の劣化を招くこととなる
ので、0.01〜0.10%の範囲とした。
Ti: Ti is an effective element for increasing the strength and refining steel, but if it is less than 0.01%, the above effects cannot be obtained;
Addition of more than 10% leads to deterioration of toughness, so the content is set in the range of 0.01 to 0.10%.

B: Bは焼入性を向上させ、これを通じて強度、靭性
、耐遅れ破壊特性を向上させるのに有効である。しかし
乍らB量が0.0003%未満ではその添加効果が得難
く、又、0.0050%を越えて含有させても添加効果
が飽和してそれ以上の特性向上効果が期待できず、逆に
靭性や耐遅れ破壊性の劣化を招く場合も生ずるので、B
の含有量をo、 oooa〜0、0050%とした。
B: B is effective in improving hardenability, and thereby improving strength, toughness, and delayed fracture resistance. However, if the amount of B is less than 0.0003%, it is difficult to obtain the effect of addition, and even if it is added in excess of 0.0050%, the effect of addition is saturated and no further property improvement effect can be expected; B
The content was set to o,oooa~0,0050%.

Ca:Caは鋼中介在物を球状化して、特に高強度鋼に
おいて、圧延方向と直角方向の靭性を向上させるのに有
効であるが、0.001%未満ではその効果が得られず
、他方、0.030%を越えると、その効果が飽和する
のみならず、却ってその酸化物等の非金属介在物が増加
して、鋼の清浄性が低下し、遅れ破壊感受性を高めるこ
ととなる。従って、Caの含有量範囲を0.001〜0
.030%とした。
Ca: Ca is effective in spheroidizing inclusions in steel and improving the toughness in the direction perpendicular to the rolling direction, especially in high-strength steel, but if it is less than 0.001%, this effect cannot be obtained; If it exceeds 0.030%, the effect not only becomes saturated, but also non-metallic inclusions such as oxides of the steel increase, reducing the cleanliness of the steel and increasing the susceptibility to delayed fracture. Therefore, the Ca content range is 0.001 to 0.
.. 030%.

(2)熱処理と粒度の限定理由 従来、降伏強さが150ksi (105,5kgf/
mm2)を越える低合金鋼製の高強度油井管は、熱延鋼
管をAc3点以上に再加熱した後焼入れするか、或いは
熱間で製管した後^r3点以上の温度から直接に焼入れ
し、その後へ自点以下の温度で焼戻すことにより製造し
ている。しかしながら、直接焼入れした鋼管ではオース
テナイト粒が粗大であり(ASTMN17程度以下)遅
れ破壊に対する感受性が極めて大きい。一方、再加熱焼
入れしたものの場合は、遅れ破壊特性はオーステナイト
粒度と焼戻し温度によって大きく変化することが本発明
者等の研究により明らかとなった。
(2) Reason for limiting heat treatment and particle size Conventionally, the yield strength was 150 ksi (105,5 kgf/
For high-strength oil country tubular goods made of low-alloy steel exceeding mm2), hot-rolled steel pipes are reheated to Ac3 point or higher and then quenched, or hot-rolled steel pipes are made and then directly quenched at a temperature of Ac3 point or higher. , and then tempered at a temperature below its own point. However, directly quenched steel pipes have coarse austenite grains (ASTMN 17 or less) and are extremely susceptible to delayed fracture. On the other hand, research by the present inventors has revealed that in the case of reheated and quenched steel, the delayed fracture characteristics vary greatly depending on the austenite grain size and tempering temperature.

即ち、本発明者等は、C,Si、 Mn、 CrSMo
、W。
That is, the present inventors have discovered that C, Si, Mn, CrSMo
,W.

■、Nb、 Zr、 AI、PlS及びNiの含有量が
本発明の範囲内にある種々の鋼を用い、熱処理、加工熱
処理、冷間加工と熱処理の組合せ等積々の手段を用いて
オーステナイト粒度を変化させ、これを450〜650
℃で30分焼戻し処理した。夫々の鋼板から平行部8.
5.、φの丸棒引張試験片を採取して引張試験を行ない
、170ksi (119,5kgf/ll1m2)近
傍の降伏強さく0.2%耐力)を有すると確認されたも
ののみについて遅れ破壊特性を調査した。
■ Using various steels whose contents of Nb, Zr, AI, PlS, and Ni are within the range of the present invention, the austenite grain size is improved by using various means such as heat treatment, processing heat treatment, and a combination of cold working and heat treatment. Change this to 450 to 650
It was tempered at ℃ for 30 minutes. Parallel section 8 from each steel plate.
5. , φ round bar tensile test specimens were collected and subjected to a tensile test, and the delayed fracture characteristics were investigated only for those that were confirmed to have a yield strength (0.2% proof stress) near 170 ksi (119.5 kgf/ll 1 m2). did.

遅れ破壊特性は、第1図(a)に全体の斜視図を、第1
図(ハ)にUノツチ部の詳細を示した試験片を1つの焼
戻し処理鋼板から5本ずつ切り出し、このUノツチ部に
くさびを挿入した後80℃の温水中に5000時間浸漬
して、割れ発生の有無を調べて調査し、その結果を第2
図に示した。第2図において、○は5本の試験片のすべ
てに割れの発生が認められないことを示し、×は5本の
試験片のいずれか又は全部に割れ発生が認められたこと
を示す。
The delayed fracture characteristics are shown in Fig. 1(a), a perspective view of the whole, and Fig. 1(a).
Figure (c) shows the details of the U-notch part. Five specimens were cut out from one tempered steel plate, a wedge was inserted into the U-notch part, and then immersed in hot water at 80°C for 5,000 hours. Investigate whether or not an outbreak has occurred, and use the results as a second
Shown in the figure. In FIG. 2, ◯ indicates that no cracking was observed in any of the five test pieces, and × indicates that cracking was observed in any or all of the five test pieces.

第2図に示すように、オーステナイト粒度がA37MN
α8.5未満の場合には焼戻し温度を高くしても割れが
発生し、一方、焼戻し温度が580℃未満の場合はオー
ステナイト粒度をASTMNLILで8.5以上の微細
粒としても割れが発生することが判った。従って、本発
明ではオーステナイト粒度をASTMNo.で8.5以
上に調整して焼入れし、且つ焼戻しを580℃以上で行
なった鋼に制限する。
As shown in Figure 2, the austenite grain size is A37MN.
If α is less than 8.5, cracks will occur even if the tempering temperature is increased; on the other hand, if the tempering temperature is less than 580°C, cracks will occur even if the austenite grain size is as fine as 8.5 or more by ASTM NLIL. It turns out. Therefore, in the present invention, the austenite grain size is determined according to ASTM No. It is limited to steels that are quenched at a temperature of 8.5 or higher and tempered at 580°C or higher.

次に、焼入れの加熱温度をAc3点以上としたのは均一
なオーステナイト組織から焼入れするためである。なお
、焼入れのための加熱温度の上限はオーステナイト粒粗
大化開始温度以下とするのが好★しく、上述したように
最終焼入れ処理でAsTMlkで8.5以上の細粒オー
ステナイト粒が得られるようにする必要がある。
Next, the reason why the heating temperature for quenching is set to Ac3 or higher is to quench from a uniform austenite structure. The upper limit of the heating temperature for quenching is preferably below the austenite grain coarsening starting temperature, and as mentioned above, fine austenite grains with AsTMlk of 8.5 or more can be obtained in the final quenching process. There is a need to.

次に、本発明者等は、0.30%C−0,30%Si 
−0,43%Mn−0,64%Cr −0,46%Mo
−0,05%V−0,041%Nb−0、040%Zr
 −0,039%^1−0.008%P −0,002
%S−0,03%Ni (へ自点ニア55℃、Ac5点
=850℃)の組成を有する鋼を用いて、オーステナイ
ト粒度をASTMNo.で10.5に調整して焼入れし
、これを600℃に加熱し保持時間をそれぞれ5分、1
0分、15分、30分として焼戻しを行ない、焼戻し後
の鋼片について上記と同様な遅れ破壊試験を行なった。
Next, the present inventors discovered that 0.30%C-0.30%Si
-0,43%Mn -0,64%Cr -0,46%Mo
-0,05%V-0,041%Nb-0,040%Zr
-0,039%^1-0.008%P -0,002
Using a steel having a composition of %S-0.03%Ni (self point near 55°C, Ac5 point = 850°C), the austenite grain size was adjusted to ASTM No. The temperature was adjusted to 10.5 and quenched, then heated to 600°C and held for 5 minutes and 1 hour, respectively.
Tempering was performed for 0 minutes, 15 minutes, and 30 minutes, and the same delayed fracture test as above was conducted on the steel pieces after tempering.

この実験結果より、5分及び10分の焼戻し処理をした
ものには夫々215.115の割合で、割れが認められ
た。しかるに15分、30分の焼戻しを行なったものに
は割れは認められなかった。
From the results of this experiment, cracks were observed at a rate of 215.115 for those that were tempered for 5 minutes and 10 minutes, respectively. However, no cracks were observed in the samples tempered for 15 and 30 minutes.

600℃で10分の焼戻しについては、P LM = 
16.78 X 10’、又600℃で15分の焼戻し
については、P LM = 16.938103、 である。
For tempering at 600°C for 10 minutes, P LM =
16.78 x 10', and for tempering at 600°C for 15 minutes, P LM = 16.938103.

従って、本発明ではPLMI≧16.8 XlG3なる
条件を設けた。なお、この条件は焼戻し温度が580℃
では30分以上の焼戻しが必要なことを示すものである
。すなわち、上述したように580℃以上で、且つPL
M≧16,8 XIO’のときに炭化物がよく球状化さ
れて遅れ破壊感受性が低減されることを上1     
 記実験で確認した。
Therefore, in the present invention, the condition that PLMI≧16.8 XlG3 is set. Note that this condition requires a tempering temperature of 580°C.
This indicates that tempering for 30 minutes or more is required. That is, as mentioned above, the temperature is 580°C or higher and the PL
Above 1 shows that when M≧16,8
This was confirmed in the experiment described above.

一方、上記鋼を550℃で3時間焼戻し処理したもの(
PLM1= 16.9 X 103)について前記の遅
れ破壊試験をしたところ、115の割合で割れが発生し
ていた。このことからも、焼戻しに関しては、580℃
以上且ツPLM≧16.8 XIO’のいずれか一方の
条件が欠けても耐遅れ破壊性向上に好ましくないことが
明らかである。
On the other hand, the above steel was tempered at 550°C for 3 hours (
When the above-mentioned delayed fracture test was conducted on PLM1=16.9×103), cracking occurred at a rate of 115. From this, for tempering, 580℃
It is clear that lack of any one of the above conditions (PLM≧16.8 XIO') is not favorable for improving delayed fracture resistance.

従って、本発明の方法では、580℃以上であり且つP
LM≧16.8 x 10’を焼戻しの条件として規定
したものである。
Therefore, in the method of the present invention, the temperature is 580°C or higher and P
LM≧16.8×10′ is defined as the tempering condition.

又、この場合焼戻し温度がへ自点を超えると鋼材強度が
大幅に変動するのみならず、遅れ破壊感受性が大きくな
るので焼戻し温度はAc1点以下と定めた。
Further, in this case, if the tempering temperature exceeds the self-point, the strength of the steel material will not only change significantly, but also the delayed fracture susceptibility will increase, so the tempering temperature was set to be below the Ac1 point.

次に、本発明を実施例により比較例と対比しながら説明
する。なお、これらの実施例は本発明の効果を示す単な
る例示であって、本発明の技術的範囲を何隻制限するも
のでないことは勿論である。
Next, the present invention will be explained using examples and comparing with comparative examples. It should be noted that these Examples are merely illustrative of the effects of the present invention, and of course do not limit the technical scope of the present invention.

実施例1 まず、第1表に示す化学成分組成の鋼1〜17を溶製し
た。次いで、これらの鋼を加熱・圧延し、第2表に示す
条件にて焼入れ、焼戻しを行なった。
Example 1 First, steels 1 to 17 having the chemical compositions shown in Table 1 were melted. These steels were then heated and rolled, quenched and tempered under the conditions shown in Table 2.

焼戻し前のものについてオーステナイト粒度(ASTM
No.)を測定し、焼戻し後のものについて引張試験と
遅れ破壊試験を行なった。
Austenite grain size (ASTM
No. ), and tensile tests and delayed fracture tests were conducted on the tempered samples.

引張試験は、平行部8.5mmφの丸棒試験片を用いて
行ない、遅れ破壊試験は次の条件にて実施した。即ち、
各鋼種の鋼材から、第1図に示す試験片を5本ずつ切り
出した。第1図(a)はUノツチ付き試験片の全体形状
を示し、第1図(ハ)は試験片のUノツチの詳細を示す
。このUノツチにくさびを静的に挿入した後、80℃の
温水中に5000時間浸漬して割れ発生の有無を調べた
The tensile test was conducted using a round bar test piece with a parallel portion of 8.5 mmφ, and the delayed fracture test was conducted under the following conditions. That is,
Five test pieces shown in FIG. 1 were cut out from each type of steel material. FIG. 1(a) shows the overall shape of the U-notched test piece, and FIG. 1(c) shows details of the U-notched test piece. After statically inserting a wedge into this U-notch, it was immersed in warm water at 80° C. for 5,000 hours to check for cracks.

得られた試験結果も併せて第2表に示す。The test results obtained are also shown in Table 2.

第2表に示す結果から、本発明の化学成分範囲の鋼は5
80℃以上、PLMI≧16.8 X 10’の条件で
焼戻ししても、150ksi (105,5kgf/m
m”)を越える降伏強さく0.2%耐力)が得られ、し
かも遅れ破壊の発生が零であって、比較鋼に比べて強度
と耐遅れ破壊特性のいずれか一方又は双方が優れ、強度
と耐遅れ破壊性のバランスが極めて良好であることが明
らかである。
From the results shown in Table 2, the steel with the chemical composition range of the present invention is 5
Even if tempered under the conditions of 80℃ or higher and PLMI≧16.8
A yield strength exceeding 0.2% yield strength (0.2% yield strength) exceeding 0.2% yield strength (0.2% proof stress) is obtained, and there is no occurrence of delayed fracture, and either one or both of strength and delayed fracture resistance is superior to comparative steels. It is clear that the balance between this and delayed fracture resistance is extremely good.

実施例2 第3表に示す化学成分組成の鋼18〜20を溶製した。Example 2 Steels 18 to 20 having the chemical composition shown in Table 3 were melted.

次いで、これらの鋼を加熱・圧延し、第4表に示す条件
にて焼入れし、次に焼戻しを行なった。
Next, these steels were heated and rolled, quenched under the conditions shown in Table 4, and then tempered.

焼戻し前のものについてオーステナイト粒度(ASTM
No.)を測定し、焼戻し後のものについて実施例1と
同じ条件で引張試験と遅れ破壊試験を行なった。
Austenite grain size (ASTM
No. ), and a tensile test and a delayed fracture test were conducted on the tempered product under the same conditions as in Example 1.

このようにして得られた試験結果も併せて第4表に示す
The test results thus obtained are also shown in Table 4.

第4表に示した結果からも、本発明の化学成分の範囲内
の鋼は580℃以上、P0≧16.8xlO’の条件で
焼戻ししても150ksi(105,5kgf/mが)
を越す大きな降伏強さく0.2%耐力)が得られ、しか
も遅れ破壊の発生が零であって、比較鋼に比べて強度と
耐遅れ破壊性のいずれかが優れ、強度と耐遅れ破壊性の
バランスが極めて良好であることが明らかである。
The results shown in Table 4 also show that steel within the chemical composition range of the present invention has a strength of 150 ksi (105.5 kgf/m) even when tempered at 580°C or higher and P0≧16.8xlO'.
A large yield strength (0.2% yield strength) exceeding 0.2% yield strength is obtained, and there is no occurrence of delayed fracture, and both strength and delayed fracture resistance are superior to comparative steels. It is clear that the balance is extremely good.

実施例3 前記第3表のうちの本発明の規定する化学成分範囲の対
象鋼である鋼19を加熱・圧延し、第5表に示す条件に
て焼入れし、次に焼戻しを行なった。
Example 3 Steel 19, which is a target steel having the chemical composition range defined by the present invention in Table 3 above, was heated and rolled, quenched under the conditions shown in Table 5, and then tempered.

焼戻し前のものについてオーステナイト粒度(ASTM
Nα)を測定し、焼戻し後のものについて実施例1と同
じ条件で引張試験と遅れ破壊試験を行なった。その試験
結果も併せて第5表に示す。
Austenite grain size (ASTM
After tempering, a tensile test and a delayed fracture test were conducted under the same conditions as in Example 1. The test results are also shown in Table 5.

第5表の結果から、本発明の規定する化学成分範囲の対
象鋼についても、本発明の範囲内の処理条件を満足して
はじめて、耐遅れ破壊性が良好になることが判る。
From the results in Table 5, it can be seen that the delayed fracture resistance of target steels within the chemical composition range defined by the present invention becomes good only when the processing conditions within the range of the present invention are satisfied.

実施例4 前記第3表のうちの本発明の規定する化学成分範囲の対
象鋼である鋼18を加熱・圧延後、第6表に示す条件に
て焼入れし、次に焼戻しを行なった。
Example 4 Steel 18, which is a target steel having the chemical composition range defined by the present invention in Table 3 above, was heated and rolled, then quenched under the conditions shown in Table 6, and then tempered.

焼戻し前のものについてオーステナイト粒度(ASTM
N(L)を測定し、焼戻し後のものについて実施例1と
同じ条件で引張試験と遅れ破壊試験を行なった。その試
験結果も併せて第6表に示す。
Austenite grain size (ASTM
N(L) was measured, and the tensile test and delayed fracture test were conducted under the same conditions as in Example 1 for the tempered product. The test results are also shown in Table 6.

第6表から、本発明ではオーステナイト粒の微細化方法
の如何に拘わらず、オーステナイト粒度をASTMNo
.で8.5以上に調整して焼入れた後、それを580℃
以上、PLN≧16.8X10’の条件で焼戻ししさえ
すれば、耐遅れ破壊性の優れた高強度鋼が得られること
が判る。
From Table 6, it can be seen that in the present invention, regardless of the method of refining austenite grains, the austenite grain size is
.. After adjusting the temperature to 8.5 or higher and quenching it, heat it to 580℃.
From the above, it can be seen that high-strength steel with excellent delayed fracture resistance can be obtained as long as it is tempered under the conditions of PLN≧16.8X10'.

実施例5 前記第1表に示す鋼のうち本発明の規定する化学成分範
囲の対象鋼である綱1.2.3.7及び本発明の範囲外
である比較鋼14を加熱・圧延し、第7表に示す条件で
焼入れし、次に焼戻しを行なった。焼戻し前のものにつ
いてオーステナイト粒度(ASTMNo.)を測定し、
焼戻し後のものについて、実施例1と同じ条件で引張試
験を行ない、又実施例1に準じて、HCI″t’pHを
3.5に調整した5%食塩水(常温)中に2000時間
浸漬する遅れ破壊試験を行なった。なお、試験液は48
時間毎に交換した。
Example 5 Of the steels shown in Table 1 above, steel 1.2.3.7, which is a steel subject to the chemical composition range specified by the present invention, and comparative steel 14, which is outside the scope of the present invention, were heated and rolled, Hardening was performed under the conditions shown in Table 7, and then tempering was performed. Measure the austenite grain size (ASTM No.) of the material before tempering,
After tempering, a tensile test was conducted under the same conditions as in Example 1, and according to Example 1, the specimens were immersed for 2000 hours in 5% saline (at room temperature) with HCI't'pH adjusted to 3.5. A delayed fracture test was conducted.The test liquid was 48
Replaced every hour.

このようにして、得られた試験結果も併せて第7表に示
す。
The test results thus obtained are also shown in Table 7.

第7表に示す結果から、本発明の規定する化学成分範囲
の対象鋼のうちでも特に(Si+Mn)が0.80%以
下で且つNiの低い鋼1.2は低pHの環境下でも耐遅
れ破壊性と強度のバランスが極めて良好であることが判
る。
From the results shown in Table 7, it is clear that among the target steels within the chemical composition range specified by the present invention, steel 1.2 with (Si+Mn) of 0.80% or less and low Ni is particularly resistant to lag even in a low pH environment. It can be seen that the balance between breakability and strength is extremely good.

発明の効果 上述した如く、本発明の鋼により、150ksi(10
5,5kgf/mm’)を越える高強度と優れた耐遅れ
破壊性を具備して、しかも安価な超高強度油井管の製造
が可能となり、従ってその工業上もたらされる効果は極
めて大きいものである。
Effects of the Invention As mentioned above, the steel of the present invention has a strength of 150 ksi (10
It has become possible to manufacture inexpensive ultra-high strength oil country tubular goods that have high strength exceeding 5.5 kgf/mm') and excellent delayed fracture resistance, and the industrial effects thereof are extremely large. .

本発明の鋼は、超高強度油井管以外にも、上述と同一強
度レベルの高力ボルト等にも広く応用できるものである
The steel of the present invention can be widely applied not only to ultra-high-strength oil country tubular goods but also to high-strength bolts having the same strength level as described above.

なお、本明細書中で鋼の化学成分を表示するのに使用し
た%は重量%である。
Note that in this specification, the percentages used to indicate the chemical components of steel are percentages by weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、遅れ破壊試験片の形状を示すものであり、第
1図(a)は試験片全体の斜視図、第1図(6)はその
Uノツチ邪の詳細を示すものである。 第2図は、170ksi (119,5kgf/mm”
)近傍の降伏強さを有する本発明対象鋼の耐遅れ破壊特
性に及ぼす、焼戻し温、度(保持30分の場合)とオー
ステ;ナイト粒度の影響を示す図である。 特許出願人 住友金属工業株式会社 代理人   弁理士 新居 正彦 第1図 (5i) (b) オーステナイトれ度 (ASTM  No、)手続補正
書(自発) 1、事件の表示  昭和60年特許願第065132号
2、発明の名称  耐遅れ破壊性の優れた高強度鋼3、
補正をする者 事件との関係 特許出願人 住  所  大阪市東区北浜5丁目15番地名  称 
 (211)住友金属工業株式会社4、代理人 6、補正により増加する発明の数 (ナシ)7、補正の
対象  明細書の発明の詳細な説明の欄8、補正の内容 明細書第26頁の第1表を別紙の如(訂正する。
FIG. 1 shows the shape of a delayed fracture test piece, FIG. 1(a) is a perspective view of the entire test piece, and FIG. 1(6) shows details of the U-notch. Figure 2 shows 170 ksi (119,5 kgf/mm)
FIG. 2 is a diagram showing the influence of tempering temperature, degree (in the case of 30 minutes of holding), and austenite grain size on the delayed fracture resistance of the steel subject to the present invention having a yield strength near . Patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Masahiko Arai Figure 1 (5i) (b) Austenite degree (ASTM No.) Procedural amendment (spontaneous) 1. Indication of case Patent application No. 065132 of 1985 2. Name of the invention High strength steel with excellent delayed fracture resistance 3.
Relationship with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name
(211) Sumitomo Metal Industries, Ltd. 4, Agent 6, Number of inventions increased by amendment (none) 7, Subject of amendment Detailed explanation of the invention in the specification column 8, Contents of the amendment, page 26 of the specification Table 1 is as shown in the attached sheet (corrected).

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方: Mo+1/2Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% を含有し、残部Feおよび不可避的不純物からなり、か
つ不純物中のP、S、Niの含有量が夫々、P:0.0
20%以下、 S:0.010%以下、 Ni:0.10%以下、 であり、Ac_3点以上に加熱後焼入れされ、その後5
80℃以上で且つAc_1点以下の温度でP_L_M≧
16.8×10^3を満たす条件で焼戻された、オース
テナイト粒度がASTMNo.で8.5以上の耐遅れ破
壊性の優れた高強度鋼。 ただし、 P_L_M=T(20+logt) T:焼戻し温度(°k)、 t:保持時間(hr)、
(1) In weight%, C: 0.15-0.45%, Si: 1.50% or less, Mn: 0.01-1.50%, Cr: 0.50-2.00%, Mo or Either or both of W: Mo+1/2W 0.30-1.50%, V: 0.01-0.20%, Nb: 0.005-0.20%, Zr: 0.01-0 .15%, Al: 0.01~0.10%, the balance consists of Fe and unavoidable impurities, and the content of P, S, and Ni in the impurities is P: 0.0.
20% or less, S: 0.010% or less, Ni: 0.10% or less, and is quenched after heating to Ac_3 points or more, and then 5
P_L_M≧ at a temperature of 80℃ or higher and a temperature of Ac_1 point or lower
The austenite grain size, which was tempered under conditions satisfying 16.8×10^3, is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°k), t: Holding time (hr),
(2)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方: Mo+1/2Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% を含有し、さらに、Ti:0.01〜0.10%および
B:0.0003〜0.0050%のいずれか一方また
は双方を含有し、残部Feおよび不可避的不純物からな
り、かつ不純物中のP、S、Niの含有量が夫々、P:
0.020%以下、 S:0.010%以下、 Ni:0.10%以下、 であり、Ac_3点以上に加熱後焼入れされ、その後5
80℃以上で且つAc_1点以下の温度でP_L_M≧
16.8×10^3を満たす条件で焼戻された、オース
テナイト粒度がASTMNo.で8.5以上の耐遅れ破
壊性の優れた高強度鋼。 ただし、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(2) In weight%, C: 0.15-0.45%, Si: 1.50% or less, Mn: 0.01-1.50%, Cr: 0.50-2.00%, Mo or Either or both of W: Mo+1/2W 0.30-1.50%, V: 0.01-0.20%, Nb: 0.005-0.20%, Zr: 0.01-0 .15%, Al: 0.01 to 0.10%, and further contains either or both of Ti: 0.01 to 0.10% and B: 0.0003 to 0.0050%. , the balance is Fe and unavoidable impurities, and the contents of P, S, and Ni in the impurities are P:
0.020% or less, S: 0.010% or less, Ni: 0.10% or less, and is quenched after heating to Ac_3 points or more, and then 5
P_L_M≧ at a temperature of 80℃ or higher and a temperature of Ac_1 point or lower
The austenite grain size, which was tempered under conditions satisfying 16.8×10^3, is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(3)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方: Mo+1/2Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 Ca:0.001〜0.030% を含有し、残部Feおよび不可避的不純物からなり、か
つ不純物中のP、S、Niの含有量が夫々、P:0.0
20%以下、 S:0.010%以下、 Ni:0.10%以下、 であり、Ac_3点以上に加熱後焼入れされ、その後5
80℃以上で且つAc_1点以下の温度でP_L_M≧
16.8×10^3を満たす条件で焼戻された、オース
テナイト粒度がASTMNo.で8.5以上の耐遅れ破
壊性の優れた高強度鋼。 ただし、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(3) In weight%, C: 0.15-0.45%, Si: 1.50% or less, Mn: 0.01-1.50%, Cr: 0.50-2.00%, Mo or Either or both of W: Mo+1/2W 0.30-1.50%, V: 0.01-0.20%, Nb: 0.005-0.20%, Zr: 0.01-0 .15%, Al: 0.01 to 0.10%, Ca: 0.001 to 0.030%, the balance consists of Fe and inevitable impurities, and the content of P, S, and Ni in the impurities are respectively, P: 0.0
20% or less, S: 0.010% or less, Ni: 0.10% or less, and is quenched after heating to Ac_3 points or more, and then 5
P_L_M≧ at a temperature of 80℃ or higher and a temperature of Ac_1 point or lower
The austenite grain size, which was tempered under conditions satisfying 16.8×10^3, is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(4)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方: Mo+1/2Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 Ca:0.001〜0.030% を含有し、さらに、Ti:0.01〜0.10%および
B:0.0003〜0.0050%のいずれか一方また
は双方を含有し、残部Feおよび不可避的不純物からな
り、かつ不純物中のP、S、Niの含有量が夫々、P:
0.020%以下、 S:0.010%以下、 Ni:0.10%以下、 であり、Ac_3点以上に加熱後焼入れされ、その後5
80℃以上で且つAc_1点以下の温度でP_L_M≧
16.8×10^3を満たす条件で焼戻された、オース
テナイト粒度がASTMNo.で8.5以上の耐遅れ破
壊性の優れた高強度鋼。 ただし、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(4) In weight%, C: 0.15-0.45%, Si: 1.50% or less, Mn: 0.01-1.50%, Cr: 0.50-2.00%, Mo or Either or both of W: Mo+1/2W 0.30-1.50%, V: 0.01-0.20%, Nb: 0.005-0.20%, Zr: 0.01-0 .15%, Al: 0.01-0.10%, Ca: 0.001-0.030%, and further contains Ti: 0.01-0.10% and B: 0.0003-0. P:
0.020% or less, S: 0.010% or less, Ni: 0.10% or less, and is quenched after heating to Ac_3 points or more, and then 5
P_L_M≧ at a temperature of 80℃ or higher and a temperature of Ac_1 point or lower
The austenite grain size, which was tempered under conditions satisfying 16.8×10^3, is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
JP6513285A 1985-03-29 1985-03-29 High strength steel having superior delayed fracture resistance Pending JPS61223168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6513285A JPS61223168A (en) 1985-03-29 1985-03-29 High strength steel having superior delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6513285A JPS61223168A (en) 1985-03-29 1985-03-29 High strength steel having superior delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPS61223168A true JPS61223168A (en) 1986-10-03

Family

ID=13278039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6513285A Pending JPS61223168A (en) 1985-03-29 1985-03-29 High strength steel having superior delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPS61223168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011917A1 (en) * 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor
US9023159B2 (en) 2008-06-19 2015-05-05 Kobe Steel, Ltd. Steel for heat treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023159B2 (en) 2008-06-19 2015-05-05 Kobe Steel, Ltd. Steel for heat treatment
WO2015011917A1 (en) * 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor
JP5880787B2 (en) * 2013-07-26 2016-03-09 新日鐵住金株式会社 Steel tube for low alloy oil well and manufacturing method thereof
CN105492642A (en) * 2013-07-26 2016-04-13 新日铁住金株式会社 Low-alloy steel pipe for oil well and production method therefor
AU2014294435B2 (en) * 2013-07-26 2017-07-06 Nippon Steel Corporation Low alloy oil well steel pipe and method for manufacturing same
EA029884B1 (en) * 2013-07-26 2018-05-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн Low alloy oil well steel pipe and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
CN101634001B (en) CT90-class steel for continuous oil pipe and method for manufacturing same
CN101497969A (en) High-performance weather-resisting anti-seismic steel for building and production method thereof
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
CN108085585A (en) A kind of high strength anti-corrosion Compound riffled steel and its manufacturing method
US20230167522A1 (en) High Strength, High-Temperature Corrosion Resistant Martensitic Stainless Steel and Manufacturing Method Therefor
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPH11502259A (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS61223168A (en) High strength steel having superior delayed fracture resistance
JPS6160822A (en) Manufacture of high strength steel having superior resistance to delayed fracture
JPH08209289A (en) Steel for machine structural use excellent in delayed fracture resistance
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH0387332A (en) High strength-low alloy-heat resistant steel
JPH0553855B2 (en)
JPS6362848A (en) Low-alloy heat-resistant steel having high strength
JPS58136715A (en) Production of steel for oil well
JPS616208A (en) Manufacture of low-alloy high-tension steel having superior resistance to sulfide stress corrosion cracking
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JP2001107198A (en) Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JPH0366384B2 (en)
JPH0121849B2 (en)