JPS6122158A - Superfluid helium generator - Google Patents

Superfluid helium generator

Info

Publication number
JPS6122158A
JPS6122158A JP59142216A JP14221684A JPS6122158A JP S6122158 A JPS6122158 A JP S6122158A JP 59142216 A JP59142216 A JP 59142216A JP 14221684 A JP14221684 A JP 14221684A JP S6122158 A JPS6122158 A JP S6122158A
Authority
JP
Japan
Prior art keywords
helium
valve
superconducting magnet
superfluid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59142216A
Other languages
Japanese (ja)
Other versions
JPH07105529B2 (en
Inventor
明男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59142216A priority Critical patent/JPH07105529B2/en
Publication of JPS6122158A publication Critical patent/JPS6122158A/en
Publication of JPH07105529B2 publication Critical patent/JPH07105529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、超流動ヘリウム発生装置に係り、特に、大型
の超電導磁石を冷却するための超流動ヘリウム発生装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superfluid helium generator, and more particularly to an improvement in a superfluid helium generator for cooling a large superconducting magnet.

[従来技術とその問題点] 周知のように、液体ヘリウムはラムダ点(2゜17k)
以下の温度蔓通常′の液体、すなわち常流動の液体から
超流動を示す液体に転移Jる。このような超流動ヘリウ
ムは超電導磁石の冷媒として広く用いられている。
[Prior art and its problems] As is well known, liquid helium is at the lambda point (2°17k)
At the following temperatures, there is a transition from a normal liquid, that is, a normal fluid liquid, to a superfluid liquid. Such superfluid helium is widely used as a coolant for superconducting magnets.

ところで、超電導磁石の冷媒としての超流動ヘリウムは
二つの種類に分けられる。一つは、液体ヘリウムを真空
ポンプにより減圧して得られる飽和超流動ヘリウムであ
り、もう一つは、この飽和超流動ヘリウムと熱交換する
ことにより生成覆る一気圧加圧状態の非飽和超流動ヘリ
ウム(加圧超流動ヘリウム)である。前者は容易に生成
できるが後者の生成は比較的むずかしい。しかるに臨界
、 熱流束等の熱伝達特性は後者が格段に優れている。
By the way, superfluid helium as a coolant for superconducting magnets can be divided into two types. One is saturated superfluid helium, which is obtained by reducing the pressure of liquid helium with a vacuum pump, and the other is unsaturated superfluid, which is produced by heat exchange with this saturated superfluid helium and is pressurized by one atmosphere. Helium (pressurized superfluid helium). The former is easy to generate, but the latter is relatively difficult to generate. However, the latter has much better heat transfer characteristics such as criticality and heat flux.

従って超電導磁石の冷媒としては加圧超流動ヘリウムガ
使われる場合が多い。
Therefore, pressurized superfluid helium gas is often used as the coolant for superconducting magnets.

加圧超流動ヘリウム発生装置は一般に第2図のように構
成されている。づなわち、4.2kのl\ツリウムを収
容した常流動ヘリウム槽1と超流動ヘリウム槽2とを常
時は弁3′で閉じられた連結管3を介して接続している
。弁3′は閉の状態でも超流動ヘリウムがもれる程度に
製伯されている。
A pressurized superfluid helium generator is generally constructed as shown in FIG. That is, a normal flow helium tank 1 containing 4.2k of l\thulium and a superfluid helium tank 2 are connected via a connecting pipe 3 which is normally closed with a valve 3'. The valve 3' is manufactured to such an extent that superfluid helium leaks even when the valve is closed.

そして超流動ヘリウム槽2内にこの槽2をラムダ点以下
にまで冷却するための熱交換器4を配ffff L、上
記熱交換器4の一端側をジコール1〜ムソン弁(以後J
T弁と略称づる。)5、JT熱交換器6の二次側を介し
て真空ポンプ7の吸込み口に接続し−(いる。真空ポン
プ7の吐出1」シま、]ンプレッリ8を介して冷凍液化
機9に接続されている。そして上記冷凍液化機9でヘリ
ウム槽1に液体l\ツリウム供給するようにしている1
、ヘリウム槽1、ヘリウム槽2、J T熱交換器6、J
1弁5は断熱容器10に収容されている。
A heat exchanger 4 for cooling the tank 2 to below the lambda point is arranged in the superfluid helium tank 2, and one end side of the heat exchanger 4 is connected to the Gicol 1 to Mouson valve (hereinafter referred to as J
It is abbreviated as T-valve. ) 5. Connect to the suction port of the vacuum pump 7 via the secondary side of the JT heat exchanger 6. The above-mentioned cryo-liquefaction machine 9 supplies liquid l\thulium to the helium tank 1.
, helium tank 1, helium tank 2, J T heat exchanger 6, J
1 valve 5 is housed in a heat insulating container 10.

しかして、この装置は次のようにして超流動ヘリウム槽
2内の液体ヘリウムAを超流動化させるようにしている
。まず、連結管3内の弁3−を開にし、超流動ヘリウム
槽2内および常流動ヘリウム槽1内に4.2kの常流動
液体ヘリウムHを導入した後、バルブ3−を閉にする。
Therefore, this device makes the liquid helium A in the superfluid helium tank 2 superfluid in the following manner. First, the valve 3- in the connecting pipe 3 is opened, and after introducing 4.2K of normal-flow liquid helium H into the superfluid helium tank 2 and the normal-flow helium tank 1, the valve 3- is closed.

このような状態で真空ポンプ7、コンプレッサ8、冷凍
液化機9を動作させる。真空ポンプが動作すると、ヘリ
ウム槽1内の4.2k液体ヘリウムト1の一部がJT熱
交換器6の一次側、JTT弁、熱交換器4、JT熱交換
器6の二次側の経路で流れる。熱交換器4内が超流動ヘ
リウム槽2内の゛温度Tbよりも低い温度TSに対応す
る飽和蒸気圧に排気されているものとすると、ヘリウム
槽1を出たヘリウムはJT熱交換器6の一次側を通る間
にたとえば2゜2kまで予冷され、温度Tsのガスと液
とになる。
In this state, the vacuum pump 7, compressor 8, and refrigeration liquefaction machine 9 are operated. When the vacuum pump operates, a portion of the 4.2k liquid helium 1 in the helium tank 1 is transferred to the primary side of the JT heat exchanger 6, the JTT valve, the heat exchanger 4, and the secondary side of the JT heat exchanger 6. flows. Assuming that the inside of the heat exchanger 4 is evacuated to a saturated vapor pressure corresponding to a temperature TS lower than the temperature Tb in the superfluid helium tank 2, the helium leaving the helium tank 1 is discharged into the JT heat exchanger 6. While passing through the primary side, it is precooled to, for example, 2°2K, and becomes gas and liquid at a temperature Ts.

この液が熱交換器4を通る間に蒸発し、これによって、
超流動ヘリウム槽1内のヘリウムAを冷却するようにし
ている。
This liquid evaporates while passing through the heat exchanger 4, thereby
The helium A in the superfluid helium tank 1 is cooled.

超電導磁石12は、前記超流動ヘリウム槽2内に収容さ
れ、絶縁性の充填材11を頁通したパワーリード13で
励磁するようにしている。
The superconducting magnet 12 is housed in the superfluid helium tank 2, and is excited by a power lead 13 passed through an insulating filler 11.

ところで、このにうな装置にあっては超電導磁石が大型
の場合は超流動ヘリウム槽が大きくなり使用ヘリウム量
が多くなる。また、イれを冷i1′]″tJるための余
分の冷凍力がいるという問題があった。
By the way, in this type of device, if the superconducting magnet is large, the superfluid helium tank becomes large and the amount of helium used increases. In addition, there is a problem in that extra refrigeration power is required to cool down the spill.

また、4.2kからラムダ点以下の磁6動伯&11度ま
で初期冷却する際に温度Tbと温度T Sを一定の関係
に制御しな(プればならず、初期冷却は必ずしも容易で
はなかった。
Also, during initial cooling from 4.2k to magnetic 6+11 degrees below the lambda point, temperature Tb and temperature Ts must be controlled to a constant relationship, and initial cooling is not always easy. Ta.

[発明の目的1 本発明は、このJ、うな事情に鑑みてなされ7C’bの
で、その目的とするところは、超電導磁石の冷媒として
必要な超流動ヘリウム小の少りい初1ull冷凍の容易
な超流動ヘリウム発生装置を提供づることにある。
[Objective of the Invention 1 The present invention has been made in view of the above circumstances, and its purpose is to reduce the amount of superfluid helium necessary as a refrigerant for superconducting magnets and to facilitate the first 1ull freezing process. The purpose of this invention is to provide a superfluid helium generator.

[発明の概要コ 本発明は、内部に冷却流路をもつ超電導磁石をラムダ点
以下の磁石動作温度まで初期冷7J1する際はJ T弁
でジュールトムソン膨張し°C発生したミスト状の飽和
ヘリウムを超電導磁石の冷却流路内に通流さ「て冷却し
、磁石動作温度に達した段階で超電導磁石の冷却流路内
に加圧超流動ヘリウムを満たして定常状態を保持し、こ
の状態で超電導磁石を励磁することを特徴としている。
[Summary of the Invention] The present invention utilizes a mist of saturated helium generated by Joule-Thomson expansion using a JT valve when initially cooling a superconducting magnet having an internal cooling channel to a magnet operating temperature below the lambda point. is passed through the cooling channel of the superconducting magnet to cool it down, and when the magnet reaches the operating temperature, the cooling channel of the superconducting magnet is filled with pressurized superfluid helium to maintain a steady state, and in this state the superconducting It is characterized by exciting a magnet.

また、本発明は、前記冷却流路を途中でバイパスでる初
期冷却用の配管を備えてなることを特徴としている。
Further, the present invention is characterized in that an initial cooling pipe is provided that bypasses the cooling flow path midway.

[発明の効果] 本発明装置のように4.2kからの初期冷凍をミスト状
のヘリウムを超電導゛磁石の冷却流路内を通流さけ゛て
行えばJ T弁の開度調整は嚇易であり、ジュールトム
ソン膨張したミストの温度が磁石の温度よりもわずかに
低くなるようにJ T弁の開度を調整するだけでよい。
[Effects of the Invention] If the initial cooling from 4.2K is performed by passing mist-like helium through the cooling channel of the superconducting magnet as in the device of the present invention, it is easy to adjust the opening of the JT valve. Yes, it is only necessary to adjust the opening degree of the JT valve so that the temperature of the Joule-Thompson expanded mist is slightly lower than the temperature of the magnet.

また超電導磁石を励磁する際には冷却流路内に熱転3f
fi特性のよい加圧超流動ヘリウムが満たされているた
め安定した励磁、消磁が可能である。特に超電導磁石を
バンドル導体で構成した場合は、バンドル導体を構成す
る超電導線の細線を直接冷却づることになるので、部分
的に超電導状態が破れた場合でも超電導状態を回復さけ
る高い冷却効果が期待できる。
In addition, when exciting the superconducting magnet, there is a heat transfer of 3f in the cooling channel.
Since it is filled with pressurized superfluid helium with good fi characteristics, stable excitation and demagnetization are possible. In particular, when a superconducting magnet is constructed from a bundle conductor, the thin superconducting wires that make up the bundle conductor are directly cooled, so even if the superconducting state is partially broken, a high cooling effect is expected to prevent the superconducting state from being restored. can.

また、構造ト、冷媒どして必要な超流動ヘリウムの量牽
最少限におさえられる。
Additionally, the amount of superfluid helium required for construction, refrigerant, etc. can be kept to a minimum.

[発明の実施例]  ” 以下、本発明の実施例を図面を参照しイνがら説明する
[Embodiments of the Invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る超流動ヘリウム発生装
置の要部を示すものであり、第1図と同一部分は同一符
号で示しである。従・)て重複する部分の説明は省略す
る。
FIG. 1 shows the main parts of a superfluid helium generator according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. 2.) Duplicate explanations will be omitted.

この実施例が第1図と異なる主なjjlは、り11図で
は超流動ヘリウム槽2内に収納されていlこ浸潤型超電
導磁石12が内部冷却流路つき超電導磁ri14に置換
えられ、この内部冷却流路つき超電導磁石14が断熱真
空中に配置されている点にある。
The main difference between this embodiment and that shown in FIG. 1 is that in FIG. The superconducting magnet 14 with cooling channels is placed in an adiabatic vacuum.

超電導磁石14の内部冷却流路の一端は絶縁継ぎ手15
ど弁16を介しC熱交換器4の一端に接続され、超流動
ヘリウム槽2とも弁17を介しく接続されている5、超
電導磁石14の内部冷却流路の細端は、同じく絶縁継ぎ
手15とか18を介してJT熱交換器6の2次側に接続
されている。他に超電導磁石14の内部冷却流路をバイ
パスするための弁19と、超電導磁石14を予冷する際
に内部冷却流路の一部をバイパスする弁20.20′真
空ポンプ7をバイパスする弁21が設(づられている。
One end of the internal cooling channel of the superconducting magnet 14 is connected to an insulating joint 15
The thin end of the internal cooling channel of the superconducting magnet 14 is connected to one end of the C heat exchanger 4 via a valve 16, and is also connected to the superfluid helium bath 2 via a valve 17. 18 to the secondary side of the JT heat exchanger 6. In addition, there is a valve 19 for bypassing the internal cooling channel of the superconducting magnet 14, and a valve 20 for bypassing a part of the internal cooling channel when precooling the superconducting magnet 14, and a valve 21 for bypassing the vacuum pump 7. has been established.

しかして、この装「は次のようにして超電導磁石14を
ラムダ点以下まで冷却するようにしている。まず、連絡
管3の弁3′を開にし、゛弁19.20”、18を閉と
し、JTT弁5弁16.17.20.21を間としてコ
ンプレッサ8、冷凍液化機9を運転し、超電導磁石14
を予冷する。超電>?;Ita石1/Iの弁15、弁1
つの間の内部流路が冷えてきて圧力損失が少な(なって
きたら弁20 =を開とし弁20を閉とする。弁20と
弁20′の間の内部冷却流路も冷えてぎたら弁18を開
とし、弁20’″を閉として全体を10に以下にまで冷
却1jる。しかる後、J T弁5、弁17を閉とし、冷
凍液化機9を液化−[−ドに切り替え、ヘリウム槽1、
超流動ヘリウム槽2k液体ヘリウムを溜める。
This system cools the superconducting magnet 14 to below the lambda point in the following manner. First, the valve 3' of the connecting pipe 3 is opened, and the valves 19, 20" and 18 are closed. The compressor 8 and the refrigerating liquefier 9 are operated with the JTT valve 5 valves 16, 17, 20, and 21 in between, and the superconducting magnet 14
Pre-cool. Super electric>? ; Ita stone 1/I valve 15, valve 1
When the internal cooling passage between the valves 20 and 20' has cooled down and the pressure loss is small, open the valve 20 and close the valve 20. When the internal cooling passage between the valves 20 and 20' has also cooled down, the 18 is opened, the valve 20''' is closed, and the whole is cooled to below 10%. Thereafter, the JT valve 5 and the valve 17 are closed, and the refrigeration liquefaction machine 9 is switched to liquefaction mode. helium tank 1,
Superfluid helium tank 2k Stores liquid helium.

次に弁21、弁19、弁18、弁17、弁3を閉じると
し、真忰〜ドンプ7、:コンブレッリ8. ン’+’r
 i+液化機9を動作させ、4.2k以下の温度への冷
却を開始覆る。J T弁5の開度を温度T s h<超
電導磁石14の温度よりもわずかに低く<’CるJ:う
に調整寸れば、ジュール1−ムソン膨服で発うLしたミ
スト状の飽和ヘリウムは熱交換器4および超電導磁石1
4の内部冷却流路で・イj効に蒸発し)、超流動ヘリウ
ム槽2、超電導磁石14を冷7Jl する。超電導磁石
14が冷えてさ′で内部冷ノ、[1流路の圧力損失が小
さくなったならばヘリウムのもどり流路を弁20から弁
20′、弁18と順次切替える3、このようにして超電
導磁石14を磁石動作if+X 葭ま(・容易に冷却覆
ることがてさる。ラムダ貞以下の)6イj動作’l;A
 +Uに到達しIJならば、ヘリウムのしど0流路を弁
19に切替え、弁16、弁20、弁20”、弁18は閉
とする。それとどもに弁17を聞どし、超電導磁イ11
4の内部冷却流路に加1−1−超(71コ動ヘリウムを
導入する。この状態では超電39磁石14’\の侵入熱
は超流動I\リウムΔ、熱交換器1を介して取去られ、
安定した励磁、)肖研か可能1””+Lる、。
Next, valve 21, valve 19, valve 18, valve 17, and valve 3 are closed. n'+'r
Operate the i+ liquefier 9 and start cooling to a temperature below 4.2K. If the opening degree of the JT valve 5 is adjusted to a temperature Tsh<slightly lower than the temperature of the superconducting magnet 14<'C, the saturation of the mist that occurs due to Joule 1-Mousson expansion will be reduced. Helium is heat exchanger 4 and superconducting magnet 1
The superfluid helium tank 2 and the superconducting magnet 14 are cooled by 7Jl (in the internal cooling channel 4). Once the superconducting magnet 14 has cooled down and the pressure loss in the first flow path becomes small, the helium return flow path is sequentially switched from valve 20 to valve 20' to valve 18. The superconducting magnet 14 is operated as a magnet if+X.
If +U is reached and it is IJ, the helium flow path is switched to valve 19, and valves 16, 20, 20'', and 18 are closed. I11
Introduce 1-1-super (71 co-moving helium) into the internal cooling channel of 4. In this state, the heat entering the superelectric 39 magnet 14'\ is transferred to the superfluid I\lium Δ through the heat exchanger 1. removed,
Stable excitation, 1""+L, capable of sharpening.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の代表的実施例を示づ超流動ヘリウム発
生装置の基本的構成図、第2図は従来の超流動ヘリウム
発生装置を示を基本的構成図である。 1・・・常流動ヘリウム槽(第1のヘリウム槽)、2・
・・超流動ヘリウム槽(第2のヘリウム槽)、3・・・
連絡管、4・・・熱交換器、5・・・JT弁、6・・・
JT熱交換器、14・・・内部冷却流路つき超?1f轡
磁石。 代F人弁理士 間近 憲帽(ほか1名)才 1 の
FIG. 1 is a basic block diagram of a superfluid helium generator showing a typical embodiment of the present invention, and FIG. 2 is a basic block diagram of a conventional superfluid helium generator. 1... Constant flow helium tank (first helium tank), 2...
・Superfluid helium tank (second helium tank), 3...
Communication pipe, 4... Heat exchanger, 5... JT valve, 6...
JT heat exchanger, 14...super with internal cooling channel? 1f magnet. Representative F Patent Attorney Nearby Kenhata (and 1 other person) 1 year old

Claims (5)

【特許請求の範囲】[Claims] (1)内部に常流動ヘリウムを収容した第1のヘリウム
槽と、この第1のヘリウム槽の下部に位置する第2のヘ
リウム槽と、この第2のヘリウム槽の上壁に設けられ、
前記第2のヘリウム槽内と前記第1のヘリウム槽内とを
接続する常時は閉じられた連絡管と、前記第1のヘリウ
ム槽の液体ヘリウムを使って前記第2のヘリウム槽内の
ヘリウムをラムダ点以下に冷やし込むジュール・トムソ
ン膨張効果を利用した冷却部と、絶縁治具と第1、第2
の開閉弁を介してこの冷却部に接続された内部冷却流路
をもつ超電導磁石と、この超電導磁石と前記第2のヘリ
ウム槽との間の流路を開閉する第3の弁と、前記超電導
磁石の内部冷却流路をバイパスする第4の弁とを備えて
なる超流動ヘリウム発生装置において、4.2kからの
初期冷却時には第3、第4の弁を閉じて第1、第2の弁
を開け、前記内部流路をもつ超電導磁石にミスト状の飽
和ヘリウムを流して2.2k以下のマグネット動作温度
まで冷却し、動作温度に達した段階で第1、第2の弁を
閉じて第3、第4の弁を開け、加圧超流動ヘリウムで超
電導磁石を冷却することを特徴とする超流動ヘリウム発
生装置。
(1) A first helium tank containing normal-flow helium inside, a second helium tank located below the first helium tank, and provided on the upper wall of the second helium tank,
A normally closed communication pipe connecting the inside of the second helium tank and the inside of the first helium tank, and liquid helium in the first helium tank are used to pump helium in the second helium tank. A cooling section that utilizes the Joule-Thomson expansion effect to cool the temperature below the lambda point, an insulating jig, and the first and second
a superconducting magnet having an internal cooling channel connected to the cooling unit via an on-off valve; a third valve for opening and closing the channel between the superconducting magnet and the second helium tank; In a superfluid helium generator comprising a fourth valve that bypasses the internal cooling flow path of the magnet, during initial cooling from 4.2k, the third and fourth valves are closed and the first and second valves are closed. is opened, and a mist of saturated helium is flowed through the superconducting magnet having the internal flow path to cool it down to the magnet operating temperature of 2.2K or less, and when the operating temperature is reached, the first and second valves are closed and the second valve is opened. 3. A superfluid helium generator characterized by opening a fourth valve and cooling a superconducting magnet with pressurized superfluid helium.
(2)内部冷却流路をもつ超電導磁石は、バンドル導体
であることを特徴とする特許請求の範囲第1項記載の超
流動ヘリウム発生装置。
(2) The superfluid helium generator according to claim 1, wherein the superconducting magnet having an internal cooling channel is a bundle conductor.
(3)内部冷却流路をもつ超電導磁石は、中空導体であ
ることを特徴とする特許請求の範囲第1項記載の超流動
ヘリウム発生装置。
(3) The superfluid helium generator according to claim 1, wherein the superconducting magnet having an internal cooling channel is a hollow conductor.
(4)超電導磁石の内部冷却流路は、コイルの熱接触を
良好に保って配管された熱伝導の良い金属パイプである
ことを特徴とする特許請求の範囲第1項記載の超流動ヘ
リウム発生装置。
(4) Superfluid helium generation according to claim 1, characterized in that the internal cooling channel of the superconducting magnet is a metal pipe with good thermal conductivity that maintains good thermal contact between the coils. Device.
(5)内部冷却流路をもつ超電導磁石の流路の途中に1
個以上のバイパス配管を設けることを特徴とする特許請
求の範囲第1項記載の超流動ヘリウム発生装置。
(5) 1 in the middle of the flow path of a superconducting magnet with an internal cooling flow path.
2. The superfluid helium generator according to claim 1, further comprising at least one bypass pipe.
JP59142216A 1984-07-11 1984-07-11 Superfluid helium generator Expired - Lifetime JPH07105529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142216A JPH07105529B2 (en) 1984-07-11 1984-07-11 Superfluid helium generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142216A JPH07105529B2 (en) 1984-07-11 1984-07-11 Superfluid helium generator

Publications (2)

Publication Number Publication Date
JPS6122158A true JPS6122158A (en) 1986-01-30
JPH07105529B2 JPH07105529B2 (en) 1995-11-13

Family

ID=15310100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142216A Expired - Lifetime JPH07105529B2 (en) 1984-07-11 1984-07-11 Superfluid helium generator

Country Status (1)

Country Link
JP (1) JPH07105529B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1574777A3 (en) * 2004-03-13 2010-12-01 Bruker BioSpin GmbH System of supraconductor magnet with refrigerator
GB2480154A (en) * 2010-05-07 2011-11-09 Bruker Biospin Gmbh Cryostat with reduced helium consumption

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465857A (en) * 1977-11-04 1979-05-26 Toshiba Corp Lowest temperture refrigerant generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465857A (en) * 1977-11-04 1979-05-26 Toshiba Corp Lowest temperture refrigerant generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1574777A3 (en) * 2004-03-13 2010-12-01 Bruker BioSpin GmbH System of supraconductor magnet with refrigerator
GB2480154A (en) * 2010-05-07 2011-11-09 Bruker Biospin Gmbh Cryostat with reduced helium consumption
GB2480154B (en) * 2010-05-07 2016-02-17 Bruker Biospin Gmbh Low-loss cryostat configuration

Also Published As

Publication number Publication date
JPH07105529B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
RU2002118598A (en) CRYOGENIC REFRIGERATOR INSTALLATION AND METHOD INCLUDING SHORT-TERM COOLING IN AN OPEN CYCLE FOR A SUPERCONDUCTIVE WINDING OF EXCITATION
US20060048522A1 (en) Method and device for installing refrigerator
US6679066B1 (en) Cryogenic cooling system for superconductive electric machines
JPH08222429A (en) Device for cooling to extremely low temperature
JPS6122158A (en) Superfluid helium generator
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JPH07243712A (en) Liquid helium supplementing apparatus for cryostat
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2617172B2 (en) Cryogenic cooling device
JP2574815B2 (en) Cryogenic refrigeration equipment
JPS5951155B2 (en) superconducting device
JPS62299005A (en) Superconducting magnet device
JPH08145487A (en) Helium liquefying magnetic refrigerator
JPS5913308A (en) Cooling device of superconductive magnet
JPH08189716A (en) Cool storage vessel type refrigerating machine
JPS61110851A (en) Joule-thomson refrigerator
JPH06283769A (en) Superconducting magnet refrigerating system
JPH01142368A (en) Refrigerator for aircraft
JPS58112305A (en) Superconductive magnet device
JPH0933130A (en) Cold accumulator type refrigerator
JPS6317360A (en) Cryogenic refrigerating method
JPH06268267A (en) Cryogenic refrigerator
JPS62261868A (en) Helium cooling device
JPS59132603A (en) Cooling system
JPH0233877B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term