JPH06268267A - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JPH06268267A
JPH06268267A JP5080252A JP8025293A JPH06268267A JP H06268267 A JPH06268267 A JP H06268267A JP 5080252 A JP5080252 A JP 5080252A JP 8025293 A JP8025293 A JP 8025293A JP H06268267 A JPH06268267 A JP H06268267A
Authority
JP
Japan
Prior art keywords
refrigerant gas
refrigerator
valve
compressors
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5080252A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakajima
洋 中島
Masaru Nagashima
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP5080252A priority Critical patent/JPH06268267A/en
Publication of JPH06268267A publication Critical patent/JPH06268267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance a cryogenic refrigerator in evaporated coolant gas recovering capacity keeping it at a certain level in refrigerating capacity when a superconducting magnet is excited or demagnetized. CONSTITUTION:A piping system which connects compressors 1, which feed coolant gas of normal temperature and high pressure to a refrigerator 2, together in series and another piping system which connects the compressors 1 together in parallel are provided, the compressors 1 are connected in series when the refrigerator 2 is kept in a normal operation and connected in parallel by switching valves when a superconducting magnet is excited or demagnetized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁石等を冷却す
る極低温冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigerator for cooling superconducting magnets and the like.

【0002】[0002]

【従来の技術】図2は従来の極低温冷凍装置の概略回路
図であり、ここで、1は圧縮機、2は冷凍機、3はバッ
ファタンク、4はJT弁、5は液体冷媒タンク、6a ,
6b は電磁弁、8は圧力調整弁である。従来の極低温冷
凍装置では、通常の液化および冷凍運転時は電磁弁6a
が開,6b が閉で、圧縮機1から出た常温高圧の冷媒ガ
スは冷凍機内で低圧配管中の冷媒ガスや冷凍機コールド
ヘッドとの熱交換によって、冷媒ガスの逆転温度以下に
まで予冷され、JT弁4でジュールトムソン膨張するこ
とによってさらに液化および冷却される。超電導磁石の
励消磁時等によって、液体冷媒タンク内に通常以上の熱
負荷が加わる場合には液体冷媒が蒸発し、循環回路内の
冷媒ガス量が増加する。この場合には電磁弁6a を閉、
6b を開にして回路を切りかえる。即ち、通常運転時は
圧縮機高圧側から冷凍機2に行っていた冷媒ガスをバッ
ファタンク3に充填することにより、循環回路内の増大
した冷媒ガスを循環回路外に一時的に取り出し、極低温
容器内の圧力上昇および同時に起こる温度上昇を抑止す
る効果を果たすのである。熱負荷が通常に戻り、液化が
進み循環回路内の冷媒ガスが不足すると、今度は圧力調
整弁8を通ってバッファタンク3から冷媒ガスが補給さ
れ、再液化されることになる。
2. Description of the Related Art FIG. 2 is a schematic circuit diagram of a conventional cryogenic refrigeration system, in which 1 is a compressor, 2 is a refrigerator, 3 is a buffer tank, 4 is a JT valve, 5 is a liquid refrigerant tank, 6a,
6b is a solenoid valve, and 8 is a pressure regulating valve. In the conventional cryogenic refrigeration system, the solenoid valve 6a is used during normal liquefaction and freezing operation.
With 6b closed, the room temperature and high pressure refrigerant gas discharged from the compressor 1 is pre-cooled to below the reversing temperature of the refrigerant gas by heat exchange with the refrigerant gas in the low pressure pipe and the refrigerator cold head in the refrigerator. , JT valve 4 is further liquefied and cooled by the Joule-Thomson expansion. When a heat load higher than usual is applied to the liquid refrigerant tank due to the demagnetization of the superconducting magnet, the liquid refrigerant evaporates, and the amount of refrigerant gas in the circulation circuit increases. In this case, close the solenoid valve 6a,
Open 6b to switch the circuit. That is, by filling the buffer tank 3 with the refrigerant gas that has been flowing from the high pressure side of the compressor to the refrigerator 2 during normal operation, the increased refrigerant gas in the circulation circuit is temporarily taken out of the circulation circuit to obtain a cryogenic temperature. It has the effect of suppressing the pressure rise in the container and the temperature rise that occurs at the same time. When the heat load returns to normal and the liquefaction progresses and the refrigerant gas in the circulation circuit becomes insufficient, this time, the refrigerant gas is replenished from the buffer tank 3 through the pressure regulating valve 8 and reliquefied.

【0003】[0003]

【発明が解決しようとする課題】従来の極低温冷凍装置
では、励消磁時等、液体冷媒タンクに過熱負荷が加わっ
た場合には圧縮機は蒸発した冷媒ガスの回収だけを行う
ことになり、冷凍機には高圧の冷媒ガスが供給されない
ため、冷凍能力は一時的になくなり、低圧配管中の蒸発
した冷媒ガスが持つ冷気を有効利用できない。また、基
本的に圧縮機の処理能力は通常運転時と同じであるた
め、発生した冷媒ガス量が圧縮機の処理能力を超える場
合には、回収すら十分行えない状況も起こり得る等の問
題点があった。本発明は前記の問題点を解決するために
なされたもので、超電導磁石の励消磁時も冷凍能力をあ
る程度維持しながら、蒸発した冷媒ガスの回収能力を向
上した極低温冷凍装置を提供することを目的とする。
In the conventional cryogenic refrigeration system, the compressor only recovers the evaporated refrigerant gas when an overheat load is applied to the liquid refrigerant tank, such as during demagnetization. Since the high-pressure refrigerant gas is not supplied to the refrigerator, the refrigerating capacity is temporarily lost and the cold air contained in the evaporated refrigerant gas in the low-pressure pipe cannot be effectively used. In addition, since the processing capacity of the compressor is basically the same as that during normal operation, if the amount of generated refrigerant gas exceeds the processing capacity of the compressor, there may be situations in which even recovery may not be possible. was there. The present invention has been made to solve the above-mentioned problems, and provides a cryogenic refrigeration system having an improved recovery capability of evaporated refrigerant gas while maintaining the refrigeration capability to some extent even during demagnetization of the superconducting magnet. With the goal.

【0004】[0004]

【課題を解決するための手段】本発明の極低温冷凍装置
は、冷凍機に常温高圧の冷媒ガスを供給する複数の圧縮
機を直列に接続する配管系統と並列に接続する配管系統
とを有し、通常の運転時には圧縮機を直列に接続して、
超電導磁石の励消磁時等には弁を切りかえることによっ
て圧縮機を並列に接続できる構造を持った装置である。
The cryogenic refrigeration system of the present invention has a piping system for connecting in series a plurality of compressors for supplying a refrigerant gas at room temperature and high pressure to the refrigerator and a piping system for connecting them in parallel. However, connect the compressors in series during normal operation,
This device has a structure in which the compressors can be connected in parallel by switching the valve when the superconducting magnet is demagnetized.

【0005】[0005]

【作用】本発明によれば、冷凍機とこれに高圧冷媒ガス
を供給する複数の圧縮機を備える極低温冷凍装置におい
て、複数の圧縮機を通常の運転時は直列に使用し、超電
導磁石の励消磁時には弁切り替えによって並列に使用出
来る配管を設けた。このため、励消磁時等には圧縮機の
処理能力が増大し、液体冷媒タンク内の圧力の上昇を防
ぐことができる。また、圧縮機の処理能力に余裕ができ
た分だけ、冷凍機に冷媒ガスを送り込むことも可能とな
り、発生した冷媒ガスの冷気を有効に利用することがで
きる。
According to the present invention, in a cryogenic refrigeration system including a refrigerator and a plurality of compressors for supplying high-pressure refrigerant gas to the refrigerator, the plurality of compressors are used in series during normal operation and the superconducting magnet A pipe that can be used in parallel by switching the valve during demagnetization was provided. For this reason, the processing capacity of the compressor is increased at the time of excitation / demagnetization, etc., and it is possible to prevent the pressure in the liquid refrigerant tank from rising. Further, it becomes possible to send the refrigerant gas to the refrigerator as much as the processing capacity of the compressor has been spared, and the cold air of the generated refrigerant gas can be effectively used.

【0006】[0006]

【実施例】以下、本発明の1実施例を図を用いて説明す
る。図1は本発明ににおける極低温冷凍装置の概略回路
図であり、1は圧縮機、2は冷凍機、3はバッファタン
ク、4はJT弁、5は液体冷媒タンク、6a ,6b,6c
,6d ,6e は電磁弁、7a ,7b は逆止弁、8は圧
力調整弁である。冷凍装置の通常運転時は、電磁弁6a
は開,電磁弁6b は閉 電磁弁6c は閉,電磁弁6d は
開,電磁弁6e は閉となり、圧縮機1は直列接続され
る。冷媒ガスは圧縮機1で圧縮され、冷凍機内で低圧配
管中の冷媒ガスや冷凍機コールドヘッドとの熱交換によ
って、冷媒ガスの逆転温度以下まで予冷され、JT弁4
でジュールトムソン膨張することでさらに冷却または液
化される。液体冷媒タンク内で蒸発した冷媒ガスおよび
液化されなかった冷媒ガスは、冷凍機内で高圧の冷媒ガ
スと熱交換したあと圧縮機へ導かれる。超電導磁石の励
消磁等で熱負荷が増え、液体冷媒タンク内で蒸発した冷
媒ガスが増大した時には電磁弁6a は開,電磁弁6b は
開,電磁弁6c は開,電磁弁6d は閉,電磁弁6e は開
とし、2台の圧縮機1を並列に接続する。この時、高圧
の冷媒ガスが圧縮機低圧側へ逆流しない様に逆止弁7a
,7b が作用する。この圧縮機1の並列接続により吐
出された冷媒ガスの圧力は低下するが、蒸発した冷媒ガ
スの回収能力は倍増する。従って液体冷媒タンク内で蒸
発した冷媒ガスを回収する能力が向上し、励消磁時等、
液体冷媒タンク内の熱負荷が大きな時にも液体冷媒タン
ク内圧の上昇を十分防ぐことができる。また、圧縮機の
処理能力に余裕が生じたため、電磁弁6b からバッファ
タンク3に冷媒ガスを充填すると同時に冷凍機にも、冷
媒ガスを送ることができるようになる。冷媒ガス圧力は
下がるのでJT効果は低下するが、低圧系の冷媒ガスが
持つ冷気を有効に利用できる利点がある。蒸発した冷媒
ガスが多く、圧縮機の並列接続でも処理能力に余裕が無
い場合は、電磁弁6a を閉として、冷媒ガスの回収に専
念しても良い。熱負荷が通常に戻り、液化が進み循環回
路内の冷媒ガスが不足した時、圧力調整弁8を通って冷
媒ガスが補給され、再液化されるのは従来の極低温冷凍
装置と同様である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic circuit diagram of a cryogenic refrigerator according to the present invention. 1 is a compressor, 2 is a refrigerator, 3 is a buffer tank, 4 is a JT valve, 5 is a liquid refrigerant tank, 6a, 6b, 6c.
, 6d and 6e are solenoid valves, 7a and 7b are check valves, and 8 is a pressure regulating valve. During normal operation of the refrigeration system, the solenoid valve 6a
Is open, solenoid valve 6b is closed, solenoid valve 6c is closed, solenoid valve 6d is open, solenoid valve 6e is closed, and compressor 1 is connected in series. The refrigerant gas is compressed by the compressor 1 and is pre-cooled to a temperature not higher than the inversion temperature of the refrigerant gas by heat exchange with the refrigerant gas in the low-pressure pipe or the refrigerator cold head in the refrigerator, and the JT valve 4
It is further cooled or liquefied by expanding Joule Thomson. The refrigerant gas evaporated in the liquid refrigerant tank and the refrigerant gas that has not been liquefied are heat-exchanged with the high-pressure refrigerant gas in the refrigerator and then introduced into the compressor. When the heat load increases due to the demagnetization of the superconducting magnet and the amount of the refrigerant gas evaporated in the liquid refrigerant tank increases, the solenoid valve 6a is opened, the solenoid valve 6b is opened, the solenoid valve 6c is opened, the solenoid valve 6d is closed, and the solenoid valve 6d is closed. The valve 6e is opened and the two compressors 1 are connected in parallel. At this time, the check valve 7a is prevented so that the high pressure refrigerant gas does not flow back to the low pressure side of the compressor.
, 7b act. The pressure of the refrigerant gas discharged by the parallel connection of the compressor 1 decreases, but the recovery capacity of the evaporated refrigerant gas doubles. Therefore, the ability to collect the refrigerant gas that has evaporated in the liquid refrigerant tank is improved, such as during demagnetization
Even when the heat load in the liquid refrigerant tank is large, it is possible to sufficiently prevent the internal pressure of the liquid refrigerant tank from rising. Moreover, since the processing capacity of the compressor has a margin, it becomes possible to fill the buffer tank 3 with the refrigerant gas from the solenoid valve 6b and at the same time to send the refrigerant gas to the refrigerator. Since the refrigerant gas pressure is lowered, the JT effect is lowered, but there is an advantage that the cold air possessed by the low-pressure refrigerant gas can be effectively used. When there is a large amount of evaporated refrigerant gas and there is not enough processing capacity even when the compressors are connected in parallel, the electromagnetic valve 6a may be closed to concentrate the recovery of the refrigerant gas. When the heat load returns to normal and liquefaction progresses and the refrigerant gas in the circulation circuit becomes insufficient, the refrigerant gas is replenished through the pressure adjusting valve 8 and reliquefied as in the conventional cryogenic refrigeration system. .

【0007】[0007]

【発明の効果】以上のように、本発明によれば極低温冷
凍装置の圧縮機を通常の運転時には直列に接続すること
により冷凍能力を向上させることができ、また超電導磁
石の励消磁時には循環回路内の冷媒ガス量が増大するの
で、並列に接続することにより冷凍能力をある程度維持
しながら、蒸発した冷媒ガスの回収能力を向上させて液
体冷媒タンク内の圧力および温度の上昇を防ぐことがで
きる効果がある。これにより、状況に応じて圧縮機に最
適な運転ができるようになり、圧縮機の蒸発した冷媒ガ
スの処理能力に余裕ができた分だけ冷凍機に冷媒ガスを
送り込むことも可能となり、発生した冷媒ガスの冷気を
有効に利用することができる。
As described above, according to the present invention, the refrigerating capacity can be improved by connecting the compressors of the cryogenic refrigeration system in series during the normal operation, and the circulation can be performed during the demagnetization of the superconducting magnet. Since the amount of refrigerant gas in the circuit increases, it is possible to prevent the rise of pressure and temperature in the liquid refrigerant tank by improving the recovery capacity of the evaporated refrigerant gas by connecting them in parallel while maintaining some refrigeration capacity. There is an effect that can be done. As a result, it becomes possible to operate the compressor optimally depending on the situation, and it is also possible to send the refrigerant gas to the refrigerator as much as there is room in the processing capacity of the evaporated refrigerant gas of the compressor. The cold air of the refrigerant gas can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例である極低温冷凍装置の概略
回路図である。
FIG. 1 is a schematic circuit diagram of a cryogenic refrigerator according to an embodiment of the present invention.

【図2】従来の極低温冷凍装置の概略回路図である。FIG. 2 is a schematic circuit diagram of a conventional cryogenic refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷凍機 3 バッファタンク 4 JT弁 5 液体冷媒タンク 6a ,6b ,6c ,6d ,6e 電磁弁 7a ,7b 逆止弁 8 圧力調整弁 1 Compressor 2 Refrigerator 3 Buffer tank 4 JT valve 5 Liquid refrigerant tank 6a, 6b, 6c, 6d, 6e Solenoid valve 7a, 7b Check valve 8 Pressure adjustment valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 JT弁を用いる極低温冷凍装置におい
て、複数の圧縮機と、該圧縮機を直列に接続する配管系
統および並列に接続する配管系統と、該配管中に設けた
電磁弁および逆止弁とを有し、該配管中の電磁弁および
逆止弁によって、該圧縮機を直列接続から並列接続へあ
るいは並列接続から直列接続へ切りかえることを可能と
した構造を持つ極低温冷凍装置。
1. A cryogenic refrigerating apparatus using a JT valve, a plurality of compressors, a piping system connecting the compressors in series and a piping system connecting them in parallel, a solenoid valve provided in the piping, and a reverse valve. A cryogenic refrigeration system having a stop valve and having a structure capable of switching the compressor from series connection to parallel connection or from parallel connection to series connection by a solenoid valve and a check valve in the pipe.
JP5080252A 1993-03-16 1993-03-16 Cryogenic refrigerator Pending JPH06268267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5080252A JPH06268267A (en) 1993-03-16 1993-03-16 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5080252A JPH06268267A (en) 1993-03-16 1993-03-16 Cryogenic refrigerator

Publications (1)

Publication Number Publication Date
JPH06268267A true JPH06268267A (en) 1994-09-22

Family

ID=13713130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5080252A Pending JPH06268267A (en) 1993-03-16 1993-03-16 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH06268267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434032A (en) * 2013-08-12 2013-12-11 浙江精功科技股份有限公司 Steel wire arc height automatic control system of slicer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434032A (en) * 2013-08-12 2013-12-11 浙江精功科技股份有限公司 Steel wire arc height automatic control system of slicer

Similar Documents

Publication Publication Date Title
US20080196420A1 (en) Flashgas Removal From a Receiver in a Refrigeration Circuit
US11635233B2 (en) Cooling system
US6609383B1 (en) Cryogenic refrigeration system
JP3573384B2 (en) Cryogenic refrigeration equipment
JPH06268267A (en) Cryogenic refrigerator
JP4043348B2 (en) Carbon dioxide secondary refrigerant ice heat storage refrigeration system
JP2617172B2 (en) Cryogenic cooling device
JPH028660A (en) Freezer
JP2837096B2 (en) Cryogenic liquefaction equipment
JP3571837B2 (en) Cryogenic refrigeration equipment
KR100394008B1 (en) Refrigerating cycle for refrigerator and method for controlling the same
JP3589434B2 (en) Cryogenic refrigeration equipment
JP3765945B2 (en) Operation control device for refrigerator
JP2009192187A (en) Ice storage type refrigeration system
JP3670536B2 (en) Cryogenic cooling device
JPH06283769A (en) Superconducting magnet refrigerating system
JPH11173689A (en) Heat storage type cooling device
JP2000154944A (en) Cooling apparatus for cryogenic container
KR20230155668A (en) Compressor refrigerant bypass circulation method in winter refrigerant cycle
JPH102627A (en) Refrigerating device
JP2725631B2 (en) Equalization control method and equalization control device for cryogenic refrigerator
JPS6122158A (en) Superfluid helium generator
JPH0721359B2 (en) Cryogenic helium refrigerator
JP2000337716A (en) Multiple refrigerant circuit facility combined
KR20230150445A (en) How to reduce the temperature of the receiver refrigerant liquid in the refrigeration cycle system