JPS5913308A - Cooling device of superconductive magnet - Google Patents

Cooling device of superconductive magnet

Info

Publication number
JPS5913308A
JPS5913308A JP57121195A JP12119582A JPS5913308A JP S5913308 A JPS5913308 A JP S5913308A JP 57121195 A JP57121195 A JP 57121195A JP 12119582 A JP12119582 A JP 12119582A JP S5913308 A JPS5913308 A JP S5913308A
Authority
JP
Japan
Prior art keywords
pressure
helium
low
refrigerator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57121195A
Other languages
Japanese (ja)
Other versions
JPS6349887B2 (en
Inventor
Shunichi Nakatani
中谷 俊一
Hiroshi Oka
宏 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57121195A priority Critical patent/JPS5913308A/en
Publication of JPS5913308A publication Critical patent/JPS5913308A/en
Publication of JPS6349887B2 publication Critical patent/JPS6349887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To supply liquid helium in simple work and good efficiency, by a method wherein gas helium in heat exchange to a refrigerator circuit is supplied while a superconductive coil is excited or demagnetized. CONSTITUTION:A heat exchanger 6 of a refrigerator comprises two systems, high-pressure forward system and low-pressure return system, added by a low- pressure supply line 12 thus three systems. Cold connecting portion of the low- pressure supply line 12 is provided with a reducing valve 8, and the line 12 passing through the lowest-temperature stage of the heat exchanger is opened to a liquid helium tank member 3. Parts to be connected to the cold side use a pure helium gas supply source such as a high-pressure helium gas bomb 9. Helium gas supplied from the pure helium gas supply source is fed through the reducing valve 8 to the refrigerator low-pressure line 12. Pressure at low-pressure side of the reducing valve is set to pressure slightly higher than internal pressure of the liquid helium tank during the refrigerator steady operation. When the internal pressure of the helium tank is reduced by the cooling at the condensation heat exchanger 4, helium gas is supplied from outside corresponding to the pressure reduction.

Description

【発明の詳細な説明】 ((1)技術分野の説明 本発明は超電導磁石を冷却するためのヘリウム冷却機に
関するものである。
Detailed Description of the Invention ((1) Description of the Technical Field The present invention relates to a helium cooler for cooling superconducting magnets.

(し2従来技術の説明 超電導コイルを励磁または消磁するとき電流リードの発
熱及び永久電流スイッチの発熱が大きく、液体ヘリウム
を封じ切りで使用することができない。(蒸発ガスヘリ
ウム発生量が大きく凝縮熱交換器で凝縮しきれない。外
部に放出せざるを得ない。)これによって不足した液体
ヘリウムを補うため、外部から液体ヘリウムを補給する
方法が従来とられてきた。しかしながらこの方法では配
管を経由して液体ヘリウムを補給するだめヘリウムが暖
められ、補給の開始時に大量の液体ヘリウムが蒸発する
(2) Explanation of the prior art When a superconducting coil is excited or demagnetized, the current leads generate a lot of heat and the persistent current switch generates a lot of heat, making it impossible to use liquid helium without sealing it off. (It cannot be condensed in the exchanger, so it has to be discharged to the outside.) In order to make up for the lack of liquid helium, conventional methods have been used to replenish liquid helium from outside.However, with this method, When replenishing liquid helium, the helium is heated and a large amount of liquid helium evaporates at the beginning of replenishment.

またこの他ヘリウム冷却機の絆力余裕分で常温からのガ
スを凝縮させる方法も考えられている。
In addition, another method is being considered in which gas from room temperature is condensed using the excess bonding power of a helium cooler.

この方法は作業が簡単であるが常温からの冷却であるの
で液化酸が少なく、短時間で補給するのは難しいという
欠点がある。この欠点を補なうだめ窒素温度に予冷した
ヘリウムガスを供給することも考えられるが、まだこの
程度の予冷では不充分である。
Although this method is easy to operate, it has the disadvantage that since it involves cooling from room temperature, there is little liquefied acid and it is difficult to replenish it in a short period of time. Although it is possible to compensate for this drawback by supplying helium gas pre-cooled to the nitrogen temperature, this level of pre-cooling is still insufficient.

(C)  発明の目的 本発明の目的は作業が簡単で、かつ効率のましい液体ヘ
リウムの補給方法を提供するにある。
(C) Object of the Invention An object of the present invention is to provide a method for replenishing liquid helium that is simple and efficient.

c山 発明の構成 発明の構成フロー図を第1図1=示す。冷凍機の熱交換
器6を従来の高圧行き、低圧戻りの2系統の他4二低圧
供給ライン12(点線表示)を増設し3系統にrる。低
圧供給ライン12の常温接続部には減圧弁8を設ける。
Mountain c Structure of the Invention A flow diagram of the structure of the invention is shown in FIG. In addition to the conventional two systems for high pressure going and low pressure return, the heat exchanger 6 of the refrigerator is expanded to three systems by adding 42 low pressure supply lines 12 (indicated by dotted lines). A pressure reducing valve 8 is provided at the normal temperature connection of the low pressure supply line 12.

熱交換器最低温段を出たライン12は液体ヘリウムタン
ク部3に開口させる。常温に接続するものは例えば高圧
ヘリウムガスボンベ9など純ヘリウムガスの供給源を使
用する。
The line 12 exiting the lowest temperature stage of the heat exchanger is opened to the liquid helium tank section 3. For those connected to room temperature, a pure helium gas supply source such as a high pressure helium gas cylinder 9 is used.

純ヘリウムガス供給源から供給されるヘリウムガスは減
圧弁8を通して冷凍機低圧ライン12に送られる。減圧
弁低圧側の圧力は冷凍機定常運転時の液体ヘリウムタン
ク内圧力よりごくわずか高い圧力に設定しておく。凝縮
熱交換器4で冷却されヘリウムタンク内圧力の低下した
分だけ外部からヘリウムガスが供給できる。
Helium gas supplied from the pure helium gas supply source is sent to the refrigerator low pressure line 12 through the pressure reducing valve 8. The pressure on the low pressure side of the pressure reducing valve is set to a pressure that is very slightly higher than the pressure inside the liquid helium tank during steady operation of the refrigerator. Helium gas can be supplied from the outside by the amount that is reduced by the pressure inside the helium tank cooled by the condensing heat exchanger 4.

(e)  発明の作用 ヘリウム冷却機の冷凍能力は液体ヘリウムタンクへの熱
侵入量より若干大きめに設計されている。
(e) Effect of the invention The refrigerating capacity of the helium cooler is designed to be slightly larger than the amount of heat entering the liquid helium tank.

超電導コイルへの励消磁時には短時間ではあるが大量の
熱がはいり、この場合は冷凍機の冷凍能力ではまかない
きれず蒸発ヘリウムガスを外部に放出せざるを得ない。
When excitation and demagnetization of a superconducting coil is performed, a large amount of heat is generated, albeit for a short period of time, and in this case, the refrigeration capacity of the refrigerator cannot cover it, and the evaporated helium gas must be released to the outside.

従ってこの大気放出した分は励消磁のたびに補給する必
要がある。
Therefore, the amount released into the atmosphere needs to be replenished every time the magnet is excitation and demagnetized.

この補給を冷凍機回路と熱交換したガスヘリウムを供給
することにより行なう方法である。
In this method, this replenishment is performed by supplying gas helium that has undergone heat exchange with the refrigerator circuit.

外部から供給された純ヘリウムガスは減圧弁を通して冷
凍機に流入する。冷凍機の熱交換器により常温よりIO
K程度迄予冷され、液体ヘリウムタンクガス部分曝二人
る。このガスは液体ヘリウムタンク内部の凝縮熱交換器
により凝縮され、液体ヘリウムの状態でヘリウムタンク
内に貯まる。励消磁時に大気放出した分だけ貯液したら
締め切りパルプを閉じ供給側を切り離す。
Pure helium gas supplied from the outside flows into the refrigerator through a pressure reducing valve. IO from room temperature using the refrigerator heat exchanger
Two people were pre-cooled to about K and partially exposed to liquid helium tank gas. This gas is condensed by a condensing heat exchanger inside the liquid helium tank and stored in the helium tank in the form of liquid helium. When the amount of liquid released into the atmosphere during excitation and demagnetization is stored, the closing pulp is closed and the supply side is disconnected.

(f)  他の実施例 (1)  供給ガス回路と冷凍機回路の熱交換は3流体
熱交換器で考えているが、所要液体ヘリウム量(凝縮量
)が小さい場合は、冷凍機回路の熱交換器(2流体)に
例えばパイプを巻き付けた形のガス供給回路を考えても
よい。
(f) Other Examples (1) Heat exchange between the supply gas circuit and the refrigerator circuit is considered to be a three-fluid heat exchanger, but if the required amount of liquid helium (condensation amount) is small, the heat exchange of the refrigerator circuit For example, a gas supply circuit in which a pipe is wound around an exchanger (two fluids) may be considered.

(2)締切りバルブ位置は常温、低温側いずれでもよい
(2) The shutoff valve position may be at either the normal temperature or low temperature side.

(3)  供給ガスを低圧回路に設けるとしたが、高圧
回路に設けることも可能である。この場合は減圧弁の位
置が変更になる。
(3) Although the supply gas is provided in the low pressure circuit, it is also possible to provide it in the high pressure circuit. In this case, the position of the pressure reducing valve will be changed.

仮)総合的な効果 本発明によれば、液体ヘリウムの補給が簡単な作業で行
なえ、かつ効率よくできる。
Provisional) Overall Effects According to the present invention, replenishment of liquid helium can be performed easily and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による冷凍フロー図。 FIG. 1 is a refrigeration flow diagram according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 超電導コイルとそれを収納、冷却する液体ヘリウム入り
のタンクと凝縮熱交換器を有するヘリウム冷却機とから
なる超電導磁石システムにおいて、一端を減圧弁を介し
てヘリウムガス供給源と連結し、他端を液体ヘリウムタ
ンク内に連結した低圧ヘリウムガス供給回路をヘリウム
冷却機の熱交換機に並行に設けたことを特徴とする超電
導磁石の冷却装置。
In a superconducting magnet system consisting of a superconducting coil, a tank containing liquid helium to house and cool it, and a helium cooler with a condensing heat exchanger, one end is connected to a helium gas supply source via a pressure reducing valve, and the other end is connected to a helium gas supply source through a pressure reducing valve. A cooling device for a superconducting magnet, characterized in that a low-pressure helium gas supply circuit connected to a liquid helium tank is provided in parallel to a heat exchanger of a helium cooler.
JP57121195A 1982-07-14 1982-07-14 Cooling device of superconductive magnet Granted JPS5913308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121195A JPS5913308A (en) 1982-07-14 1982-07-14 Cooling device of superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121195A JPS5913308A (en) 1982-07-14 1982-07-14 Cooling device of superconductive magnet

Publications (2)

Publication Number Publication Date
JPS5913308A true JPS5913308A (en) 1984-01-24
JPS6349887B2 JPS6349887B2 (en) 1988-10-06

Family

ID=14805212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121195A Granted JPS5913308A (en) 1982-07-14 1982-07-14 Cooling device of superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5913308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937953A1 (en) * 1998-02-19 1999-08-25 Oxford Instruments (Uk) Limited Refrigerator
CN109250323A (en) * 2018-07-23 2019-01-22 中国科学院合肥物质科学研究院 A kind of train superconducting magnet liquid helium liquid nitrogen storage liquefaction composite tanks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937953A1 (en) * 1998-02-19 1999-08-25 Oxford Instruments (Uk) Limited Refrigerator
US5979176A (en) * 1998-02-19 1999-11-09 Oxford Instruments (Uk) Limited Refrigerator
CN109250323A (en) * 2018-07-23 2019-01-22 中国科学院合肥物质科学研究院 A kind of train superconducting magnet liquid helium liquid nitrogen storage liquefaction composite tanks

Also Published As

Publication number Publication date
JPS6349887B2 (en) 1988-10-06

Similar Documents

Publication Publication Date Title
KR100227878B1 (en) Combined multi-modal air conditioning apparatus and negative energy storage system
RU2002118599A (en) CRYOGENIC REFRIGERATED REFRIGERATOR UNIT FOR A ROTOR HAVING A HIGH-TEMPERATURE SUPERCONDUCTIVE WINDING OF EXCITATION AND METHOD
CN100416880C (en) Multi-stage refrigeration of high-temp. superconducting
JPS5913308A (en) Cooling device of superconductive magnet
US20040221586A1 (en) Pulse tube refrigerator
JPH11118349A (en) Helium gas condensing and liquefying device
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JPH02136687A (en) Utilization of cold heat effected by accumulating coil heat of low-temperature liquefied gas
JPS58112305A (en) Superconductive magnet device
JP3908975B2 (en) Cooling device and cooling method
JPS60178260A (en) Cryogenic refrigerator
JP2003086418A (en) Cryogenic device
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
JPH05118696A (en) Heat pump device
JP2617172B2 (en) Cryogenic cooling device
JPH0227828B2 (en)
JPS59117281A (en) Cooling apparatus
JP2000154944A (en) Cooling apparatus for cryogenic container
JPH06283769A (en) Superconducting magnet refrigerating system
JPH11173689A (en) Heat storage type cooling device
JPS59132603A (en) Cooling system
KR20230150445A (en) How to reduce the temperature of the receiver refrigerant liquid in the refrigeration cycle system
JPH03219604A (en) Superconducting magnet device
JP3360246B2 (en) Showcase refrigeration system and method of operating the system
JPH08145487A (en) Helium liquefying magnetic refrigerator