JPS61221329A - Production of permanent magnet having axis of easy magnetization in radial direction of plate plane - Google Patents

Production of permanent magnet having axis of easy magnetization in radial direction of plate plane

Info

Publication number
JPS61221329A
JPS61221329A JP6075485A JP6075485A JPS61221329A JP S61221329 A JPS61221329 A JP S61221329A JP 6075485 A JP6075485 A JP 6075485A JP 6075485 A JP6075485 A JP 6075485A JP S61221329 A JPS61221329 A JP S61221329A
Authority
JP
Japan
Prior art keywords
magnetic field
annealing
plate
subjected
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6075485A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6075485A priority Critical patent/JPS61221329A/en
Publication of JPS61221329A publication Critical patent/JPS61221329A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Abstract

PURPOSE:To produce a permanent magnet which has high magnetic flux density and has the axis of easy magnetization in the radial direction of the plate plane by cooling ultraquickly the melt of an Fe-Cr-Co alloy, forming the melt into an annular or disk shape and subjecting the same to magnetic field annealing then to aging annealing under specific conditions. CONSTITUTION:The Fe-Cr-Co alloy contg., by wt%, 10-40% Cr, 2-40% Co and 0.01-5.00% at least one kind among B, Be, P, Al, Si, Ti, Zr, Hf, V, Nb, Ta, Mo and W and consisting of the balance Fe is melted. Such molten metal is dropped onto a cooling roll under rotation at a high speed by which the molten metal is ultraquickly cooled at a cooling rate of 10<3> deg.C/sec to form a plate material. The plate material is subjected to a soln. heat treatment at 900-1,300 deg.C according to need and is formed to the annular or disk shape. The annular or disk-shaped material is subjected to the magnetic field annealing while the impressing direction of the magnetic field is relatively rotated within the plane parallel with the plate plane in a 600-700 deg.C range and in succesiion the material is subjected to the aging annealing at the lower temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

C産業上の利用分野) この発明は、板面ラジアル方向に磁化容易軸を有する永
久磁石の製造方法に関し、とくにモータ用永久磁石など
リング状や円板状の形状で用いられる用途に供してとり
わけ有用なものである。
Field of Industrial Application) This invention relates to a method of manufacturing a permanent magnet having an axis of easy magnetization in the radial direction of the plate surface, and is particularly suitable for use in applications such as permanent magnets for motors and the like in a ring or disk shape. It is useful.

【従来の技術) ラジアル異方化や多極着磁を施すリング状または円板状
の永久磁石は、従来主に、フェライトや希土類系磁石の
微粉末を原料とした圧縮焼結や、プラスチック成形など
によって製造されていた。 しかしながらかくして得られた材料は、保磁力Boは大
きいものの、密度が低いことや化合物であることなどか
ら、高い磁束密度Brは得られなかった。また元来等方
的な製法であるため、磁化容易軸の固定化も離しかった
。 他方、Brの高い合金磁石において、Haの増大を図る
ためには、とくにFe −Or −00合金においては
磁場中処理を施しているが、かかる処理を施した場合、
磁場方向に近い方向を持つ(001>軸方向に長軸をも
って二相に分離する。従ってかかる材料は、−軸異方性
の永久磁石といえる。 C発明が解決しようとする問題点) 磁束密度が高く、シかも板面ラジアル方向に磁化容易軸
を有する永久磁石の有利な製造方法を与えることが、こ
の発明の目的である。 +iui点を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意研究を重
ねた結果、以下に述べる知見を得た。 (1) Brを゛高くとるには、密度の低いフェライト
系や希土類系磁石は不利であって、合金系磁石の方が適
している。かかる合金系磁石は、固くて脆いため板状に
するのは通常の圧延法などでは極めて難しいが、この点
、液体超急冷による直接製板法を利用すれば、容易に薄
帯を得ることができる。 (2)板面ラジアル方向に磁化容易軸を配列させるため
には、磁化容易軸が板面内に含まれていることが必要で
あるが、液体超急冷法により得られる薄帯は、板面に平
行に(100)面が集合し、従って板面内に磁化容易軸
(100>(010>が多数存在しているので、この点
でも有利である。 (8)ラジアル方向に磁化容易軸を形氏させるためには
、二相分離による異相の成長方向を制御すれば良い。す
なわち回転する磁場中または磁場中で材料を回転させな
から二相分離焼鈍を施せば良い。 この発明は、上記の知見に由来するものである。 すなわちこの発明は、Or : 1 G〜40 wt%
c以下単に%で示す)、Co:2〜40%ならびにB 
* Be 、 P 、 AZ 、 Si 、 Ti 、
 Zr 、 Hf 、 V 。 Nb * Ta 、 MoおよびWのうちから選んだ少
なくとも一種j 0.01〜5.00%を含有し、残部
実質的にFeの組成になる合金板を、必要に応じて90
0〜1300℃の温度範囲で溶体化処理したのち、リン
グ状または円板状に成形し、ついでaOO〜700℃の
温度範囲で、該成形板に対しその板面と平行な面内にお
いて磁場の印加方向を相対的に回転させながら磁場焼鈍
を施し、引続き磁場焼鈍温度よりも低い温度で時効焼鈍
を施すことから成る板面ラジアル方向に磁化容易軸を有
する永久磁石の製造方法である。 この発明において、合金板としては、上記組成の溶湯を
、冷却面が高速で更新移動する冷却体上に供給し、lO
℃/S以上の冷却速度で急冷凝固させて得た、厚みO,
Oa〜1.00asの薄板が、とりわけ有利に適合する
。 以下この発明を具体的に説明する。 まずこの発明の基礎となった研究結果から説明する。 240r −15Co −9W −Fe合金を溶製した
のち、回転する双ロールの接触部に連続的に供給し、急
冷凝固させて、厚み0.50謔の薄板を作成した。この
薄板から、外径39w5、内径IQmのリング状試料を
打抜き、10 koeの強さを有する回転磁場中、一方
向磁場中および無磁場中でそれぞれ、660℃、10分
間保持し、引続いて磁場を加えずに610 ”Cで24
時間、ツいで500 ’Cまで10℃/hで冷却してが
ら50.0 ”Cで24時間の時効焼鈍を施した。 得られた各リング試料の磁気特性について調べた結果を
第1[a、bおよびCにそれぞれ示す。 同図aは回転磁場中で焼鈍した場合、同図すは一方向磁
場で焼鈍した場合、そして同図Cは無磁場焼鈍の場合で
あり、図中Hrotは回転磁場、H/は磁場に平行、H
よけ磁場に垂直であることを示す。 同図から明らかなように、回転磁場をかけた場合にとり
わけすぐれた特性が得られている。 次ニ24 (3r −1s Co −4W −Fe合金
を溶製したのち鋳型に注入し、得られた鋳片を1380
℃で80分間加熱後、熱間圧延を施してQJ15m厚の
薄板とした。ついでこの薄板に1280℃で溶体化処理
を施したのち、外径80箇、内径10簡のリングに打抜
いた試料を、上述と同様にして有磁場および無磁場での
焼鈍ついで時効焼鈍を施してから測定した磁気特性につ
いての調査結果を、第2図a−Oにそれぞれ示す。図中
Hrot ’ H7およびH工は上述したとおりであり
、またR//は圧延方向、R工は圧延垂直方向を示す。 同図からも明らかなように、回転磁場をかけることによ
り磁気特性は大幅に向上する。これに対して一方向磁場
焼鈍の場合には、H/とH工とで保磁力が大きく異なり
、また無磁場焼鈍では大きな保磁力が得られない。 発明者らは、上記した基礎的データに基づき研究を重ね
た結果、以下のように製造条件を規制することにより、
板面ラジアル方向に磁化容易軸を有する永久磁石ができ
ることを確認した。 α)素材の成分組成 Or:IQ−40% Qrは、α相安定化元素として有効に寄与する。 しかしながら含有量が10%に満たないとα相が不安定
となり、一方40%を超えるとα相を形成して脆化する
ので、10−40%の範囲に限定した。 Co : 2〜40% ○Oは、2相分離後の強磁性相形成元糞として有用であ
るが、2%未満では高保磁力を得ることができず、一方
40%を超えると脆くなる他、不経済でもあるので、含
有量は2〜40%の範囲に限定した。 B+ Be、P、 Al、 Si、 Tit Zr+ 
Hf* L Nb、 Ta、 M。 およびW : 0.01〜5.0θ% 上掲各元業はそれぞれ、α相の安定化促進元素として有
効に寄与し、その効果は均等である。しかしながら単独
使用または併用いずれの場合においても、含有量が0.
01%に満たないとその添加効果に乏しく、一方5.0
0%を超えると飽和磁束密度の低下を招き、結果的に残
留磁束密度を低下させて最大エネルギー積(BH)!n
axを低減させるので、0.01〜5.00%の範囲で
添加することにした0 (2)回転磁場中二相分離焼鈍 上記した好適成分組成に溶製した合金溶湯を、造塊−圧
延法または後述する液体超急冷法によって薄板とする。 ついで打抜き、エツチングまたはワイヤーカットなどに
よって、リング状または円板状に成形したのち、回転磁
場中すなわち成形板に対しその板面と平行な面内におい
て磁場の印加方向を回転させるかまたは磁場の印加方向
は固定して成形板を回転させる条件下に焼鈍処理を施す
。 かかる焼鈍処理によって合金組織はα、相とα2相との
二相に分離するが、このとき長軸方向は磁場方向の影響
を受けるために、該長軸が放射状に伸びたいわゆるラジ
アル異方性が形成されるわけである。 ここに焼鈍温度が700℃を超えると、合金のキューリ
一点を超え、磁場焼鈍の効果がなくなるおそれが大きく
、一方600℃未満では二相分離が生じないかまた生じ
るにしても長時間を要するため、磁場焼鈍は600〜7
00 ’Cの温度範囲で行うものとした。 (8)時効焼鈍 上記の磁場焼鈍を経た薄板は、α1相とα、相との組成
差を拡大し、磁気特性の一層の向上を図るために、時効
焼鈍を施す必要がある。 このとき上記した二相分離焼鈍温度と同じ温度で長時間
の焼鈍を行うと、分離したα、相またはα2相が粗大化
し過ぎて形状異方性を損うので、時効焼鈍は二相分離焼
鈍温度よりも低い温度で行うことが必要である。 かくしてリング状または円板状の材料につき、板面ラジ
アル方向に磁化容易軸を有する永久磁石が得られるので
ある。 (4)溶体化処理 上述した成分組成−・回転磁場中二相分離焼鈍一時効焼
鈍からなる工程によって、ラジアル異方性を有する板状
永久磁石が得られるが、特性改善の面からは、回転磁場
中二相分離焼鈍に先立って、溶体化処理を施すことが一
層有利である。 この溶体化処理は、素材をα単一槽にするために施す処
理であるが、処理温度が900℃に満たないと溶体化に
長時間を要し、一方1300℃を超えると板表面が融解
する場合があるので、900〜1300℃の温度範囲で
行う必要がある。 さらにこの発明の素材である合金板としては、液体超急
冷法によって得られた薄板がとりわけ好適である。 というのは液体超急冷法を適用した場合には、1)α相
が過冷却されて、溶体化処理を施さなくてもα単一槽が
容易に得られる、 ■)高温での溶体化処理が不要のため、微細な結晶粒の
まま2相分離焼鈍が行える、 ■)得られた薄帯の板面方位は(1o o )(ovw
>であり、板面に多数の磁化容易軸が存在する、などの
多くの利点をそなえるからである。 しかしながら冷却速度が103℃/Bより小さいと、直
接製板後、一部変態を誘発してα単一槽が得られないの
で、冷却速度は108℃/S以上とする必要がある。 また薄帯の厚みをQ、Q5m111よりも薄くした場合
には、欠陥の多い板となって十分な特性が得蕎く、一方
l、QQs+1より厚くすると、製版後も内部に未凝固
部が残存して10”℃/S以上の冷却速度が得難いので
、急冷薄帯の板厚は0.05〜1.001Is程度とす
るのが好ましい。 (作 用) 回転磁場中にて二相分離焼鈍を行うことにより、分離相
が放射状に成長した組織となり、ラジアル異方性が得ら
れる。 C実施例】 実施例1 280r −15Co −3AZ −2Ti −Fe(
73合金組成になる10kgのインゴットを作製し、熱
間圧延によりa、a m厚の板としたのち、ざらに冷間
圧延を熱間圧延板の長手直角方向に加えて、O,a O
鵡厚の板厚とした。この板に対して溶体化処理すること
なく、ただちに直径20■φの円板に打抜いたのち、1
0 koeの回転磁場中で660℃で80分間焼鈍し、
ついで磁場を零にしてから、さらに580℃、560℃
、540℃、620℃でそれぞれ1時間の焼鈍を施した
のち、500℃で5時間焼鈍した。 かくジて得られた円板の磁気特性について調べた結果を
、回転しない一方向性の磁場中焼鈍した場合と比較して
下表1に示す。 表     1 実施例2 2 B Or −1400−2No −Feの組成にな
る合金溶湯を、その噴射ノズルから、回転する双ロール
の接触部に供給し、lO℃/Sの冷却速度で急冷凝固さ
せて、厚み0.501111の薄板に仕上げた。 この゛薄板から外径a o m 、内径1OIISのリ
ングを打抜いたのち、l Okoeの回転磁場中、一方
向磁場中および無磁場中にそれぞれ、650℃160分
保持し、引続いて磁場を加えずに600℃で24時間、
ついで500℃まで10℃/hの速度で冷却してから5
00“Cで24時間の時効焼鈍を施した。 得られた各リングの保磁力についての測定結果。 を表2にまとめて示す。 表    2 実施例8 240r −15(30−4V −Fe )合金溶湯を
、双ロール法により、厚みQ、4Qtll薄板に仕上げ
た。この薄板から外径aosmの円板を打抜いたのち、
10 koeの回転磁場中、一方向磁場中および無磁場
中にそれぞれ、680℃l2O分間保持し、引得られた
各円板の保磁力を表8に示す。 表   8 実施例4 24 Cr −15Co −4W −Feの合金組成を
溶解炉にて溶製し、鋳型に注入した。得られた鋳片を1
300℃に加熱後、厚みQ、(15mに圧延した。 この圧延板に11300℃で溶体化処理を施したのち、
外径SOW、内径IQsmのリングを打抜いて゛から、
1OkOeの回転磁場中において660℃110分間の
磁場中焼鈍を施し、引続いて磁場を加えずに610℃1
24時間、ついで500℃まで10″C/hで冷却して
から500℃124時間の時効焼鈍を施した。 かくして得られたリングの保磁力を表会に示す6なお比
較のため回転磁場中焼鈍に替えて、一方向磁場中および
無磁場中で焼鈍を施したものの保磁力についての測定結
果も、表4に併せて示す。 表   4 実施例5 220r −15Co −5V −Feの組成の合金溶
湯から、10J9のインゴットを作製した。これを13
00℃に180分間加熱後、厚み0.40mまで熱間圧
延したのち、1250’Cで溶体化処理を施した。つい
で外径3Qwの円板に打抜いてから、10 koeの回
転磁場中、一方向磁場中および無磁場中に650℃、2
0分間保持し、ダf続いて磁場を加えずに600’C,
24時間、ついで500℃まで10℃/sの速度で冷却
してから、500℃で12時間の時効焼鈍を施した。 得られた各円板の保磁力についての測定結果を表5に示
す。 表    5 C発明の効果) かくしてこの発明によれば、従来困難視された板面内で
ラジアル方向に異方性を有する永久磁石を得ることがで
き、とくに翼材として急冷薄帯を利用した場合には溶体
化処理を省略することもでき、省工程、省エネルギーを
も併せて実現できる6
[Conventional technology] Ring-shaped or disk-shaped permanent magnets that are radially anisotropic or multipolar magnetized have conventionally been produced mainly by compression sintering using fine powder of ferrite or rare earth magnets, or by plastic molding. It was manufactured by etc. However, although the thus obtained material had a large coercive force Bo, a high magnetic flux density Br could not be obtained because the material had a low density and was a compound. Furthermore, since the manufacturing method was originally isotropic, the axis of easy magnetization was not easily fixed. On the other hand, in order to increase Ha in alloy magnets with high Br, Fe-Or-00 alloys in particular are subjected to magnetic field treatment, but when such treatment is performed,
Having a direction close to the magnetic field direction (001>Separated into two phases with a long axis in the axial direction. Therefore, such a material can be said to be a permanent magnet with -axis anisotropy. C) Problem to be solved by the invention) Magnetic flux density It is an object of the present invention to provide an advantageous method for manufacturing a permanent magnet having a high magnetization and an axis of easy magnetization in the radial direction of the plate surface. +Means for solving the iui point) The inventors have conducted intensive research to solve the above problem, and as a result, have obtained the knowledge described below. (1) In order to obtain a high Br, ferrite magnets and rare earth magnets with low density are disadvantageous, and alloy magnets are more suitable. Such alloy magnets are hard and brittle, so it is extremely difficult to make them into a plate using normal rolling methods. However, by using a direct plate manufacturing method using liquid ultra-quenching, it is possible to easily obtain a ribbon. can. (2) In order to arrange the easy axis of magnetization in the radial direction of the plate surface, it is necessary that the easy axis of magnetization be included within the plate surface. (100) planes gather in parallel to , and therefore there are many easy magnetization axes (100>(010>) within the plate surface, which is also advantageous in this respect. (8) Easy magnetization axes in the radial direction In order to shape the material, it is sufficient to control the growth direction of the different phases due to two-phase separation.In other words, it is sufficient to perform two-phase separation annealing in a rotating magnetic field or without rotating the material in a magnetic field. This invention is based on the knowledge that Or: 1 G to 40 wt%
(hereinafter simply shown in %), Co: 2 to 40% and B
*Be, P, AZ, Si, Ti,
Zr, Hf, V. An alloy plate containing 0.01 to 5.00% of at least one selected from Nb*Ta, Mo, and W, and the remainder having a composition of substantially Fe, is optionally 90%
After solution treatment at a temperature range of 0 to 1300°C, it is formed into a ring or disc shape, and then a magnetic field is applied to the molded plate in a plane parallel to the plate surface at a temperature range of aOO to 700°C. This is a method for manufacturing a permanent magnet having an axis of easy magnetization in the radial direction of the plate surface, which comprises performing magnetic field annealing while relatively rotating the application direction, and then performing aging annealing at a temperature lower than the magnetic field annealing temperature. In this invention, as an alloy plate, a molten metal having the above composition is supplied onto a cooling body whose cooling surface is updated at high speed, and lO
Thickness O, obtained by rapid solidification at a cooling rate of ℃/S or more.
Sheets of Oa to 1.00as are particularly advantageously suited. This invention will be explained in detail below. First, the research results that formed the basis of this invention will be explained. After the 240r-15Co-9W-Fe alloy was melted, it was continuously supplied to the contact portion of rotating twin rolls and rapidly solidified to create a thin plate with a thickness of 0.50 mm. A ring-shaped sample with an outer diameter of 39w5 and an inner diameter of IQm was punched out from this thin plate, held at 660°C for 10 minutes in a rotating magnetic field with a strength of 10 koe, in a unidirectional magnetic field, and in no magnetic field, and then 24 at 610”C without applying a magnetic field
The rings were cooled at 10°C/h to 500'C for 24 hours and then subjected to age annealing at 50.0'C for 24 hours. , b and C. Figure a shows the case of annealing in a rotating magnetic field, figure C shows the case of annealing in a unidirectional magnetic field, and figure C shows the case of no magnetic field annealing. magnetic field, H/ is parallel to the magnetic field, H
Indicates that it is perpendicular to the deflecting magnetic field. As is clear from the figure, particularly excellent characteristics are obtained when a rotating magnetic field is applied. Next, 24 (3r -1s Co -4W -Fe alloy was melted and poured into a mold, and the obtained slab
After heating at ℃ for 80 minutes, hot rolling was performed to obtain a thin plate with a thickness of QJ15m. This thin plate was then subjected to solution treatment at 1280°C, and samples punched into rings with an outer diameter of 80 rings and an inner diameter of 10 rings were annealed in a magnetic field and a non-magnetic field, and then subjected to age annealing in the same manner as described above. The results of the investigation on the magnetic properties measured after the test are shown in Figures 2a-O, respectively. In the figure, Hrot' H7 and H-work are as described above, R// indicates the rolling direction, and R-work indicates the rolling direction. As is clear from the figure, the magnetic properties are significantly improved by applying a rotating magnetic field. On the other hand, in the case of unidirectional magnetic field annealing, the coercive force differs greatly between H/ and H process, and a large coercive force cannot be obtained in non-magnetic field annealing. As a result of repeated research based on the above-mentioned basic data, the inventors determined that by regulating the manufacturing conditions as follows,
It was confirmed that a permanent magnet with an axis of easy magnetization in the radial direction of the plate surface could be produced. α) Component composition of the material Or: IQ-40% Qr effectively contributes as an α phase stabilizing element. However, if the content is less than 10%, the alpha phase will become unstable, while if it exceeds 40%, the alpha phase will form and become brittle, so it was limited to a range of 10-40%. Co: 2-40% ○O is useful as a source of ferromagnetic phase formation after two-phase separation, but if it is less than 2%, high coercive force cannot be obtained, while if it exceeds 40%, it becomes brittle and Since it is also uneconomical, the content was limited to a range of 2 to 40%. B+ Be, P, Al, Si, Tit Zr+
Hf* L Nb, Ta, M. and W: 0.01 to 5.0 θ% Each of the above-mentioned elements contributes effectively as an element that promotes stabilization of the α phase, and their effects are equal. However, whether used alone or in combination, the content is 0.
If it is less than 0.01%, the effect of the addition is poor;
If it exceeds 0%, the saturation magnetic flux density will decrease, resulting in a decrease in the residual magnetic flux density and the maximum energy product (BH)! n
(2) Two-phase separation annealing in a rotating magnetic field The molten alloy produced to the above-mentioned preferred composition is ingot-formed and rolled. It is made into a thin plate by the liquid ultra-quenching method or the liquid ultra-quenching method described below. Then, after forming it into a ring or disk shape by punching, etching, or wire cutting, the direction of application of the magnetic field is rotated in a rotating magnetic field, that is, in a plane parallel to the plate surface, or the magnetic field is applied. The annealing treatment is performed under the condition that the direction is fixed and the molded plate is rotated. Through such annealing treatment, the alloy structure is separated into two phases: α phase and α2 phase, but at this time, the long axis direction is affected by the direction of the magnetic field, so the long axis extends radially, which is called radial anisotropy. is formed. If the annealing temperature exceeds 700°C, there is a high possibility that the alloy will exceed the Curie point, and the effect of magnetic field annealing will be lost. On the other hand, if the annealing temperature is below 600°C, two-phase separation will not occur or will take a long time. , magnetic field annealing is 600-7
The test was carried out in a temperature range of 00'C. (8) Age Annealing The thin plate subjected to the magnetic field annealing described above needs to be subjected to age annealing in order to expand the compositional difference between the α1 phase and the α phase and to further improve the magnetic properties. At this time, if annealing is performed for a long time at the same temperature as the two-phase separation annealing temperature mentioned above, the separated α, phase or α2 phase will become too coarse and lose shape anisotropy. It is necessary to carry out the operation at a temperature lower than the above temperature. In this way, a permanent magnet having a ring-shaped or disk-shaped material having an axis of easy magnetization in the radial direction of the plate surface can be obtained. (4) Solution treatment A plate-shaped permanent magnet with radial anisotropy can be obtained by the process consisting of the above-mentioned component composition - two-phase separation annealing and temporary annealing in a rotating magnetic field. It is more advantageous to perform solution treatment prior to two-phase separation annealing in a magnetic field. This solution treatment is performed to transform the material into a single tank, but if the treatment temperature is less than 900℃, it will take a long time for solution treatment, while if it exceeds 1300℃, the plate surface will melt. Therefore, it is necessary to carry out the process at a temperature range of 900 to 1300°C. Further, as the alloy plate which is the material of the present invention, a thin plate obtained by a liquid ultra-quenching method is particularly suitable. This is because when the liquid super-quenching method is applied, 1) the α phase is supercooled and a single α tank can be easily obtained without solution treatment, and 2) solution treatment at high temperature. is not required, so two-phase separation annealing can be performed with fine crystal grains intact. ■) The plate surface orientation of the obtained ribbon is (1o o) (ovw
>, and has many advantages such as the presence of many axes of easy magnetization on the plate surface. However, if the cooling rate is lower than 103° C./B, partial transformation will be induced after direct sheet production and a single α tank will not be obtained, so the cooling rate needs to be 108° C./S or higher. Also, if the thickness of the ribbon is made thinner than Q, Q5m111, the plate will have many defects and sufficient properties will be obtained, whereas if it is made thicker than l, QQs+1, unsolidified parts will remain inside even after plate making. Since it is difficult to obtain a cooling rate of 10"C/S or higher, it is preferable that the thickness of the quenched ribbon be approximately 0.05 to 1.001Is. (Function) Two-phase separation annealing is performed in a rotating magnetic field. By doing this, a structure in which the separated phase grows radially becomes a structure, and radial anisotropy is obtained.C Example] Example 1 280r -15Co -3AZ -2Ti -Fe(
A 10 kg ingot having a composition of 73 alloy was produced and hot-rolled into a plate with a thickness of a and a m, and then roughly cold-rolled in the direction perpendicular to the longitudinal direction of the hot-rolled plate.
The thickness of the board was made as thick as a parrot. This plate was immediately punched into a disc with a diameter of 20 mm without being subjected to solution treatment.
Annealed at 660 °C for 80 minutes in a rotating magnetic field of 0 koe,
Then, after reducing the magnetic field to zero, the temperature was further increased to 580℃ and 560℃.
, 540°C, and 620°C for 1 hour, respectively, and then annealed at 500°C for 5 hours. Table 1 below shows the results of an investigation of the magnetic properties of the thus obtained disks, in comparison with those obtained by annealing in a non-rotating, unidirectional magnetic field. Table 1 Example 2 A molten alloy having a composition of 2 B Or -1400-2No -Fe was supplied from its injection nozzle to the contact area of rotating twin rolls, and rapidly solidified at a cooling rate of 10°C/S. , finished into a thin plate with a thickness of 0.501111. After punching a ring with an outer diameter of a om and an inner diameter of 1 OIIS from this thin plate, it was held at 650°C for 160 minutes in a rotating magnetic field, a unidirectional magnetic field, and no magnetic field, respectively, and then the magnetic field was removed. 24 hours at 600℃ without adding
Next, cool down to 500°C at a rate of 10°C/h, and then
Aging annealing was performed at 00"C for 24 hours. The measurement results of the coercive force of each ring obtained are summarized in Table 2. Table 2 Example 8 240r -15 (30-4V -Fe ) alloy The molten metal was finished into a thin plate with a thickness of Q and 4Qtll by the twin roll method.After punching out a disk with an outer diameter of aosm from this thin plate,
Table 8 shows the coercive force of each disk obtained by holding it for 680° C. 12O in a rotating magnetic field of 10 koe, in a unidirectional magnetic field, and in no magnetic field. Table 8 Example 4 An alloy composition of 24Cr-15Co-4W-Fe was melted in a melting furnace and poured into a mold. 1 piece of the obtained slab
After heating to 300°C, it was rolled to a thickness of Q, (15m. After solution treatment was applied to this rolled plate at 11,300°C,
After punching out a ring with outer diameter SOW and inner diameter IQsm,
Magnetic field annealing was performed at 660°C for 110 minutes in a rotating magnetic field of 10 kOe, followed by annealing at 610°C for 110 minutes without applying a magnetic field.
The rings were then cooled to 500°C at a rate of 10"C/h for 24 hours, and then subjected to age annealing at 500°C for 124 hours. The coercive force of the ring thus obtained is shown in the table 6. For comparison, the ring was annealed in a rotating magnetic field. Table 4 also shows the measurement results of the coercive force of the samples annealed in a unidirectional magnetic field and in no magnetic field. Table 4 Example 5 Molten alloy having a composition of 220r -15Co -5V -Fe From this, an ingot of 10J9 was produced.
After heating to 00°C for 180 minutes, hot rolling was performed to a thickness of 0.40m, and solution treatment was performed at 1250'C. Then, after punching out a disk with an outer diameter of 3Qw, it was heated at 650°C for 2 hours in a rotating magnetic field of 10 koe, in a unidirectional magnetic field, and in no magnetic field.
Hold for 0 minutes, then heat to 600'C without applying a magnetic field.
After cooling to 500° C. at a rate of 10° C./s for 24 hours, aging annealing was performed at 500° C. for 12 hours. Table 5 shows the measurement results regarding the coercive force of each disc obtained. Table 5 Effects of invention C) Thus, according to this invention, it is possible to obtain a permanent magnet that has anisotropy in the radial direction within the plate plane, which was considered difficult in the past, especially when a quenched ribbon is used as the blade material. Solution treatment can also be omitted, resulting in process and energy savings6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図a、b、cはそれぞれ、回転磁場中
、一方向磁場中および無磁場中で焼鈍処理を施して得た
各リングの減磁曲線図である。
FIG. 1 and FIGS. 2a, b, and c are demagnetization curve diagrams of each ring obtained by annealing in a rotating magnetic field, a unidirectional magnetic field, and no magnetic field, respectively.

Claims (1)

【特許請求の範囲】 1、Cr:10〜40wt% Co:2〜40wt%ならびに B、Be、P、Al、Si、Ti、Zr、Hf、V、N
b、Ta、MoおよびWのうちから選んだ少なくとも一
種:0.01〜5.00wt% を含有し、残部実質的にFeの組成になる合金板を、リ
ング状または円板状に成形後、 600〜700℃の温度範囲で、該成形板に対しその板
面と平行な面内において磁場の印加方向を相対的に回転
させながら磁場焼鈍を施し、引続き磁場焼鈍温度よりも
低い温度で時効焼鈍を施すことを特徴とする板面ラジア
ル方向に磁化容易軸を有する永久磁石の製造方法。 2、合金板が、上記組成の溶湯を、冷却面が高速で更新
移動する冷却体上に供給し、10^3℃/s以上の冷却
速度で急冷凝固させて得た、厚み0.05〜1.00m
mの薄板である特許請求の範囲第1項記載の方法。 3、Cr:10〜40wt% Co:2〜40wt%ならびに B、Be、P、Al、Si、Ti、Zr、Hf、V、N
b、Ta、MoおよびWのうちから選んだ少なくとも一
種:0.01〜5.00wt% を含有し、残部実質的にFeの組成になる合金板を、9
00〜1300℃の温度範囲で溶体化処理したのち、リ
ング状または円板状に成形し、ついで600〜700℃
の温度範囲で、該成形板に対しその板面と平行な面内に
おいて磁場の印加方向を相対的に回転させながら磁場焼
鈍を施し、引続き磁場焼鈍温度よりも低い温度で時効焼
鈍を施すことを特徴とする板面ラジアル方向に磁化容易
軸を有する永久磁石の製造方法。
[Claims] 1. Cr: 10-40 wt% Co: 2-40 wt% and B, Be, P, Al, Si, Ti, Zr, Hf, V, N
After forming an alloy plate containing 0.01 to 5.00 wt% of at least one selected from b, Ta, Mo, and W, with the remainder substantially having a composition of Fe, into a ring or disk shape, The molded plate is subjected to magnetic field annealing in a temperature range of 600 to 700°C while relatively rotating the direction of application of the magnetic field in a plane parallel to the plate surface, followed by aging annealing at a temperature lower than the magnetic field annealing temperature. A method for producing a permanent magnet having an axis of easy magnetization in the radial direction of the plate surface. 2. The alloy plate has a thickness of 0.05 to 0.05 and is obtained by supplying the molten metal having the above composition onto a cooling body whose cooling surface renews and moves at high speed, and rapidly solidifying it at a cooling rate of 10^3°C/s or more. 1.00m
2. The method according to claim 1, wherein the thin plate has a thickness of m. 3. Cr: 10-40 wt% Co: 2-40 wt% and B, Be, P, Al, Si, Ti, Zr, Hf, V, N
b, at least one selected from Ta, Mo, and W: 0.01 to 5.00 wt%, and the balance is substantially Fe.
After solution treatment at a temperature range of 00 to 1300°C, it is formed into a ring or disk shape, and then heated to a temperature of 600 to 700°C.
The formed plate is subjected to magnetic field annealing while relatively rotating the direction of application of the magnetic field in a plane parallel to the plate surface, and then subjected to aging annealing at a temperature lower than the magnetic field annealing temperature. A method for manufacturing a permanent magnet having an axis of easy magnetization in the radial direction of the plate surface.
JP6075485A 1985-03-27 1985-03-27 Production of permanent magnet having axis of easy magnetization in radial direction of plate plane Pending JPS61221329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6075485A JPS61221329A (en) 1985-03-27 1985-03-27 Production of permanent magnet having axis of easy magnetization in radial direction of plate plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6075485A JPS61221329A (en) 1985-03-27 1985-03-27 Production of permanent magnet having axis of easy magnetization in radial direction of plate plane

Publications (1)

Publication Number Publication Date
JPS61221329A true JPS61221329A (en) 1986-10-01

Family

ID=13151373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6075485A Pending JPS61221329A (en) 1985-03-27 1985-03-27 Production of permanent magnet having axis of easy magnetization in radial direction of plate plane

Country Status (1)

Country Link
JP (1) JPS61221329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942981B2 (en) 2003-06-13 2011-05-17 Vacuumschmelze Gmbh & Co. Kg Rotationally symmetrical hollow body made of a deformable permanently magnetic alloy and its use and production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942981B2 (en) 2003-06-13 2011-05-17 Vacuumschmelze Gmbh & Co. Kg Rotationally symmetrical hollow body made of a deformable permanently magnetic alloy and its use and production process

Similar Documents

Publication Publication Date Title
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JPS6133900B2 (en)
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JPS61221329A (en) Production of permanent magnet having axis of easy magnetization in radial direction of plate plane
JPS60194502A (en) Preparation of permanent magnet blank
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JPH0772293B2 (en) Method for manufacturing Fe-Co-V based cast magnetic component
JPH06325916A (en) Manufacture of anisotropic permanent magnet
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH0521216A (en) Permanent magnet alloy and its production
JPS6159815B2 (en)
JPS6256203B2 (en)
JPS6151028B2 (en)
JPS619520A (en) Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
JPH0827545A (en) Material giving huge magnetic strain and production thereof
JPH01171207A (en) Manufacture of parmanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH0297617A (en) Production of grain-oriented permanent magnet alloy
JPS6234829B2 (en)
JPH0684627A (en) R-b-fe based cast magnet
JPS62124262A (en) Method for modifying magnetic characteristic of high permeability amorphous alloy
JPH0255494B2 (en)