JPH0297617A - Production of grain-oriented permanent magnet alloy - Google Patents

Production of grain-oriented permanent magnet alloy

Info

Publication number
JPH0297617A
JPH0297617A JP24749888A JP24749888A JPH0297617A JP H0297617 A JPH0297617 A JP H0297617A JP 24749888 A JP24749888 A JP 24749888A JP 24749888 A JP24749888 A JP 24749888A JP H0297617 A JPH0297617 A JP H0297617A
Authority
JP
Japan
Prior art keywords
alloy
treatment
magnetic field
permanent magnet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24749888A
Other languages
Japanese (ja)
Inventor
Satoshi Goto
聡志 後藤
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24749888A priority Critical patent/JPH0297617A/en
Publication of JPH0297617A publication Critical patent/JPH0297617A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co

Abstract

PURPOSE:To produce the title grain-oriented permanent magnet alloy with no need for solution treatment by quenching a thin ingot having specified contents of Cr, Co, Mo, and Fe and having a specified thickness from a high temp. to room temp., and then applying in-magnetic-field ageing and ageing. CONSTITUTION:The molten alloy contg. 10-3wt.% Cr, 5-35wt.% Co, 0.1-10.0wt.% Mo, 0.01-5.00wt.% of at least one kind among B, Si, Al, W, Mn, Ti, V, Nb, Zr, Sn, and Zn as required, and the balance Fe is formed into a thin ingot having 3-50mm thickness. The ingot is cooled from >=900 deg.C to room temp. at a rate of >=5 deg.C/s. As a result, only an alpha-single phase region necessary to form a magnet is formed. The alloy is then aged in a magnetic field, and then aged without applying solution treatment. By this method, a grain-oriented permanent magnet alloy having an excellent magnetic characteristic is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一方向性永久磁石合金の製造方法に関し、
特にFe −Cr −Co系永久磁石の製造過程におい
て、Moを添加した薄鋳片を連続鋳造し、その後の冷却
過程に工夫を加えることによって磁石特性の有利な向上
を図つたものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for manufacturing a unidirectional permanent magnet alloy,
In particular, in the manufacturing process of Fe-Cr-Co permanent magnets, thin slabs doped with Mo are continuously cast, and the subsequent cooling process is modified to advantageously improve the magnetic properties.

(従来の技術) Fe −Cr −Co系合金磁石は、AI −Ni −
Co系磁石と同じ(スピノーダル分解型の磁石であるた
め、合金溶湯を鋳造後、1200〜1350℃での溶体
化処理を施してα単相としてから水冷し、その後時効処
理を施してスピノーダル分解を生じさせα→α。
(Prior art) Fe-Cr-Co based alloy magnet is AI-Ni-
Same as Co-based magnets (as it is a spinodal decomposition type magnet, after casting the molten alloy, it is subjected to solution treatment at 1200 to 1350°C to form an α single phase, then water-cooled, and then subjected to aging treatment to undergo spinodal decomposition). Cause α → α.

+α2の2相分離相とすることによって強磁性を発現さ
せている。
Ferromagnetic properties are expressed by creating a two-phase separation phase of +α2.

また異方性を付与する場合には、かかる時効処理中に磁
場を印加させるか、または時効復圧延あるいは線引き等
の塑性加工を施す方法が採用されている。
In addition, when imparting anisotropy, a method is adopted in which a magnetic field is applied during the aging treatment, or plastic working such as aging rerolling or wire drawing is performed.

ところでFe −Cr −Co系合金にMoを数%添加
した場合、前記のスピノーダル分解に結晶異方性が生じ
、<001>方向に優先的に分解することが知られてい
る。したがって<001>方向に磁場を印加して時効処
理を行なうと、二相分離したα1相が<001>方向に
極めて良く伸長し、その結果磁石特性が格段に向上する
By the way, it is known that when a few percent of Mo is added to a Fe-Cr-Co alloy, crystal anisotropy occurs in the spinodal decomposition described above, and decomposition occurs preferentially in the <001> direction. Therefore, when aging treatment is performed by applying a magnetic field in the <001> direction, the two-phase separated α1 phase is extremely well extended in the <001> direction, and as a result, the magnetic properties are significantly improved.

Fe −Cr −Co系磁石合金と同様のスピノーダル
分解型磁石であるアルニコ磁石においては、凝固時の柱
状晶の軸が<001 >軸と一致することを利用し、鋳
造法を工夫して柱状晶を発達させることにより、<OO
b方向の配向度が高い鋳造鋼塊とし、この<001>方
向に磁場中時効処理を施すことによって磁石特性の向上
を図っている。
In alnico magnets, which are spinodally decomposed magnets similar to Fe-Cr-Co magnet alloys, the axis of columnar crystals during solidification coincides with the <001> axis, and the casting method is devised to form columnar crystals. By developing <OO
The cast steel ingot has a high degree of orientation in the b direction, and is subjected to aging treatment in a magnetic field in the <001> direction to improve magnetic properties.

Fe −Cr −Co系合金においても同様の方法が考
案されていて、たとえば特公昭62−46269号公報
においては冷し金を用いた鋳型に合金溶湯を注湯し、凝
固時に温度勾配を持たせることによって柱状晶を発達さ
せている。
A similar method has been devised for Fe-Cr-Co alloys; for example, in Japanese Patent Publication No. 62-46269, molten alloy is poured into a mold using a chilled metal to create a temperature gradient during solidification. This results in the development of columnar crystals.

(発明が解決しようとする課題) しかしながら、かような合金溶湯を一旦鋳型に注湯して
鋼塊とする方法では、鋼塊の冷却途中で非磁性のγ相や
硬くて脆いσ相が析出するため、)容体化処理によるα
単相化工程が省けないところに問題を残していた。
(Problem to be solved by the invention) However, in the method of once pouring molten alloy into a mold to form a steel ingot, non-magnetic γ phase and hard and brittle σ phase precipitate during cooling of the steel ingot. Therefore, α due to the materialization process
The problem remained that the single-phase process could not be omitted.

すなわちこの溶体化処理は、特公昭62−46269号
公報にも示されているとおり、1200〜1300’C
の高温での保持を必要とするため、工業的には著しいコ
スト高を招き、また手間がかかる処理でもあ−。
That is, this solution treatment is carried out at 1200 to 1300'C as shown in Japanese Patent Publication No. 62-46269.
Since it is necessary to maintain the temperature at a high temperature, it leads to a significant increase in industrial costs and is also a time-consuming process.

た。しかもかようにして得られた鋼塊のうぢ柱状晶とな
っている部分は高々75%であり、歩留りも充分とはい
い難かった。
Ta. Moreover, the portion of the steel ingot thus obtained was in the form of columnar crystals at most 75%, and the yield was hardly sufficient.

この発明は、上記の問題を有利に解決するもので、薄鋳
片連続鋳造機(薄スラブキャスター)を活用して90%
以上の柱状晶率を達成し、しかもα単相化のための溶体
化処理を施す必要のない一方向性永久磁石合金の有利な
製造方法を提供することを目的とする。
This invention advantageously solves the above problems, and utilizes a thin slab continuous casting machine (thin slab caster) to achieve a 90% cast rate.
It is an object of the present invention to provide an advantageous method for producing a unidirectional permanent magnet alloy that achieves the above columnar crystal ratio and does not require solution treatment to form an α single phase.

(課題を解決するための手段) すなわちこの発明は、 Cr:10〜35−tχ(以下単に%で示す)Co:5
〜35%および Mo : 0.1〜10.0% を含み、ときにはさらに B+ SI+ AN凱Mn、 Ti、 V、 Nb、 
Zr+ SnおよびZnのうちから選んだ少なくとも一
種: 0.01〜5.00% を含有し、残部は実質的にFe組成になる合金溶湯を、
薄スラブキャスター法によって厚み:3〜50柵の薄鋳
片としたのち、900°C以上の温度から5’C/s以
上の冷却速度で室温まで冷却し、その後磁場中時効処理
および時効処理を施すことからなる一方向性永久磁石合
金の製造方法である。
(Means for Solving the Problems) That is, the present invention provides Cr: 10-35-tχ (hereinafter simply expressed as %) Co: 5
~35% and Mo: 0.1-10.0%, and sometimes further contains B+ SI+ ANkai Mn, Ti, V, Nb,
A molten alloy containing Zr + at least one selected from Sn and Zn: 0.01 to 5.00%, and the remainder having a substantially Fe composition,
After forming a thin slab with a thickness of 3 to 50 mm using the thin slab caster method, it is cooled from a temperature of 900°C or higher to room temperature at a cooling rate of 5'C/s or higher, and then subjected to magnetic field aging treatment and aging treatment. This is a method for producing a unidirectional permanent magnet alloy.

以下、この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明において素材の成分組成を上記の範囲に限
定した理由について述べる。
First, the reason why the component composition of the material is limited to the above range in this invention will be described.

Cr : 10〜35% Crは、非磁性のマトリックスを形成する有用な成分で
あるが、その含有量が10%に満たないと保磁力が低く
、一方35%を超えると残留磁束密度(Br)が低下し
磁石としての性能が劣化するのでCr含有量は10〜3
5%の範囲に限定した。
Cr: 10-35% Cr is a useful component that forms a non-magnetic matrix, but if its content is less than 10%, the coercive force will be low, while if it exceeds 35%, the residual magnetic flux density (Br) will be low. The Cr content is 10 to 3.
It was limited to a range of 5%.

Co : 5〜35% Coは、Feと共に強磁性成分として添加されるもので
あるが、その添加量が5%に満たないとスピノーダル分
解がおこりにくく、一方35%を超えると充分な保磁力
が得られないので、Co含有量は5〜35%の範囲とし
た。
Co: 5-35% Co is added as a ferromagnetic component along with Fe, but if the amount added is less than 5%, spinodal decomposition is difficult to occur, while if it exceeds 35%, sufficient coercive force is not achieved. Therefore, the Co content was set in the range of 5 to 35%.

Mo : 0.1〜10.0% Moは、スピノーダル分解の結晶異方性を促進させるも
のであり、保磁力を高める効果がある。しかしながら0
.1%未満ではその効果に乏しく、−方10.0%を超
えると残留磁束密度が低下するだけでなく保磁力もむし
ろ低下するので、MO含有量は0゜1〜10.0%の範
囲に限定した。
Mo: 0.1 to 10.0% Mo promotes crystal anisotropy of spinodal decomposition and has the effect of increasing coercive force. However, 0
.. If it is less than 1%, the effect is poor, and if it exceeds 10.0%, not only the residual magnetic flux density but also the coercive force will actually decrease, so the MO content should be in the range of 0°1 to 10.0%. Limited.

以上基本成分について説明したが、この他副成分として
B、 St、 AI、 W、 V、 Nb+ Ti+ 
Zr+ Mnt SnおよびZnのうちから選んだ一種
または二種以上を少量添加することもできる。これらの
元素はいずれも保磁力の向上に寄与するが、添加量がo
、oi%未満ではその添加効果に乏しく、一方5.0θ
%を超えると残留磁束密度が低下するので、添加量は単
独添加の場合もまた複合添加の場合も0.O1〜5.0
0%の範囲とする必要がある。
The basic components have been explained above, but other subcomponents include B, St, AI, W, V, Nb+ Ti+
A small amount of one or more selected from Zr+Mnt Sn and Zn can also be added. All of these elements contribute to improving coercive force, but the amount added is
, less than oi%, the addition effect is poor; on the other hand, 5.0θ
%, the residual magnetic flux density decreases, so the amount added should be 0.0% for both single addition and combined addition. O1~5.0
It needs to be within the range of 0%.

次にこの発明の製造方法について説明する。Next, the manufacturing method of this invention will be explained.

さて上記したような成分組成に調整された合金溶湯を、
冷却面が連続移動する1対の冷却ベルト間に連続的に供
給し、厚さ3〜50mmの薄スラブとする。具体的には
第1図に示すような垂直式の薄スラブキャスターあるい
は第2図に示すような水平式の1スラブキヤスターを使
用する。図中番号1はし一ドル、2.2′はタンデイツ
シュ、3゜3′は鋼製冷却ベルト、4.4′はスプレー
ノズル、5は保持容器、6.6′は薄スラブである。
Now, the molten alloy adjusted to the above-mentioned composition,
The material is continuously supplied between a pair of cooling belts whose cooling surfaces move continuously to form a thin slab with a thickness of 3 to 50 mm. Specifically, a vertical thin slab caster as shown in FIG. 1 or a horizontal one-slab caster as shown in FIG. 2 is used. In the figure, number 1 is a dollar, 2.2' is a tundish, 3.3' is a steel cooling belt, 4.4' is a spray nozzle, 5 is a holding container, and 6.6' is a thin slab.

ここでかかる鋳造にあたって、冷却ベルト間の間隙、ベ
ルト材質、ベルト移動速度等を変化させることによって
スラブの厚みを調整することができる。
In this casting process, the thickness of the slab can be adjusted by changing the gap between the cooling belts, the belt material, the belt movement speed, etc.

かくして得られた薄スラブを鋳造後直ちに急冷すること
により、高温領域で生じる(α+γ)相を回避し、磁石
化に必要なα単相領域のみを室温までもたらすことがで
きる。
By rapidly cooling the thus obtained thin slab immediately after casting, it is possible to avoid the (α+γ) phase that occurs in the high temperature region and bring only the α single phase region necessary for magnetization to room temperature.

ところでFe −Cr −Co合金にMoを添加すると
(α十γ)相領域は減少するが逆にσ相の析出が促進さ
れる。この様子を第3図と第4図に示す。
By the way, when Mo is added to the Fe-Cr-Co alloy, the (α10γ) phase region decreases, but conversely the precipitation of the σ phase is promoted. This situation is shown in FIGS. 3 and 4.

第3図はFe −25%Cr −12%Co −3%M
o組成の合金について、また第4図はFe −22%C
r −15%Co−3%Mo組成の合金についてそれぞ
れ、σ相の析出に関する等温変態図を示したものである
Figure 3 shows Fe -25%Cr -12%Co -3%M
Regarding the alloy with composition o, and Fig. 4 shows Fe-22%C
FIG. 4 shows isothermal transformation diagrams regarding the precipitation of the σ phase for each alloy having a composition of r-15%Co-3%Mo.

両図から明らかなように、σ相析出の鼻は800℃付近
にあり、時効時間が100分では、両組酸とも700〜
900″Cの範囲で析出する。薄スラブキャスターにお
いては鋳造後放冷して室温まで冷却した場合、60〜1
20分程度の時間がかかる。したがって冷却途中でのσ
相析出をさけるためには少なくとも900°C以上の温
度域から急冷することが必要となる。またこの時のスラ
ブ板厚はスラブ中心部まで均一に十分冷却され、かつ柱
状晶を十分発達させる必要から上限を50−とする、そ
して下限は、鋳造後の水冷で板が変形しない十分な板厚
を確保し、かつ表面の研磨、研削等での板厚減少を考慮
して3mmとした。冷却はスプレー水をかけることで達
成され、板厚に応じて水量を増し冷却速度を調整するこ
とができる。この時、冷却速度が5℃/S以上であれば
、上記の700〜900℃の範囲でのσ相析出を回避で
きることが確認されたので、この発明では少なくとも9
00℃以下の温度範囲につき5℃/S以上の速度で冷却
するものとした。
As is clear from both figures, the nose of σ phase precipitation is around 800°C, and when the aging time is 100 minutes, the temperature of both sets of acids is around 700°C.
Precipitates in the range of 900"C. For thin slab casters, when cooled to room temperature after casting, the precipitation occurs at 60 to 1
It takes about 20 minutes. Therefore, σ during cooling
In order to avoid phase precipitation, it is necessary to rapidly cool the material from a temperature range of at least 900°C or higher. In addition, the upper limit of the thickness of the slab at this time is set at 50 - because it is necessary to cool the slab uniformly and sufficiently to the center and to sufficiently develop the columnar crystals. The thickness was set at 3 mm to ensure sufficient thickness and to reduce thickness due to surface polishing, grinding, etc. Cooling is achieved by spraying water, and the cooling rate can be adjusted by increasing the amount of water depending on the plate thickness. At this time, it has been confirmed that if the cooling rate is 5°C/S or more, it is possible to avoid the σ phase precipitation in the range of 700 to 900°C.
Cooling was performed at a rate of 5° C./S or more in the temperature range of 00° C. or less.

このように、双ベルト方式〇蒲スラブキャスターに溶湯
を注湯した場合には、スラブの両表面から中心部に向っ
て、凝固時に大きな温度勾配が生じ、表面から板厚中心
部に向って柱状晶が大きく発達し、薄スラブの柱状晶率
はほとんど100%近いものとなるのである。第5図に
、このようにして凝固した薄スラブの凝固組織の一例を
断面で示す。
In this way, when molten metal is poured into a double-belt slab caster, a large temperature gradient occurs during solidification from both surfaces of the slab toward the center, and a columnar shape is formed from the surface toward the center of the thickness. The crystals are greatly developed, and the columnar crystal ratio of the thin slab is almost 100%. FIG. 5 shows a cross section of an example of the solidified structure of the thin slab solidified in this manner.

上記した方法で鋳造した後は、従来のFe −Cr−C
o系磁石合金と同様な磁場中時効処理および時効処理を
行なえばよく、それに先立つ溶体化処理は不要である。
After casting using the method described above, conventional Fe-Cr-C
It is sufficient to perform the aging treatment in a magnetic field and aging treatment similar to those for o-based magnet alloys, and there is no need for a solution treatment prior to this.

磁場中時効および時効処理は組成によっても異なるが、
例えば2 kOe程度の磁場中において600〜TOO
℃程度の等温熱処理を10分〜2時間程度行ない、その
後600〜500℃程度において数十分〜数十時間程度
の時効を行なえばよい。
Aging in a magnetic field and aging treatment vary depending on the composition, but
For example, in a magnetic field of about 2 kOe, 600 to TOO
It is sufficient to perform isothermal heat treatment at about 10°C for about 10 minutes to 2 hours, followed by aging at about 600 to 500°C for about several tens of minutes to several tens of hours.

なお時効処理は処理中に温度を変える多段時効処理ある
いは連続冷却処理いずれでもよく、また磁場中時効処理
も磁場中での徐冷であってもよい。
The aging treatment may be either a multi-stage aging treatment in which the temperature is changed during the treatment or a continuous cooling treatment, and the aging treatment in a magnetic field may be slow cooling in a magnetic field.

磁場中時効処理は、磁場を柱状晶方向に加えて行なう、
かようにして磁場中時効、時効処理を行なうことによっ
て、スピノダール分解により分離するα、相が非磁性の
α2相中で柱状晶方向(印加磁場方向)に極めて良く伸
長し、形状異方性を持つ単磁区微粒子が配列した構造と
なり、かくして優れた特性の磁石が得られるのである。
Aging treatment in a magnetic field is performed by applying a magnetic field in the direction of the columnar crystals.
By performing aging in a magnetic field and aging treatment in this manner, the α and phase separated by spinodal decomposition are extremely well elongated in the columnar crystal direction (direction of the applied magnetic field) in the nonmagnetic α2 phase, resulting in shape anisotropy. It has a structure in which single-domain fine particles are arranged, and thus a magnet with excellent characteristics can be obtained.

(実施例) 実施例1 表1に示す成分組成になる溶鋼を、第1図に示したよう
な垂直式薄スラブキャスターにより、厚さ: 30mm
、幅? 100 mmの薄スラブに連続鋳造し、温度:
 1300°Cからスプレー水により10’C/sの冷
却速度で急冷した。
(Example) Example 1 Molten steel having the composition shown in Table 1 was cast to a thickness of 30 mm using a vertical thin slab caster as shown in Fig. 1.
,width? Continuous casting into 100 mm thin slabs, temperature:
It was rapidly cooled from 1300°C with spray water at a cooling rate of 10'C/s.

また比較材として、従来の鋳造法を用いて100X10
0 X150 mm角の鋼塊を鋳造(造塊法、冷却速度
0.5℃/s)した。この比較材は溶体化処理が必要で
あるので1300°C,lhの加熱後水冷する溶体化処
理を施した。上記のようにして得られた鋳造ままの薄ス
ラブ及び溶体化処理後の鋼塊より切り出した試料につい
て磁場中時効および時効処理を施した。これらの処理は
各試料のCr、 Co含有量に応じて最適と思われる以
下の条件で行なった。
In addition, as a comparison material, 100X10
A steel ingot measuring 0 x 150 mm square was cast (ingot forming method, cooling rate 0.5°C/s). Since this comparative material requires solution treatment, it was subjected to solution treatment in which it was heated to 1300°C for 1 hour and then cooled with water. The as-cast thin slabs obtained as described above and samples cut from the solution-treated steel ingots were subjected to magnetic field aging and aging treatment. These treatments were carried out under the following conditions considered to be optimal depending on the Cr and Co contents of each sample.

■試料Nal〜6 :Cr 26%、 Co 10%2
 koeの磁場中で640 ”C,Ihの処理後、62
0°Cに1h保持し、ついで500 ”Cまで5°C/
hの速度で徐冷したのち、500°Cに15h保持する
時効処理を施した。
■Sample Nal~6: Cr 26%, Co 10%2
After treatment of 640 ”C,Ih in the magnetic field of koe, 62
Hold at 0°C for 1h, then increase to 500”C at 5°C/
After slow cooling at a rate of 15 h, aging treatment was performed by holding at 500°C for 15 h.

■試料No、 7〜12 : Cr 22%、 Co 
15%2 kOeの磁場中で650°C,lhの処理後
、610゛Cに1h保持し、ついで500°Cまで5°
C/hの速度で徐冷したのち、500°Cにtoh保持
する時効処理を施した。
■Sample No. 7-12: Cr 22%, Co
After treatment at 650 °C in a magnetic field of 15% 2 kOe for 1 h, it was held at 610 °C for 1 h and then 5 °C to 500 °C.
After slow cooling at a rate of C/h, an aging treatment was performed to maintain the temperature at 500°C.

■試料N(113〜18 : Cr 30%、 Co 
20%2 kOeの磁場中で640°C940分の処理
後、600°Cに1h保持し、ついで500°Cまで7
°C/hの速度で徐冷したのち、500°Cに5h保持
する時効処理を施した。
■Sample N (113-18: Cr 30%, Co
After treatment at 640°C for 940 min in a magnetic field of 20% 2 kOe, it was kept at 600°C for 1 h, and then heated to 500°C for 7
After slow cooling at a rate of °C/h, aging treatment was performed by holding at 500 °C for 5 hours.

■試料No、19〜24 : Cr 35%、 Co 
25%2 kOeの磁場中で670’C,30分の処理
後、620°Cに1h保持し、ついで500°Cまで7
°C/hの速度で徐冷したのち、500°Cに5h保持
する時効処理を施した。
■Sample No. 19-24: Cr 35%, Co
After treatment at 670'C for 30 min in a 25% 2 kOe magnetic field, it was held at 620°C for 1 h and then heated to 500°C for 7
After slow cooling at a rate of °C/h, aging treatment was performed by holding at 500 °C for 5 hours.

■試料に25〜30 : Cr 25%、 Co 12
%2 koeの磁場中で650°C140分の処理後、
620°Cにlh、600°Cに1h保持し、ついで5
00°Cまで5°C/hの速度で徐冷したのち、500
 ’Cに5h保持する時効処理を施した。
■25-30 in sample: Cr 25%, Co 12
After treatment at 650°C for 140 minutes in a magnetic field of %2 koe,
620°C for 1h, held at 600°C for 1h, then 5
After slow cooling to 00°C at a rate of 5°C/h,
'C was subjected to aging treatment for 5 hours.

かくして得られた各試料について、磁気特性を測定した
結果を表1に示す。また鋳造後のスラブおよび鋼塊につ
いて調べた柱状晶率も表1に併記する。なお柱状晶率は
スラブおよび鋼塊の垂直C断面での柱状晶部分の面積の
全断面積に対する割合で算出した。
Table 1 shows the results of measuring the magnetic properties of each sample thus obtained. Table 1 also lists the columnar crystal ratios investigated for the cast slabs and steel ingots. The columnar crystal ratio was calculated as the ratio of the area of the columnar crystal portion in the vertical C cross-section of the slab and steel ingot to the total cross-sectional area.

・同表より明らかなように、いずれの試料についても従
来の鋳造法では柱状晶がほとんど発達していないのに比
べ、薄スラブキャスター法で製造した試料は90%以上
の高い柱状晶率を呈している。
・As is clear from the table, columnar crystals were hardly developed in any sample using the conventional casting method, whereas the samples produced using the thin slab caster method exhibited a high columnar crystal ratio of over 90%. ing.

また磁気特性も、従来法では柱状晶部分が少ないことも
あって、薄スラブに比べて(BH)waxの値が著しく
低い。しかも従来法では溶体化処理を施さないと磁石特
性は得られない。
In addition, regarding the magnetic properties, the value of (BH)wax is significantly lower than that of a thin slab, partly because there are fewer columnar crystal parts in the conventional method. Moreover, in the conventional method, magnetic properties cannot be obtained unless solution treatment is performed.

実施例2 表2に示した成分組成になる溶鋼を、第2図に示したよ
うな水平式薄スラブキャスターにより、厚さ:1Off
lの薄スラブに連続鋳造し、温度: 1200℃からス
プレー水により13℃への冷却速度で急冷した。ついで
これらの試料について磁場中時効および時効処理を施し
た。これらの処理は各試料のCr、 Co量に応じて最
適と思われる以下の条件で行なった。
Example 2 Molten steel having the composition shown in Table 2 was heated to a thickness of 1Off using a horizontal thin slab caster as shown in Figure 2.
It was continuously cast into a thin slab of 1200° C. and quenched with spray water at a cooling rate of 13° C. These samples were then subjected to magnetic field aging and aging treatment. These treatments were carried out under the following conditions considered to be optimal depending on the Cr and Co contents of each sample.

■試料Nal〜3 :Cr 30%、Co5%2 kO
eの磁場中で600°C,5hの処理後、2°C/hの
速度で500℃まで徐冷したのち、500°C124h
の時効処理を施した。
■Sample Nal~3: Cr 30%, Co5%2 kO
After treatment at 600°C for 5 hours in a magnetic field of
Aging treatment was applied.

■試料Na4〜6 : Cr 25%、 Co 12%
実施例1の■と同じ処理 ■試料Na7〜9 :Cr 29%、 Co 23%実
施例1の■と同じ処理 ■試料Na1O〜12 : Cr 34%、 Co 3
0%実施例1の■と同じ処理 ■試料Na13 : Cr 12%、Co17%試料N
a14 : Cr 12%、Co18%2 koeの磁
場中で600℃、30分の処理後、3”C/hの速度テ
500°Cまで徐冷したのち、500”C。
■Sample Na4-6: Cr 25%, Co 12%
Same treatment as ■ in Example 1 ■ Samples Na7-9: Cr 29%, Co 23% Same treatment as ■ in Example 1 ■ Samples Na1O-12: Cr 34%, Co 3
0% Same treatment as ■ in Example 1 ■ Sample Na13: Cr 12%, Co 17% Sample N
a14: After treatment at 600°C for 30 minutes in a magnetic field of 12% Cr, 18% Co, 2 koe, slowly cooled to 500°C at a rate of 3”C/h, and then cooled to 500”C.

50hの時効処理を施した。Aging treatment was performed for 50 hours.

■試料N(Li2 : Cr 20%、Co20%試料
NcL16 : Cr 20%、Co15%実施例1の
■と同じ処理 か(して得られた各試料について、磁気測定を行った結
果を表2に示す、また実施例1と同じく鋳造後の柱状晶
率について調べた結果も併記する。
■ Sample N (Li2: 20% Cr, 20% Co) Sample NcL16: 20% Cr, 15% Co The results of magnetic measurements for each sample obtained by the same treatment as ■ in Example 1 are shown in Table 2. Also, as in Example 1, the results of investigating the columnar crystal ratio after casting are also listed.

5・・・保持容器 6.6′・・・薄スラブ (発明の効果) かくしてこの発明によれば、薄スラブキャスターを用い
て薄スラブを作製し、900°C以上の温度より5℃/
s以上の冷却速度で急冷することにより、溶体化処理の
必要なしに磁石特性に優れた一方向性永久磁石を容易に
かつ低コストで製造することができる。
5...Holding container 6.6'...Thin slab (effect of the invention) Thus, according to this invention, a thin slab is produced using a thin slab caster, and the temperature is lowered by 5°C/
By rapidly cooling at a cooling rate of s or more, a unidirectional permanent magnet with excellent magnetic properties can be easily produced at low cost without the need for solution treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、垂直式薄鋳片連続鋳造機の模式図、第2図は
、水平式薄鋳片連続鋳造機の模式図、第3図および第4
図は、Fe −25%Cr −12%Co −3%Mo
Mi成およびFe −22%Cr −15%C。 3%Mo組成の合金におけるσ相析出挙動を示す等温変
態図、 第5図は、この発明に従い得られた葭鋳片の断面組織図
である。 1・・・し−ドル 2.2′ ・・・タンデイツシュ 3.3′・・・鋼製冷却ベルト 4.4′・・・スプレーノズル 第1 図 第2図 4゛ト、 第3図 晴間(今) 第4図 時間(今)
Figure 1 is a schematic diagram of a vertical type continuous thin slab casting machine, Figure 2 is a schematic diagram of a horizontal type continuous thin slab casting machine, Figures 3 and 4.
The figure shows Fe-25%Cr-12%Co-3%Mo
Mi composition and Fe-22%Cr-15%C. FIG. 5 is an isothermal transformation diagram showing the σ phase precipitation behavior in an alloy with a 3% Mo composition. 1...Sh-dol 2.2'...Tandish 3.3'...Steel cooling belt 4.4'...Spray nozzle No.1 Figure 4 Time (now)

Claims (1)

【特許請求の範囲】 1、Cr:10〜35wt% Co:5〜35wt%および Mo:0.1〜10.0wt% を含み、残部は実質的にFe組成になる合金溶湯を、薄
スラブキャスター法によって厚み:3〜50mmの薄鋳
片としたのち、900℃以上の温度から5℃/s以上の
冷却速度で室温まで冷却し、その後磁場中時効処理およ
び時効処理を施すことを特徴とする一方向性永久磁石合
金の製造方法。 2、合金溶湯が、 Cr:10〜35wt% Co:5〜35wt%および Mo:0.1〜10.0wt% のほか、 B、Si、Al、W、Mn、Ti、V、Nb、Zr、S
nおよびZnのうちから選んだ少なくとも一 種:0.01〜5.00wt% を含み、残部は実質的にFeの組成になるものである請
求項1記載の方法。
[Claims] 1. A molten alloy containing Cr: 10 to 35 wt%, Co: 5 to 35 wt%, and Mo: 0.1 to 10.0 wt%, with the remainder being substantially Fe, is poured into a thin slab caster. It is characterized by forming a thin slab with a thickness of 3 to 50 mm using a method, cooling it from a temperature of 900°C or more to room temperature at a cooling rate of 5°C/s or more, and then subjecting it to aging treatment in a magnetic field and aging treatment. A method for producing a unidirectional permanent magnet alloy. 2. The molten alloy contains Cr: 10 to 35 wt%, Co: 5 to 35 wt%, and Mo: 0.1 to 10.0 wt%, as well as B, Si, Al, W, Mn, Ti, V, Nb, Zr, S
2. The method according to claim 1, wherein the method contains 0.01 to 5.00 wt% of at least one selected from n and Zn, with the remainder being substantially Fe.
JP24749888A 1988-10-03 1988-10-03 Production of grain-oriented permanent magnet alloy Pending JPH0297617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24749888A JPH0297617A (en) 1988-10-03 1988-10-03 Production of grain-oriented permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24749888A JPH0297617A (en) 1988-10-03 1988-10-03 Production of grain-oriented permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH0297617A true JPH0297617A (en) 1990-04-10

Family

ID=17164360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24749888A Pending JPH0297617A (en) 1988-10-03 1988-10-03 Production of grain-oriented permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH0297617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324023B1 (en) 1998-06-15 2001-11-27 Matsushita Electric Industrial Co., Ltd. Position detector and lens barrel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324023B1 (en) 1998-06-15 2001-11-27 Matsushita Electric Industrial Co., Ltd. Position detector and lens barrel

Similar Documents

Publication Publication Date Title
JPS6133900B2 (en)
JPH02298003A (en) Manufacture of rare-earth permanent magnet
US3983916A (en) Process for producing semi-hard co-nb-fl magnetic materials
JPH0297617A (en) Production of grain-oriented permanent magnet alloy
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
RU2815774C1 (en) SOFT MAGNETIC AMORPHOUS ALLOY BASED ON Fe-Co WITH HIGH SATURATION MAGNETISATION
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0297616A (en) Production of permanent magnet alloy
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JPH08283856A (en) Production of semihard magnetic material of fe-cu-co alloy
JPS59136448A (en) Preparation of highly fragile alloy
JPH0310699B2 (en)
JPS6112854A (en) Rapidly cooled and solidified thin strip of permanent magnet and its manufacture
JPS6256203B2 (en)
JPS61221329A (en) Production of permanent magnet having axis of easy magnetization in radial direction of plate plane
JPH02101710A (en) Permanent magnet and manufacture thereof
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JPH0827545A (en) Material giving huge magnetic strain and production thereof
JPH03158440A (en) Magnetic alloy for magnetic head core and its production
JPS61210126A (en) Manufacture of thin permanent magnet strip
JPS63121637A (en) Thin ni-fe alloy strip and its production
JPS62124262A (en) Method for modifying magnetic characteristic of high permeability amorphous alloy
JPS60152633A (en) Manufacture of thin strip of high-silicon iron alloy having superior magnetic characteristic