JPH08283856A - Production of semihard magnetic material of fe-cu-co alloy - Google Patents

Production of semihard magnetic material of fe-cu-co alloy

Info

Publication number
JPH08283856A
JPH08283856A JP7084102A JP8410295A JPH08283856A JP H08283856 A JPH08283856 A JP H08283856A JP 7084102 A JP7084102 A JP 7084102A JP 8410295 A JP8410295 A JP 8410295A JP H08283856 A JPH08283856 A JP H08283856A
Authority
JP
Japan
Prior art keywords
magnetic material
alloy
semi
hard magnetic
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7084102A
Other languages
Japanese (ja)
Inventor
Satoru Nishimura
村 哲 西
Kazuo Koyama
山 一 夫 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7084102A priority Critical patent/JPH08283856A/en
Publication of JPH08283856A publication Critical patent/JPH08283856A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Abstract

PURPOSE: To obtain an Fe-Cu-Co alloy for a semihard magnetic material having high residual magnetic flux density and high coercive force and excellent in squareness ratio and cold workability. CONSTITUTION: A molten metal consisting of, by weight, 20-60% Cu, 1.00-20% Co, 0.1-7.0% Al and the balance Fe with inevitable impurities or further contg. 0.1-10% Mn and 1-10% Cr is cast into a metallic sheet of 0.1-8mm thickness at >=100 deg.C/sec solidification cooling rate. This metallic sheet is cold-rolled at 70-98% draft and aged in the temp. range of 350-650 deg.C to produce the objective semihard magnetic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リードスイッチ、リレ
ー、ヒステリシスモーターなどに用いられる半硬質磁性
材料としてのFe−Cu−Co合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Cu-Co alloy as a semi-hard magnetic material used for reed switches, relays, hysteresis motors and the like.

【0002】[0002]

【従来の技術】半硬質磁性材料の必要特性としては、高
い残留磁束密度(Br)を有し、適正な保磁力(Hc)
を持ち、ヒステリシスループの角型比((Br/B
s)、Bs:飽和磁束密度)に優れていることが重要で
ある。
2. Description of the Related Art The required characteristics of a semi-hard magnetic material are a high residual magnetic flux density (Br) and an appropriate coercive force (Hc).
And the squareness ratio of the hysteresis loop ((Br / B
s) and Bs: saturation magnetic flux density) are important.

【0003】従来から半硬質磁性材料の製造方法として
各種の材料が提案されており、例えば、下記の特許公報
が挙げられる。 (1) 特開昭49−118611号公報;Cu10〜
70%、CrまたはMn、またはVをそれぞれ単独に、
あるいはCr、Mn、およびVのうちこれら2種以上の
元素を合計して0.3〜10%、残部として(Fe+C
o)との間における合金比率(%)をx:(100−
x)(ただし、x=Fe%)とするとき、90≧x≧7
を満足する合金を、インゴット鋳造→熱間鍛造→冷間圧
延→時効処理の工程により製造する方法。 (2) 日本金属学会誌、Vol.38(1974)、
pp.104〜111:Fe0〜77.9%、Cu1
1.22〜22.1%、Co0〜78.8%、Co0〜
9%合金を、インゴット鋳造→溶体化→熱間引き抜き→
中間焼鈍→線引き加工→最終焼鈍→冷間加工の工程によ
り製造する方法。
Various materials have been proposed as a method for producing a semi-hard magnetic material, and the following patent publications are listed, for example. (1) JP-A-49-118611; Cu10
70%, Cr or Mn, or V respectively,
Alternatively, the total of these two or more elements among Cr, Mn, and V is 0.3 to 10%, and the balance (Fe + C
the alloy ratio (%) between x and (100-
x) (however, x = Fe%), 90 ≧ x ≧ 7
A method of manufacturing an alloy satisfying the requirements by the steps of ingot casting → hot forging → cold rolling → aging treatment. (2) The Japan Institute of Metals, Vol. 38 (1974),
pp. 104-111: Fe0-77.9%, Cu1
1.22 to 22.1%, Co0 to 78.8%, Co0
9% alloy ingot casting → solutionizing → hot drawing →
A method of manufacturing by the steps of intermediate annealing → wire drawing → final annealing → cold working.

【0004】しかしながら、これら従来合金は、いずれ
もインゴット鋳造法によるため、冷却速度が遅く、冷却
過程でFeとCoの規則格子を生成して、著しく冷間加
工性を劣化させる問題があった。
However, since all of these conventional alloys are produced by the ingot casting method, the cooling rate is slow, and there is a problem that a regular lattice of Fe and Co is generated during the cooling process, which significantly deteriorates the cold workability.

【0005】[0005]

【発明が解決しようとする課題】本発明は、残留磁束密
度(Br)と保磁力の(Hc)が高く、角型比(Bs/
Br)に優れていると同時に、冷間加工性に優れたFe
−Cu−Co基合金半硬質磁性材料の製造方法を提供す
ることを目的としている。
According to the present invention, the residual magnetic flux density (Br) and the coercive force (Hc) are high, and the squareness ratio (Bs /
Fe, which has excellent Br) and cold workability at the same time.
An object of the present invention is to provide a method for producing a semi-hard magnetic material of a -Cu-Co based alloy.

【0006】[0006]

【課題を解決するための手段】本発明者らは、これら課
題を解決するために鋭意検討した結果、種々の合金添加
の実験から、偏析低減に効果のある元素と、半硬質磁性
材料としての特性を劣化させることなく冷間加工性を改
善する製造方法を見い出した。
Means for Solving the Problems As a result of intensive studies for solving these problems, the present inventors have found from experiments of addition of various alloys that elements effective in reducing segregation and as a semi-hard magnetic material. We have found a manufacturing method that improves cold workability without degrading properties.

【0007】本発明は、以上の知見に基づいてなされた
ものであり、その要旨とするところは、下記の通りであ
る。 重量%で、Cu:20〜60%、Co:1.00〜
20%、Al:0.1〜7.0%を含有し、残部Feお
よび不可避的不純物からなる溶融金属を、100℃/秒
以上の凝固冷却速度で、板厚0.1〜8mmの金属薄板
に鋳造して、該金属板を圧下率70〜98%で冷間圧延
し、350〜650℃の温度範囲で時効処理を行うこと
を特徴とする、Fe−Cu−Co基合金半硬質磁性材料
の製造方法。 合金として、さらに、Mn:0.1〜10重量%を
含有することを特徴とする前記のFe−Cu−Co基
合金半硬質磁性材料の製造方法。 合金成分として、さらに、Cr:1〜10重量%を
含有することを特徴とする前記またはのFe−Cu
−Co基合金半硬質磁性材料の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows. % By weight, Cu: 20-60%, Co: 1.00
20%, Al: 0.1-7.0%, a molten metal consisting of the balance Fe and unavoidable impurities at a solidification cooling rate of 100 ° C./sec or more, a metal thin plate having a plate thickness of 0.1-8 mm Fe-Cu-Co based alloy semi-hard magnetic material, characterized in that the metal plate is cast into a steel sheet, cold rolled at a rolling reduction of 70 to 98%, and aged in the temperature range of 350 to 650 ° C. Manufacturing method. The Fe-Cu-Co based alloy semi-hard magnetic material manufacturing method as described above, further comprising Mn: 0.1 to 10 wt% as an alloy. Further, as an alloy component, Cr: 1 to 10% by weight, or the above Fe or Cu characterized by the above-mentioned.
-A method for manufacturing a Co-based alloy semi-hard magnetic material.

【0008】以下に、本発明を詳細に説明する。まず、
本発明合金の化学組成の限定理由について述べる。Cu
は、半硬質磁性材料としての要求特性に対しては、その
含有量を増加させて目的とするBrとHcのバランスを
得ることが好ましい。Cu含有量は20%未満では、3
0Oe以上のHcが得られ難いのでこれを下限とする。
また、上限を60%とするのはFe添加量との関係によ
り規定される。従って、Cuを20〜60%の範囲とす
る。
The present invention will be described in detail below. First,
The reasons for limiting the chemical composition of the alloy of the present invention will be described. Cu
With respect to the required characteristics as a semi-hard magnetic material, it is preferable to increase the content thereof to obtain the desired balance of Br and Hc. When the Cu content is less than 20%, it is 3
Since it is difficult to obtain Hc of 0 Oe or more, this is the lower limit.
The upper limit of 60% is defined by the relationship with the amount of Fe added. Therefore, Cu is set in the range of 20 to 60%.

【0009】Coは、1%以上20%以下の範囲とす
る。1%未満ではBrの向上効果が小さく、20%を超
えて添加しても効果は飽和して合金コストが上昇するか
らである。Alは、0.1%未満では、偏析低減への効
果が少なく、7.0%超では効果が飽和する上に、合金
コストが上昇するのでこの範囲に規定する。
Co is set in the range of 1% to 20%. This is because if it is less than 1%, the Br improving effect is small, and if it exceeds 20%, the effect is saturated and the alloy cost is increased. If Al is less than 0.1%, the effect of reducing segregation is small, and if it exceeds 7.0%, the effect is saturated and the alloy cost rises.

【0010】Mnは、必要に応じて、Br、Hcなどの
改善のために、0.1〜10%の範囲で添加する。この
時の添加範囲は、0.1%未満では効果が小さく、10
%を超えて添加しても効果が飽和する上にコストが上昇
するのでこの範囲に規定する。Crは、材料の使用され
る腐食環境によっては、1〜10%の範囲で添加して耐
食性を向上させる。この時の添加範囲は、1%未満では
効果が小さく、10%を超えて添加しても効果が飽和す
る上にコストが上昇するのでこの範囲に規定する。
Mn is added in the range of 0.1 to 10% to improve Br, Hc, etc., if necessary. At this time, if the addition range is less than 0.1%, the effect is small and 10
Even if added in excess of%, the effect is saturated and the cost rises, so the range is specified. Depending on the corrosive environment in which the material is used, Cr is added in the range of 1 to 10% to improve the corrosion resistance. The addition range at this time is limited to less than 1%, the effect is small, and even if added over 10%, the effect is saturated and the cost increases, so the range is defined as this range.

【0011】次に、本発明の半硬質磁性合金薄板の加工
・熱処理方法について説明する。本発明合金は、溶融金
属の急冷凝固的手段である双ロール式鋳造装置の湯だま
り部に注入し、冷却ロールの回転によって溶融金属を急
速に冷却して、板厚0.5〜8mmの金属板を鋳造す
る。本鋳造法によれば、FeとCoの規則格子の生成防
止と、Fe相中のCuの過飽和度が向上するため、その
後の時効処理によりFe中に100nm以下の微細なC
u粒子が析出して、Hcのより向上する効果が得られ
る。また、FeとCoの規則格子の生成防止と、Fe相
中のCuの過飽和度の向上効果を得るための凝固冷却速
度としては100℃/秒以上でその効果が得られ、それ
以下では効果が小さい。
Next, a method of processing and heat treating the semi-hard magnetic alloy thin plate of the present invention will be described. The alloy of the present invention is poured into a pool of a twin-roll type casting device which is a means for rapidly solidifying molten metal, and the molten metal is rapidly cooled by rotation of a cooling roll to obtain a metal having a plate thickness of 0.5 to 8 mm. Cast the plate. According to this casting method, since the formation of an ordered lattice of Fe and Co is prevented and the supersaturation degree of Cu in the Fe phase is improved, fine C of 100 nm or less in Fe is obtained by the subsequent aging treatment.
The u particles are deposited, and the effect of further improving Hc is obtained. Further, the solidification cooling rate for preventing the formation of the ordered lattice of Fe and Co and for improving the supersaturation degree of Cu in the Fe phase is 100 ° C./sec or more, and the effect is obtained when the solidification cooling rate is less than that. small.

【0012】鋳造後、圧下率70〜90%の冷間圧延を
行う。この狙いは、圧延方法に磁気異方性を持たせて、
半硬質磁性材料としての角型比を向上させるものであ
る。70%未満の圧下率では角型比の向上効果は小さ
く、98%超では効果が飽和する上に生産性を低下させ
るのでこの範囲に規定する。
After casting, cold rolling is performed at a reduction rate of 70 to 90%. This aim is to give the rolling method magnetic anisotropy,
It improves the squareness ratio as a semi-hard magnetic material. If the rolling reduction is less than 70%, the effect of improving the squareness ratio is small, and if it exceeds 98%, the effect is saturated and the productivity is lowered.

【0013】また、その後に時効処理を行うことで、さ
らにHcと角型比を向上させる効果が得られる。その最
適条件は、温度と時間により決定され、350℃未満の
温度ではFe中のCuの析出が十分おこらず、650℃
超えるとFe中のCuが100nm以上に成長して保磁
力が低下する。従って、時効処理時間は析出温度の関係
から、100〜1000分が好ましい。
Further, by performing an aging treatment after that, the effect of further improving the Hc and the squareness ratio can be obtained. The optimum conditions are determined by the temperature and the time, and at a temperature lower than 350 ° C, Cu in Fe does not sufficiently precipitate, and 650 ° C
If it exceeds, Cu in Fe grows to 100 nm or more and the coercive force decreases. Therefore, the aging treatment time is preferably 100 to 1000 minutes in view of the precipitation temperature.

【0014】[0014]

【実施例】以下に、本発明を実施例によりさらに説明す
る。表1に示す成分を含有する合金を溶解して、双ロー
ル鋳造機で5.0mmの板厚の鋳片を製造した後に、全
厚下率98%で冷間圧延し、板厚0.10mmの冷間圧
延板を得た。さらに、500℃で360分の時効処理を
施した。
EXAMPLES The present invention will be further described below with reference to examples. The alloy containing the components shown in Table 1 was melted to produce a slab having a plate thickness of 5.0 mm with a twin roll casting machine, and then cold rolled at a total thickness reduction of 98% to obtain a plate thickness of 0.10 mm. To obtain a cold rolled plate. Furthermore, an aging treatment was performed at 500 ° C. for 360 minutes.

【0015】[0015]

【表1】 [Table 1]

【0016】得られた材料の特性評価結果を、表2に示
す。ここで、Br、Bs、Hcは、振動型磁気測定装置
によりヒステリシスループを測定して求めた。
Table 2 shows the evaluation results of the characteristics of the obtained material. Here, Br, Bs, and Hc were obtained by measuring a hysteresis loop with a vibration type magnetometer.

【0017】冷間加工性の評価は、全圧下率98%まで
の割れ発生状況により行った。圧延材の割れ発生状況
で、◎:皆無、○:一部、△:全面とした。耐食性は、
塩水噴霧試験(5%NaCl、35℃)を48時間行
い、錆の発生状況で評価した。すなわち、赤錆発生面積
率で10%未満を◎、20%未満を○とした。
The cold workability was evaluated based on the crack generation condition up to a total rolling reduction of 98%. The state of cracking of the rolled material was ⊚: none, ∘: partial, Δ: full surface. Corrosion resistance is
A salt spray test (5% NaCl, 35 ° C.) was carried out for 48 hours, and the rust generation status was evaluated. That is, the area ratio of red rust generated was less than 10%, and less than 20% was ◯.

【0018】また、比較合金例として、,Fe−21%
Cu−16%Co−1%V合金の上記特性を同一の方法
で測定し、その結果を、表2に併記した。
As an example of a comparative alloy, Fe-21%
The above properties of the Cu-16% Co-1% V alloy were measured by the same method, and the results are also shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2の特性評価結果より明かなように、C
uが20%以下ではHcが低く、60%超ではB100
Br/B100 が低下する。また、Coが1%以下ではB
rへの効果が小さく、Alが0.05%以下では冷間加
工性評定が悪く、7%を超えても冷間加工性改善効果は
飽和している。さらに、Mn、Crの添加は、Hcと耐
食性向上に有効である。
As is clear from the characteristic evaluation results of Table 2, C
When u is 20% or less, Hc is low, and when it exceeds 60%, B 100 is
Br / B 100 decreases. When Co is 1% or less, B
The effect on r is small, and if Al is 0.05% or less, the cold workability evaluation is poor, and if it exceeds 7%, the cold workability improving effect is saturated. Furthermore, the addition of Mn and Cr is effective in improving Hc and corrosion resistance.

【0021】[0021]

【発明の効果】以上に説明したように、本発明方法によ
れば、BrとHcが高く、角型比に優れていると同時
に、冷間加工性にも優れた半硬質磁性材料を工業的に安
価に得ることができる。
As described above, according to the method of the present invention, a semi-hard magnetic material having a high Br and Hc, an excellent squareness ratio and an excellent cold workability can be industrially produced. Can be obtained at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/047 H01F 1/04 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 1/047 H01F 1/04 S

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Cu:20〜60%、Co:
1.00〜20%、Al:0.1〜7.0%を含有し、
残部Feおよび不可避的不純物からなる溶融金属を、1
00℃/秒以上の凝固冷却速度で、板厚0.1〜8mm
の金属薄板に鋳造して、該金属板を圧下率70〜98%
で冷間圧延し、350〜650℃の温度範囲で時効処理
を行うことを特徴とする、Fe−Cu−Co基合金半硬
質磁性材料の製造方法。
1. By weight percent, Cu: 20-60%, Co:
1.00 to 20%, containing Al: 0.1 to 7.0%,
1 for molten metal composed of balance Fe and unavoidable impurities
Plate thickness 0.1 to 8 mm at solidification cooling rate of 00 ° C / sec or more
Cast into a thin metal plate, and the metal plate is rolled at a rolling reduction of 70 to 98%.
A method for producing a semi-hard magnetic material of an Fe-Cu-Co based alloy, which is characterized in that it is cold-rolled in the above step and is subjected to an aging treatment in a temperature range of 350 to 650 ° C.
【請求項2】合金成分として、さらに、Mn:0.1〜
10重量%を含有することを特徴とする請求項1に記載
のFe−Cu−Co基合金半硬質磁性材料の製造方法。
2. As an alloy component, Mn: 0.1
10% by weight is contained, The manufacturing method of the Fe-Cu-Co base alloy semi-hard magnetic material of Claim 1 characterized by the above-mentioned.
【請求項3】合金成分として、さらに、Cr:1〜10
重量%を含有することを特徴とする請求項1または2に
記載のFe−Cu−Co基合金半硬質磁性材料の製造方
法。
3. As an alloy component, Cr: 1-10
The Fe-Cu-Co based alloy semi-hard magnetic material manufacturing method according to claim 1, wherein the semi-hard magnetic material contains Fe.
JP7084102A 1995-04-10 1995-04-10 Production of semihard magnetic material of fe-cu-co alloy Withdrawn JPH08283856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084102A JPH08283856A (en) 1995-04-10 1995-04-10 Production of semihard magnetic material of fe-cu-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084102A JPH08283856A (en) 1995-04-10 1995-04-10 Production of semihard magnetic material of fe-cu-co alloy

Publications (1)

Publication Number Publication Date
JPH08283856A true JPH08283856A (en) 1996-10-29

Family

ID=13821167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084102A Withdrawn JPH08283856A (en) 1995-04-10 1995-04-10 Production of semihard magnetic material of fe-cu-co alloy

Country Status (1)

Country Link
JP (1) JPH08283856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031999A1 (en) * 1998-09-10 2000-08-30 Hitachi Metals, Ltd. Production method for semirigid magnetic material and semirigid material and magnetic marker using it
CN102676869A (en) * 2012-05-12 2012-09-19 西北工业大学 Cu-Co-Cr shell-core structure ternary alloy and preparation method thereof
CN111440964A (en) * 2020-06-01 2020-07-24 中南大学 High-strength high-conductivity Cu-Fe alloy short-process preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031999A1 (en) * 1998-09-10 2000-08-30 Hitachi Metals, Ltd. Production method for semirigid magnetic material and semirigid material and magnetic marker using it
EP1031999A4 (en) * 1998-09-10 2003-06-04 Hitachi Metals Ltd Production method for semirigid magnetic material and semirigid material and magnetic marker using it
US6893511B1 (en) 1998-09-10 2005-05-17 Hitachi Metals, Ltd. Production method for semirigid magnetic material and semirigid material and magnetic marker using it
CN102676869A (en) * 2012-05-12 2012-09-19 西北工业大学 Cu-Co-Cr shell-core structure ternary alloy and preparation method thereof
CN111440964A (en) * 2020-06-01 2020-07-24 中南大学 High-strength high-conductivity Cu-Fe alloy short-process preparation method
CN111440964B (en) * 2020-06-01 2021-07-27 中南大学 High-strength high-conductivity Cu-Fe alloy short-process preparation method

Similar Documents

Publication Publication Date Title
JPS6035424B2 (en) Manufacturing method of aluminum alloy plate for drawing forming
JPH09125175A (en) Copper alloy
WO1998045492A1 (en) Aluminum alloy composition and method of manufacture
JPH08283856A (en) Production of semihard magnetic material of fe-cu-co alloy
JPS58113334A (en) Phosphor bronze with superior hot workability
JP3096268B2 (en) Finishing treatment method for silicon steel plate manufactured by direct casting method
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH0737652B2 (en) Method for producing Fe—Ni-based high-permeability magnetic alloy
JP2863541B2 (en) Method for producing Cr-based stainless steel sheet using thin casting method
JPH0424420B2 (en)
JPS6254183B2 (en)
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPH08283857A (en) Production of semihard magnetic material of fe-cu alloy
JPH0585630B2 (en)
JPH108177A (en) Aluminum alloy sheet for magnetic disk substrate and its production
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JPH07126753A (en) Production of fe-ni alloy sheet and its formed product
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
JPH11131146A (en) Production of strip of iron-nickel alloy from continuously cast thin strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702