JPS61215970A - Accident point location for cable line - Google Patents

Accident point location for cable line

Info

Publication number
JPS61215970A
JPS61215970A JP5762685A JP5762685A JPS61215970A JP S61215970 A JPS61215970 A JP S61215970A JP 5762685 A JP5762685 A JP 5762685A JP 5762685 A JP5762685 A JP 5762685A JP S61215970 A JPS61215970 A JP S61215970A
Authority
JP
Japan
Prior art keywords
cable line
cable
phase
detected
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5762685A
Other languages
Japanese (ja)
Other versions
JPH065252B2 (en
Inventor
Yasutaka Fujiwara
藤原 靖隆
Yasumitsu Ebinuma
康光 海老沼
Mitsugi Aihara
相原 貢
Katsuaki Nanba
克明 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5762685A priority Critical patent/JPH065252B2/en
Publication of JPS61215970A publication Critical patent/JPS61215970A/en
Publication of JPH065252B2 publication Critical patent/JPH065252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate the accident point of the cable line by a special formula by impressing the calibration pulse or a high voltage at the measuring edge or the remote edge of the accident phase cable, measuring the propagation time in the measuring edge of the accident phase or sound phase cable. CONSTITUTION:A time difference t1 between a propagating signal detected at the measuring edge by impressing the calibration pulse to the measuring edge of an accident phase cable 2 and the second propagating signal, in which the calibration pulse is detected from the remote edge of the cable 2 through a sound phase cable 6 at the measuring edge, is calculated. A time difference t2 between the propagating signal detected at the measuring edge by impressing the calibration pulse to the remote edge of the cable 2 and the propagating signal, in which the calibration pulse is detected from the remote edge through a cable 6 at the measuring edge, is calculated. Further, a time difference t3 between the propagating signal wherein the high voltage is impressed from a high voltage source DCG to the cable 2 and a discharging pulse generated at an accident point A is detected at the measuring edge, and the propagating signal detected at the measuring edge from the remote edge through the cable 6, is calculated. Based upon time differences t1-t3 and a line length L of the accident phase, the accident A is located from the special formula.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、ケーブル線路の事故点標定法に係り、特に、
事故点が高精度で標定できるケーブル線路の事故点標定
法に間する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for locating fault points on cable lines, and in particular,
We develop a method for locating fault points on cable lines that allows fault points to be located with high precision.

[発明の技術的背景コ 従来から、ケーブル線路の事故点標定法として第5図に
示すように、事故相のケーブル線路に高電圧源DCGか
ら高電圧を印加して事故点Aで発生した放電パルスを該
ケーブル線路の測定端においてコンデンサCとインピー
ダンスZにより第1の伝播信号Slとして検出すると共
に、該放電パルスが測定端において反射され該ケーブル
線路の京成点において負反射され、逆極性パルスとなっ
て再度測定端において第2の伝播信号S2として検出し
、シンクロスコープM上でオシログラムで標定する方法
が知られている。このときのオシログラムの代表例を第
6図に示すと、第1の伝播18号Slは事故点Aから測
定端に直接伝播したパルス、第2の伝播信号S2は放電
パルスが測定端において反射され該ケーブル線路の事故
点Aにおいて負反射され、逆極性パルスとなって再度測
定端に伝播したパルスを示している。従って、測定端に
おける第1の伝播信号Stおよび第2の伝播信号S2の
時間差t、はパルスが事故点Aと測定端を往復伝播した
時間であり、測定端から事故点Aまでの距離Xはパルス
の伝播速度Vから次式で求められる。
[Technical Background of the Invention] Conventionally, as shown in Fig. 5, as a fault point locating method for cable lines, high voltage is applied from a high voltage source DCG to the cable line in the fault phase, and the discharge generated at fault point A is applied to the cable line in the fault phase. The pulse is detected as a first propagation signal Sl by the capacitor C and the impedance Z at the measurement end of the cable line, and the discharge pulse is reflected at the measurement end and negatively reflected at the Keisei point of the cable line, resulting in a reverse polarity pulse. There is a known method in which the second propagation signal S2 is detected again at the measurement end, and the signal is located on the synchroscope M using an oscillogram. A typical example of the oscillogram at this time is shown in Fig. 6. The first propagation signal No. 18 Sl is a pulse directly propagated from the fault point A to the measurement end, and the second propagation signal S2 is a discharge pulse reflected at the measurement end. It shows a pulse that was negatively reflected at the fault point A of the cable line, became a reverse polarity pulse, and propagated again to the measurement end. Therefore, the time difference t between the first propagation signal St and the second propagation signal S2 at the measurement end is the time during which the pulse propagated back and forth between the fault point A and the measurement end, and the distance X from the measurement end to the fault point A is It is determined from the pulse propagation velocity V using the following formula.

、X=Vt、/2 [背景技術の問題点] このような事故点標定法は、線路に接続部Jが含まれて
いると、前記第1の伝播信号s1と第2の伝播信号S2
の間に接続部からの反射波s2゜が入り、時間差to’
を誤測定し、事故点Aの位置標定かできなくなるという
難点がある。
,
The reflected wave s2° from the connection part enters between, and the time difference to'
There is a problem in that the position of the accident point A cannot be determined due to incorrect measurements.

また、事故相の測定端におけるリード線系、事故相およ
び健全相の遠方端の接続におけるリード線系、並びに健
全相の測定端におけるリード線系は、厳密にはパルスの
遅延要素として作用するので、測定の誤差要因になると
いう難点がある。
In addition, the lead wire system at the measurement end of the fault phase, the lead wire system at the connection between the far ends of the fault phase and healthy phase, and the lead wire system at the measurement end of the sound phase strictly act as pulse delay elements. , which has the disadvantage of being a source of measurement error.

[発明の目的] 本発明は上記従来の難点に鐵みなされたもので、事故点
が高精度で標定できるケーブル線路の事故点標定法を提
供せんとするものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional difficulties, and it is an object of the present invention to provide a method for locating a fault point on a cable line by which the fault point can be located with high precision.

[発明の概要コ このような目的を達成するために本発明のケーブル線路
の事故点標定法によれば、事故相のケーブル線路の測定
端に較正パルスを印加して測定端において検出される第
1の伝播信号と該較正パルスが該ケーブル線路の遠方端
から健全相のケーブル線路を介して該測定端に伝送され
該測定端において検出される第2の伝播信号との時間差
tlを算出し、事故相のケーブル線路の遠方端に較正パ
ルスを印加して測定端において検出される第1の伝播信
号と該較正パルスが該ケーブル線路の遠方端から健全相
のケーブル線路を介して該測定端に伝送され該測定端に
おいて検出される第2の伝播信号との時間差t2を算出
し、事故相のケーブル線路に高電圧を印加して事故点で
発生した放電パルスが測定端において検出される第1の
伝播信号と該放電パルスが該ケーブル線路の遠方端から
健全相のケーブル線路を介して該測定端に伝送され該測
定端において検出される第2の伝播信号との時間差tを
算出し、該測定端から事故点までの距Mxを、 x= (tl−t)Ll / (tl −t2 )(但
し、Llは事故相のケーブル線路長である)から求める
ことによりケーブル線路の事故点を標定するものである
[Summary of the Invention] In order to achieve the above object, according to the cable line fault location method of the present invention, a calibration pulse is applied to the measurement end of the cable line in the fault phase, and the first point detected at the measurement end is determined. Calculating the time difference tl between the first propagation signal and the second propagation signal, in which the calibration pulse is transmitted from the far end of the cable line to the measurement end via a healthy phase cable line and detected at the measurement end; A first propagation signal detected at the measuring end by applying a calibration pulse to the far end of the fault phase cable line and the calibration pulse are transmitted from the far end of the cable line to the healthy phase cable line to the measuring end. The time difference t2 between the second propagation signal that is transmitted and detected at the measurement end is calculated, and a high voltage is applied to the cable line of the fault phase, and the discharge pulse generated at the fault point is detected at the measurement end. The time difference t between the propagation signal and the second propagation signal, in which the discharge pulse is transmitted from the far end of the cable line to the measurement end via the cable line in a healthy phase and detected at the measurement end, is calculated; Locate the fault point on the cable line by finding the distance Mx from the measurement end to the fault point from x = (tl - t) Ll / (tl - t2) (where Ll is the cable line length of the fault phase). It is something to do.

[発明の実施例] 以下、本発明の好ましい実施例を図面により説明する。[Embodiments of the invention] Preferred embodiments of the present invention will be described below with reference to the drawings.

本発明のケーブル線路の事故点標定法は第1図に示すシ
スデム構成により実現される。即ち、同図において、事
故相のケーブル線!j82の測定端は高電圧源DCGに
接続されていると共に、結合コンデンサC1検出インピ
ーダンスZを介して接地される。このコンデンサC1検
出インピーダンスZはケーブル線路の事故点(例えばA
)で発生した放電パルスを第1の伝播信号S1として検
出するものである。コンデンサCとインピーダンスZの
中間点は事故相の測定端におけるリード線系3によりデ
ジタルメモリ40チヤンネルCHlに接続されている。
The cable line accident point locating method of the present invention is realized by the system configuration shown in FIG. In other words, in the same figure, the cable line of the accident phase! The measurement end of j82 is connected to the high voltage source DCG and is grounded via the coupling capacitor C1 detection impedance Z. This capacitor C1 detection impedance Z is the fault point of the cable line (for example, A
) is detected as the first propagation signal S1. The midpoint between the capacitor C and the impedance Z is connected to the digital memory 40 channel CHl by a lead wire system 3 at the measuring end of the fault phase.

リード線系3には遅延時間T1をもつ遅延要素5が存す
るものとする。一方、ケーブル線路2の遠方端はコンデ
ンサC、インピーダンスZを介して接地され、コンデン
サCとインピーダンスZの中間点は健全相のケーブル線
路6の遠方端とリード線系7により接続されている。こ
のコンデンサCとインピーダンスZは事故相に印加され
ている高電圧を健全相に加わるのを防止し、ケーブル線
路の事故点Aで発生した放電パルスを健全相へ通過させ
るものである。リード線系7には遅延時間T2をもつ遅
延要素8が存するものとする。健全相のケーブル線路6
の測定端はコンデンサC、インピーダンスZを介して接
地され、コンデンサCとインピーダンスZの中間点は健
全相の測定端におけるリード線系9によりデジタルメモ
リ4のチャンネルCH2に接続されている。リード線系
9には遅延時間T3をもつ遅延要素10が存するものと
する。このコンデンサCとインピーダンスZはケーブル
線路2の事故点Aで発生した放電パルスをケーブル線路
2の遠方端から健全相のケーブル線路6を介して測定端
に伝送し該測定端において第2の伝播信号S2として検
出するものである。デジタルメモリ4の出力端は標定器
11に接続されている。なお、デジタルメモリ4のチャ
ンネルCHI 、チャンネルCH2は共に第1の伝播信
号S+によりトリガーされる。
It is assumed that the lead wire system 3 includes a delay element 5 having a delay time T1. On the other hand, the far end of the cable line 2 is grounded via a capacitor C and an impedance Z, and the midpoint between the capacitor C and the impedance Z is connected to the far end of the cable line 6 in a healthy phase by a lead wire system 7. This capacitor C and impedance Z prevent the high voltage applied to the fault phase from being applied to the healthy phase, and allow the discharge pulse generated at the fault point A of the cable line to pass through to the healthy phase. It is assumed that the lead wire system 7 includes a delay element 8 having a delay time T2. Healthy phase cable line 6
The measurement end of is grounded via capacitor C and impedance Z, and the midpoint between capacitor C and impedance Z is connected to channel CH2 of digital memory 4 by lead wire system 9 at the measurement end of the healthy phase. It is assumed that the lead wire system 9 includes a delay element 10 having a delay time T3. This capacitor C and impedance Z transmit the discharge pulse generated at the fault point A of the cable line 2 from the far end of the cable line 2 to the measurement end via the cable line 6 in a healthy phase, and at the measurement end, a second propagation signal is generated. This is detected as S2. The output end of the digital memory 4 is connected to the location device 11. Note that both channels CHI and CH2 of the digital memory 4 are triggered by the first propagation signal S+.

このようなシステム構成において本発明によるケーブル
線路の事故点標定は次のような手順により行なわれる。
In such a system configuration, fault point location on a cable line according to the present invention is performed by the following procedure.

■ 事故相のケーブル線路2の測定端に較正パルスを印
加してケーブル線路2を伝播して測定端において検出さ
れる第1の伝播信号S+と該較正パルスが該ケーブル線
路の遠方端から健全相のケーブル線路6を介して該測定
端に伝送され該測定端において検出される第2の伝播信
号s2とをデジタルメモリ4に取り込み、その時間差t
1を算出し、このデータを標定器11に転送する。この
時間差t1は tl=T3+T2−T1+ (Ll+L2)/V  ・
−・・・−(1)である(第2図(a))、ここにLl
 、L2は事故相、健全相のケーブル線路長、■はパル
スの伝播速度を示す。
■ A calibration pulse is applied to the measurement end of the cable line 2 in the fault phase, and the first propagation signal S+, which is propagated through the cable line 2 and detected at the measurement end, and the calibration pulse are transferred from the far end of the cable line to the healthy phase. A second propagation signal s2 transmitted to the measurement end via the cable line 6 and detected at the measurement end is taken into the digital memory 4, and the time difference t is
1 and transfers this data to the location device 11. This time difference t1 is tl=T3+T2-T1+ (Ll+L2)/V・
-...-(1) (Fig. 2(a)), where Ll
, L2 is the cable line length of the fault phase and healthy phase, and ■ is the pulse propagation speed.

■ 事故相のケーブル線路2の遠方端に較正パルスを印
加してケーブル線路2を伝播して測定端において検出さ
れる第1の伝播信号Stと該較正パルスが該ケーブル線
路2の遠方端から健全相のケーブル線路6を介して該測
定端に伝送され該測定端において検出される第2の伝播
信号s2とをデジタルメモリ4に取り込み、その時間差
t2を算出し、このデータを標定器11に転送する。こ
の時間差t2は t2=73+72−TI+  (L2−L2)/V・・
・・・・・・・ (2)である(第2図(1)))。
■ A calibration pulse is applied to the far end of the cable line 2 in the fault phase, and the first propagation signal St, which is propagated through the cable line 2 and detected at the measurement end, and the calibration pulse are transmitted from the far end of the cable line 2 to the normal state. A second propagation signal s2 transmitted to the measurement end via the phase cable line 6 and detected at the measurement end is captured into the digital memory 4, the time difference t2 is calculated, and this data is transferred to the location device 11. do. This time difference t2 is t2=73+72-TI+ (L2-L2)/V...
...... (2) (Figure 2 (1))).

(])、(2)式から伝播速度■は ν=2LI/(tl−t2)      ・・・・・・
・・・(3)で求められる。
(]), from equation (2), the propagation velocity ■ is ν=2LI/(tl-t2)...
...It is obtained by (3).

■ 事故ケーブルa12に高電圧源DCGから高電圧を
印加する。放電パルスが例えば事故点Aで発生したもの
とする。この放電パルスがケーブル線路2を伝播して測
定端において検出される第1の伝播信号S1と該放電パ
ルスが該ケーブル線路2の遠方端から健全相のケーブル
線路6を介して該測定端に伝送され該測定端において検
出される第2の伝播信号S2とをデジタルメモリ4に取
り込み、その時間差tを算出し、このデータを標定器1
1に転送する。この時間差tは t  =73+72−TI+  (L2+L1−2X)
/V= 73+72−TI+((L2−L2)+2(L
l−X))/Vこれに(2)、(3)式を代入して t = t2+2(Ll−X)/V =、t2+(Ll−XXtl−12)/Llである(第
2図(C))。
■ Apply high voltage to the accident cable a12 from the high voltage source DCG. Assume that a discharge pulse occurs at a fault point A, for example. This discharge pulse propagates through the cable line 2 and is detected at the measurement end.The first propagation signal S1 and the discharge pulse are transmitted from the far end of the cable line 2 to the measurement end via the cable line 6 in a healthy phase. and the second propagation signal S2 detected at the measurement end are taken into the digital memory 4, the time difference t is calculated, and this data is sent to the location device 1.
Transfer to 1. This time difference t is t = 73+72-TI+ (L2+L1-2X)
/V=73+72-TI+((L2-L2)+2(L
l-X))/V Substituting equations (2) and (3) into this, we get t = t2+2(Ll-X)/V =, t2+(Ll-XXtl-12)/Ll (see Figure 2). C)).

よって該測定端から事故点までの距離Xは、x = (
tl−t)Ll/(tl−t2)として求めることがで
き、標定器11により位置計算を実施し、付属のプリン
タで計算結果を打ち出すこともできる。このようにして
既知の事故相のケーブル線路長Ll、測定可#I!II
It1、tl、tのみから距MXは算出され、遅延要素
5.8.1゜の遅延時間T1、T2、T3の影響を受け
ずケーブル線路の事故点が正確に標定されるものである
Therefore, the distance X from the measurement end to the accident point is x = (
tl-t)Ll/(tl-t2), the position can be calculated using the location device 11, and the calculation result can be printed out using the attached printer. In this way, the cable line length Ll of the known fault phase can be measured #I! II
The distance MX is calculated only from It1, tl, and t, and the fault point on the cable line can be accurately located without being affected by the delay times T1, T2, and T3 of the delay element 5.8.1°.

また、事故点から遠方端へ向かう放電パルスを測定端へ
伝送する際に健全相を使用するようにしたので、線路に
普通接続箱部NJ(第3図(a))が含まれていても、
第1の伝播信号Slと第2の伝播信号S2の時間t(第
3図(b))が正確に測定され、普通接続箱部NJから
の反射波S2’の影響を受けず事故点Aの位置標定かで
きる。
In addition, since the healthy phase is used when transmitting the discharge pulse heading from the fault point to the far end to the measurement end, even if the line includes the normal junction box part NJ (Figure 3 (a)), ,
The time t (Fig. 3(b)) of the first propagation signal Sl and the second propagation signal S2 is accurately measured, and the fault point A is not affected by the reflected wave S2' from the normal junction box part NJ. It is possible to determine the position.

なお、第4図(a)に示すように線路が絶縁接続箱部I
Jによりクロスボンド方式で接地されている場合、絶縁
接続箱で事故相から健全相へ放電パルスの伝播波が分波
される誘導が生じるため、事故点から遣方端へ向かう放
電パルスが健全相を通り測定端へ届く前に、事故相を走
る放電パルスがクロスボンド点から入り込み、時間差t
(第41!I (b) )が不明確となり、事故点の位
置標定ができなくなる。この場合、遅延要素8の遅延時
間T2を積極的に使用するとよい、即ち、遅延要素8の
遅延時間T2を、放電パルスの伝播波が事故相から健全
相へ誘導する時間より大きくとる。このため、事故相か
ら健全相への誘導が完全に無くなった後、事故点から遠
方端へ向かう放電パルスが健全相を通り測定端に伝送で
き、時間差tが正確に求められ、事故点の位置標定かで
きる。
In addition, as shown in Fig. 4(a), the line is connected to the insulated junction box part I.
When grounded in the cross-bond manner by J, the insulating junction box induces the propagation wave of the discharge pulse to be branched from the fault phase to the healthy phase, so the discharge pulse traveling from the fault point to the sending end is connected to the healthy phase. Before reaching the measurement end, the discharge pulse running in the fault phase enters from the cross bond point, and the time difference t
(No. 41! I (b)) becomes unclear, making it impossible to locate the accident point. In this case, it is preferable to use the delay time T2 of the delay element 8 positively, that is, the delay time T2 of the delay element 8 is set to be longer than the time required for the propagation wave of the discharge pulse to be guided from the fault phase to the healthy phase. Therefore, after the induction from the fault phase to the healthy phase is completely eliminated, the discharge pulse heading from the fault point to the far end can be transmitted to the measuring end through the healthy phase, and the time difference t can be accurately determined, and the fault point location Orientation is possible.

[発明の効果] 以上の実施例からも明らかなように本発明のケーブル線
路の事故点標定法によれば、事故点から遠方端へ向かう
放電パルスを測定端へ伝送する際に健全相のケーブル線
路を使用し、事故相のケーブル線路の測定端に較正パル
スを印加したとき、同じく遠方端に較正パルスを印加し
たとき、および事故相のケーブル線路に高電圧を印加し
て事故点て放電パルスを発生させたとき、それぞれ測定
端において検出される第1の伝播信号と該パルスが該ケ
ーブル線路の遠方端から健全相のケーブル線路を介して
該測定端に伝送され該測定端において検出される第2の
伝播信号との時間差を算出し、測定端から事故点、まで
の距離を求めるようにしたので、遅延要素の遅延時間の
影響を受けず、かつケーブル線路の接続部における反射
に左右されることがなくケーブル線路の事故点が正確に
標定されるものである。
[Effects of the Invention] As is clear from the above embodiments, according to the fault point locating method for cable lines of the present invention, when transmitting discharge pulses directed from the fault point to the far end to the measuring end, the cable in a healthy phase is detected. When a calibration pulse is applied to the measurement end of the fault phase cable line, when a calibration pulse is also applied to the far end, and when a high voltage is applied to the fault phase cable line, a discharge pulse is generated at the fault point. When generated, the first propagation signal and the pulse, which are respectively detected at the measuring end, are transmitted from the far end of the cable line to the measuring end via the cable line of a healthy phase and detected at the measuring end. Since the time difference with the second propagation signal is calculated and the distance from the measurement end to the fault point is determined, it is not affected by the delay time of the delay element and is not influenced by reflections at the cable line connection. Therefore, the accident point on the cable line can be accurately located without causing any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるケーブル線路の事故点標定法を実
現するためのシステム構成図、第2図(a)、(b)、
(c)は同標定法で得られる放電パルス伝播信号の波形
図、第3図(a)、(b)はそれぞれ同標定法が適用で
きる普通接続箱による線路システム構成図およびその放
電パルス伝播信号の波形図、第4図(a)、(b)はそ
れぞれ同標を法が適用できる絶縁接続箱に゛よる線路シ
ステム構成図およびその放電パルス伝播信号の波形図、
第5図、第6図はそれぞれ従来の事故点標定法に用いら
れるシステム構成図およびその放電パルス伝播信号の波
形図である。 203.事故相のケーブル線路 Sl、、、第1の伝播信号 600.健全相のケーブル線路 S2.、、第2.の伝播信号 tl、t2、t000時間差 A81.事故点 X10.距離 代理人 弁理士   守 谷 −雄 第3図 ど 第4図
Fig. 1 is a system configuration diagram for realizing the cable line accident point locating method according to the present invention, Fig. 2 (a), (b),
(c) is a waveform diagram of the discharge pulse propagation signal obtained by the same orientation method, and Figures 3 (a) and (b) are a line system configuration diagram using a normal junction box to which the same orientation method can be applied, and its discharge pulse propagation signal. Figures 4(a) and 4(b) are a waveform diagram of a line system using an insulated junction box to which the same method can be applied, and a waveform diagram of its discharge pulse propagation signal, respectively.
FIGS. 5 and 6 are a system configuration diagram and a waveform diagram of a discharge pulse propagation signal used in the conventional accident point locating method, respectively. 203. The cable line Sl of the fault phase, . . . the first propagation signal 600. Healthy phase cable line S2. ,,Second. Propagation signals tl, t2, t000 time difference A81. Accident point X10. Distance Agent Patent Attorney Moritani-Yu Figures 3 and 4

Claims (1)

【特許請求の範囲】 事故相のケーブル線路の測定端に較正パルスを印加して
測定端において検出される第1の伝播信号と該較正パル
スが該ケーブル線路の遠方端から健全相のケーブル線路
を介して該測定端に伝送され該測定端において検出され
る第2の伝播信号との時間差(t1)を算出し、事故相
のケーブル線路の遠方端に較正パルスを印加して測定端
において検出される第1の伝播信号と該較正パルスが該
ケーブル線路の遠方端から健全相のケーブル線路を介し
て該測定端に伝送され該測定端において検出される第2
の伝播信号との時間差(t2)を算出し、事故相のケー
ブル線路に高電圧を印加して事故点で発生した放電パル
スが測定端において検出される第1の伝播信号と該放電
パルスが該ケーブル線路の遠方端から健全相のケーブル
線路を介して該測定端に伝送され該測定端において検出
される第2の伝播信号との時間差(t)を算出し、該測
定端から事故点までの距離xを、 x=(t1−t)L1/(t1−t2) (但し、L1は事故相のケーブル線路長である)から求
めることによりケーブル線路の事故点を標定することを
特徴とするケーブル線路の事故点標定法。
[Claims] A first propagation signal detected at the measurement end by applying a calibration pulse to the measurement end of the fault phase cable line and the calibration pulse connect the cable line of the healthy phase from the far end of the cable line. Calculate the time difference (t1) with the second propagation signal transmitted to the measuring end via the cable and detected at the measuring end, and apply a calibration pulse to the far end of the cable line of the fault phase to detect the signal at the measuring end. A second propagation signal, in which the first propagation signal and the calibration pulse are transmitted from the far end of the cable line through the cable line in good phase to the measuring end and detected at the measuring end.
The time difference (t2) between the first propagation signal and the first propagation signal detected at the measurement end by applying a high voltage to the cable line of the fault phase and the discharge pulse generated at the fault point is calculated. Calculate the time difference (t) between the far end of the cable line and the second propagation signal that is transmitted to the measuring end via the healthy cable line and detected at the measuring end, and calculate the time difference (t) from the measuring end to the fault point. A cable characterized in that a fault point on a cable line is located by finding the distance x from x=(t1-t)L1/(t1-t2) (where L1 is the cable line length of the fault phase). Railway accident point location method.
JP5762685A 1985-03-22 1985-03-22 Accident location method for cable tracks Expired - Lifetime JPH065252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5762685A JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5762685A JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Publications (2)

Publication Number Publication Date
JPS61215970A true JPS61215970A (en) 1986-09-25
JPH065252B2 JPH065252B2 (en) 1994-01-19

Family

ID=13061092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5762685A Expired - Lifetime JPH065252B2 (en) 1985-03-22 1985-03-22 Accident location method for cable tracks

Country Status (1)

Country Link
JP (1) JPH065252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070537A (en) * 1988-03-24 1991-12-03 Tohoku Electric Power Co., Inc. System for detecting defective point on power transmission line by utilizing satellite
US5682100A (en) * 1995-09-06 1997-10-28 Electric Power Research Institute Inc. System and method for locating faults in electric power cables
ITBO20090192A1 (en) * 2009-03-27 2010-09-28 Techimp Technologies S A DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.
ITBO20090193A1 (en) * 2009-03-27 2010-09-28 Techimp Technologies S A DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070537A (en) * 1988-03-24 1991-12-03 Tohoku Electric Power Co., Inc. System for detecting defective point on power transmission line by utilizing satellite
US5682100A (en) * 1995-09-06 1997-10-28 Electric Power Research Institute Inc. System and method for locating faults in electric power cables
ITBO20090192A1 (en) * 2009-03-27 2010-09-28 Techimp Technologies S A DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.
ITBO20090193A1 (en) * 2009-03-27 2010-09-28 Techimp Technologies S A DEVICE AND PROCEDURE FOR LOCALIZING PARTIAL DISCHARGES.
WO2010109413A1 (en) * 2009-03-27 2010-09-30 Techimp Technologies S.A. Device and method for locating partial discharges
WO2010109382A1 (en) * 2009-03-27 2010-09-30 Techimp Technologies S.A. Device and method for locating partial discharges
US8467982B2 (en) 2009-03-27 2013-06-18 Techimp Technologies S.R.L. Device and method for locating partial discharges
US8762081B2 (en) 2009-03-27 2014-06-24 Techimp Technologies S.R.L. Device and method for locating partial discharges

Also Published As

Publication number Publication date
JPH065252B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US3427866A (en) Ultrasonic thickness gauge and flow detector
JPS61215970A (en) Accident point location for cable line
US5226036A (en) Network diagnostic tool
JPS61215971A (en) Accident point standardizing method for cable line
JPH065253B2 (en) Accident location method for cable tracks
JPS6255570A (en) Location of fault point for cable line
JP2608961B2 (en) Sound wave propagation time measurement method
JPH1138074A (en) Partial discharge position orienting method for cable
JP2650935B2 (en) Partial discharge location method
JPS61210970A (en) Method for plotting accident point of cable line
US3580058A (en) Dual ultrasonic sensors employing a single mode of ultrasonic transmission
JPS60257333A (en) Stress measuring method
JPH0435997Y2 (en)
JPS59225366A (en) Disconnection position detecting system
JPS61210968A (en) Method for plotting accident point of cable line
JPS61210969A (en) Method for plotting accident point of cable line
JPH0353583B2 (en)
JP2708078B2 (en) Ultrasonic distance measurement method
JPH0682512A (en) Fault locator for cable
JPH07104365B2 (en) Optical sensor device
JPS60213877A (en) Ultrasonic distance measuring apparatus
JP2717592B2 (en) Faulty point measurement method of optical submarine cable by electrical pulse echo
JPS60233579A (en) Position measuring method and its device
JPH07287045A (en) Outage point rating method for power system
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method