JPH0353583B2 - - Google Patents

Info

Publication number
JPH0353583B2
JPH0353583B2 JP56074699A JP7469981A JPH0353583B2 JP H0353583 B2 JPH0353583 B2 JP H0353583B2 JP 56074699 A JP56074699 A JP 56074699A JP 7469981 A JP7469981 A JP 7469981A JP H0353583 B2 JPH0353583 B2 JP H0353583B2
Authority
JP
Japan
Prior art keywords
power cable
corona
signal
optical
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56074699A
Other languages
Japanese (ja)
Other versions
JPS57189074A (en
Inventor
Toshio Kasahara
Mitsugi Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP56074699A priority Critical patent/JPS57189074A/en
Publication of JPS57189074A publication Critical patent/JPS57189074A/en
Publication of JPH0353583B2 publication Critical patent/JPH0353583B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電力ケーブルのコロナ測定方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the corona of a power cable.

(従来の技術) 従来、第1図に示すように、電力ケーブル1の
導体1aとシース遮蔽層1bとの間に検出インピ
ーダンス41と直流電源21を直列に接続し、こ
の直流電源21により直流電圧を課電した状態
で、電力ケーブル1の絶縁欠陥部で発生するコロ
ナ信号を検出インピーダンス41で検出し、この
信号を増幅器17で増幅し、電気・光変換器(例
えば、レーザダイオード)19により光信号に変
換した後、光フアイバ18により光・電気変換器
211に伝送し、この光・電気変換器211によ
り電気信号に変換し、この信号を増幅器212で
増幅してシンクロスコープ22で観測していた。
(Prior Art) Conventionally, as shown in FIG. 1, a detection impedance 41 and a DC power source 21 are connected in series between a conductor 1a of a power cable 1 and a sheath shielding layer 1b, and this DC power source 21 generates a DC voltage. is applied, a corona signal generated at an insulation defect in the power cable 1 is detected by a detection impedance 41, this signal is amplified by an amplifier 17, and an optical After converting it into a signal, it is transmitted to an optical-to-electrical converter 211 through an optical fiber 18, which converts it into an electrical signal, which is amplified by an amplifier 212 and observed by a synchroscope 22. Ta.

(発明が解決しようとする課題) しかしながら、上述した従来の電力ケーブルの
コロナ信号測定方法にあつては、外部雑音(主に
ラジオ電波)が電力ケーブル1のヘツドから侵入
して前記コロナ信号に対する雑音として作用する
ため、コロナ信号の測定が困難になるという問題
点があつた。
(Problems to be Solved by the Invention) However, in the conventional power cable corona signal measurement method described above, external noise (mainly radio waves) enters from the head of the power cable 1 and causes noise to the corona signal. Therefore, there was a problem in that it was difficult to measure the corona signal.

(課題を解決するための手段) 本発明は、上記問題点を解消するために成され
たもので、電力ケーブルに交流電圧を課電し、該
課電下において前記電力ケーブルに発生するコロ
ナ信号を測定する電力ケーブルのコロナ測定方法
において、被測定電力ケーブルの導体と他相電力
ケーブルの導体との間に、検出インピーダンスと
コンデンサを直列に接続したことを特徴とする。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and includes applying an alternating current voltage to a power cable, and corona signals generated in the power cable under the application of voltage. The corona measuring method for a power cable is characterized in that a detection impedance and a capacitor are connected in series between the conductor of the power cable to be measured and the conductor of the other-phase power cable.

(実施例) 以下、本発明の一実施例を添付図面に基づいて
説明する。
(Example) Hereinafter, one example of the present invention will be described based on the accompanying drawings.

第2図は本発明の実施例に係るコロナ測定方法
の回路図である。
FIG. 2 is a circuit diagram of a corona measuring method according to an embodiment of the present invention.

第2図に示すように、3相の電力ケーブルのう
ちの被測定電力ケーブル1の導体1aにセンサ3
3の一端13を接続し、センサ33の他端12に
結合コンデンサ41aの一端41bを接続し、結
合コンデンサ41aの他端41cを他相電力ケー
ブル6の導体6aに接続する。尚、センサ33
は、第1図に示したように検出インピーダンス4
1、増幅器17および電気・光変換器19を備え
て構成されている。
As shown in FIG. 2, the sensor 3
One end 13 of the coupling capacitor 41a is connected to the other end 12 of the sensor 33, and the other end 41c of the coupling capacitor 41a is connected to the conductor 6a of the other phase power cable 6. Furthermore, the sensor 33
is the detection impedance 4 as shown in Figure 1.
1, an amplifier 17 and an electrical/optical converter 19.

また、被測定電力ケーブル1の導体1aとシー
ス遮蔽層1bとの間には交流電源2を接続し、他
相電力ケーブル6の導体6aとシース遮蔽層6b
との間には交流電源2aを接続する。尚、本実施
例では、外部雑音を防ぐため、センサ33を遮蔽
体42で覆つており、この遮蔽体42は、センサ
33の一端13に短絡する構成となつている。
In addition, an AC power source 2 is connected between the conductor 1a of the power cable 1 to be measured and the sheath shielding layer 1b, and the conductor 6a of the other phase power cable 6 and the sheath shielding layer 6b are connected.
An AC power source 2a is connected between the two. In this embodiment, in order to prevent external noise, the sensor 33 is covered with a shield 42, and the shield 42 is configured to be short-circuited to one end 13 of the sensor 33.

センサ33の検出インピーダンス41は、コロ
ナ信号に対し適切な抵抗値を持ち、また、結合コ
ンデンサ41aは、コロナ信号に対して低インピ
ーダンスで、かつ交流電源2,2aの周波数に対
して高インピーダンスとなるものを使用してい
る。
The detection impedance 41 of the sensor 33 has an appropriate resistance value for the corona signal, and the coupling capacitor 41a has a low impedance for the corona signal and a high impedance for the frequency of the AC power supplies 2 and 2a. using something.

コイルL,L′は、被測定電力ケーブル1で発生
したコロナ信号が交流電源2,2a側に流れるの
を防止するものである。
The coils L and L' prevent the corona signal generated in the power cable 1 to be measured from flowing to the AC power sources 2 and 2a.

次に、以上のように構成された電力ケーブルの
コロナ信号測定回路動作について説明する。
Next, the operation of the corona signal measuring circuit for the power cable configured as described above will be explained.

被測定電力ケーブル1の絶縁欠陥部9で発生し
たコロナ信号は、センサ33を通り、結合コンデ
ンサ41aを通り、他相電力ケーブル6の導体6
aとシース遮蔽層6b間を通つてアースGにもど
る。
The corona signal generated at the insulation defect 9 of the power cable 1 to be measured passes through the sensor 33, the coupling capacitor 41a, and the conductor 6 of the other phase power cable 6.
a and the sheath shielding layer 6b and return to the ground G.

一方、前記コロナ信号に対して雑音となる外部
雑音は、被測定電力ケーブル1の導体1aとアー
スG間に発生するが、同じ形状の他相電力ケーブ
ル6の導体6aとアースG間にも同じレベルの外
部雑音がほぼ同相で発生しているため、センサの
両端12,13には、外部雑音による電位差が生
じない。このため、センサ33の検出インピーダ
ンス41には外部雑音による電流が流れない。
On the other hand, external noise that becomes noise with respect to the corona signal is generated between the conductor 1a of the power cable 1 to be measured and the ground G, but it is also generated between the conductor 6a of the other phase power cable 6 of the same shape and the ground G. Since the level of external noise is generated in substantially the same phase, no potential difference is generated between the ends 12 and 13 of the sensor due to the external noise. Therefore, no current due to external noise flows through the detection impedance 41 of the sensor 33.

センサ33の検出インピーダンス41で検出さ
れたコロナ信号は、増幅器17で増幅され、電
気・光変換器19で光信号に変換される。この光
信号は、光フアイバ18により伝送され、光・電
気変換器21により電気信号に変換された後に増
幅され、シンクロスコープ22で観測される。
The corona signal detected by the detection impedance 41 of the sensor 33 is amplified by the amplifier 17 and converted into an optical signal by the electrical/optical converter 19. This optical signal is transmitted by an optical fiber 18, converted into an electrical signal by an optical-to-electrical converter 21, amplified, and observed by a synchroscope 22.

また、被測定電力ケーブル1の絶縁欠陥部9で
発生したコロナ信号は、被測定電力ケーブル1の
他端側にも伝搬し、このコロナ信号は、ケーブル
ヘツドで反射した後、被測定電力ケーブル1を伝
搬してシンクロスコープ22で観測される。この
2つの信号の到達時間の差とコロナ信号の伝搬速
度との関係から絶縁欠陥部9の位置を標定するこ
とができる。
Furthermore, the corona signal generated at the insulation defect 9 of the power cable under test 1 propagates to the other end of the power cable under test 1, and after being reflected at the cable head, the corona signal is transmitted to the power cable under test 1. is propagated and observed by the synchroscope 22. The position of the insulation defect 9 can be located from the relationship between the difference in arrival time of these two signals and the propagation speed of the corona signal.

第3図は本発明の別実施例に係るコロナ測定方
法の回路図を示すものであり、遮蔽体42がセン
サ33の一端12に短絡する構成となつている点
が第2図と相違している。
FIG. 3 shows a circuit diagram of a corona measuring method according to another embodiment of the present invention, and differs from FIG. 2 in that the shield 42 is short-circuited to one end 12 of the sensor 33. There is.

(発明の効果) 以上説明したように、本発明によれば、被測定
電力ケーブルに外部雑音(主にラジオ電波)が侵
入しても、同時に他相電力ケーブルにも同様の外
部雑音が侵入するため、検出インピーダンスの両
端には、外部雑音による電位差が生じない。した
がつて、前記検出インピーダンスには、外部雑音
による電流が流れず、このため外部雑音(主にラ
ジオ電波)の影響を受けずにコロナ信号を測定す
ることができる。
(Effects of the Invention) As explained above, according to the present invention, even if external noise (mainly radio waves) intrudes into the power cable under test, similar external noise intrudes into other phase power cables at the same time. Therefore, no potential difference occurs between both ends of the detection impedance due to external noise. Therefore, no current due to external noise flows through the detection impedance, and therefore the corona signal can be measured without being affected by external noise (mainly radio waves).

また、被測定電力ケーブルの導体と他相電力ケ
ーブルの導体との間にコンデンサが接続されてい
るため、被測定電力ケーブルと他相電力ケーブル
の間に相間電流が多量に流れることがなく、この
ため、電力ケーブルが活線状態である場合でもコ
ロナ信号を測定することができる。
In addition, since a capacitor is connected between the conductor of the power cable to be measured and the conductor of the other-phase power cable, a large amount of phase-to-phase current does not flow between the power cable to be measured and the other-phase power cable. Therefore, corona signals can be measured even when the power cable is live.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のコロナ測定方法の回路図、第2
図は本発明の実施例に係るコロナ測定方法の回路
図、第3図は別実施例に係るコロナ測定方法の回
路図である。 主な参照番号、1……被測定電力ケーブル、6
……他相電力ケーブル、1a,6a……導体、4
1……検出インピーダンス、41a……結合コン
デンサ。
Figure 1 is a circuit diagram of the conventional corona measurement method, Figure 2
The figure is a circuit diagram of a corona measuring method according to an embodiment of the present invention, and FIG. 3 is a circuit diagram of a corona measuring method according to another embodiment. Main reference number, 1... Power cable to be measured, 6
...Other phase power cable, 1a, 6a...Conductor, 4
1...Detection impedance, 41a...Coupling capacitor.

Claims (1)

【特許請求の範囲】 1 電力ケーブルに交流電圧を課電し、該課電下
において前記電力ケーブルに発生するコロナ信号
を測定する電力ケーブルのコロナ測定方法におい
て、 被測定電力ケーブルの導体と他相電力ケーブル
の導体との間に、検出インピーダンスとコンデン
サを直列に接続したことを特徴とする電力ケーブ
ルのコロナ測定方法。 2 前記検出インピーダンスの両端に生じたコロ
ナ信号電圧を電気・光変換器で光信号に変換し、
この光信号を光フアイバにより光・電気変換器に
伝送し、この光・電気変換器で前記光信号を電気
信号に変換して前記被測定電力ケーブルのコロナ
測定を行うことを特徴とする特許請求の範囲第1
項記載の電力ケーブルのコロナ測定方法。
[Scope of Claims] 1. A method for measuring the corona of a power cable in which an AC voltage is applied to the power cable and a corona signal generated in the power cable under the applied voltage is measured, comprising the steps of: A method for measuring the corona of a power cable, characterized by connecting a detection impedance and a capacitor in series between the conductor of the power cable. 2 converting the corona signal voltage generated across the detection impedance into an optical signal with an electric/optical converter;
A patent claim characterized in that the optical signal is transmitted to an optical-to-electrical converter through an optical fiber, and the optical-to-electrical converter converts the optical signal into an electrical signal to measure the corona of the power cable to be measured. range 1
Method for measuring corona of power cables as described in Section 2.
JP56074699A 1981-05-18 1981-05-18 Corona measuring method for power cable Granted JPS57189074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56074699A JPS57189074A (en) 1981-05-18 1981-05-18 Corona measuring method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56074699A JPS57189074A (en) 1981-05-18 1981-05-18 Corona measuring method for power cable

Publications (2)

Publication Number Publication Date
JPS57189074A JPS57189074A (en) 1982-11-20
JPH0353583B2 true JPH0353583B2 (en) 1991-08-15

Family

ID=13554728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56074699A Granted JPS57189074A (en) 1981-05-18 1981-05-18 Corona measuring method for power cable

Country Status (1)

Country Link
JP (1) JPS57189074A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072578U (en) * 1983-10-21 1985-05-22 三菱電線工業株式会社 Cable partial discharge measuring device
JPH0718908B2 (en) * 1985-02-15 1995-03-06 昭和電線電纜株式会社 Insulation test equipment for power cables
CA2008898C (en) * 1989-10-25 1998-11-24 Takeshi Endoh Method for detecting partial discharge in an insulation of an electric power apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543465A (en) * 1978-09-22 1980-03-27 Showa Electric Wire & Cable Co Ltd Detection method of partial discharge pulse
JPS5637567A (en) * 1979-09-05 1981-04-11 Central Res Inst Of Electric Power Ind Noise rejection system in corona detection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543465A (en) * 1978-09-22 1980-03-27 Showa Electric Wire & Cable Co Ltd Detection method of partial discharge pulse
JPS5637567A (en) * 1979-09-05 1981-04-11 Central Res Inst Of Electric Power Ind Noise rejection system in corona detection apparatus

Also Published As

Publication number Publication date
JPS57189074A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
JP2002055126A (en) Non-contact type voltage measuring method and device therefor
US5532590A (en) Apparatus for measuring circuit parameters wherein errors due to transmission lines are prevented
JPH0353583B2 (en)
JP2000147037A (en) Method for measuring space charge
JPS6140571A (en) Partial dischrge measurement of hot cable
JPS6255570A (en) Location of fault point for cable line
JPS61288175A (en) Measuring instrument for insulation deterioration of electric power cable
JPH1090337A (en) Method for deterioration measurement of cable
JP2564956B2 (en) Partial discharge measurement method
JPH0568663B2 (en)
JP2612643B2 (en) Calibration method for partial discharge measurement sensitivity
SU1285409A1 (en) Method of detecting location of faulted metal sheath of cable
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JPS585677A (en) Detecting method for partial discharge of power cable
JP2893055B2 (en) Diagnosis method for insulation deterioration of CV cable
JPH0136595B2 (en)
JP2568346Y2 (en) Cable loss tangent measurement device
JPS6290563A (en) Apparatus for measuring impulse voltage
JPH0718908B2 (en) Insulation test equipment for power cables
JP2671169B2 (en) AC resistance measurement method for conductors
JPH074584Y2 (en) Detection current transformer of insulation resistance measuring device
JPH04215077A (en) Partial discharge measuring method
JPS61187670A (en) Apparatus for testing insulation of power cable
JPS61210969A (en) Method for plotting accident point of cable line
JPS59116062A (en) Detection of breaking point in cable