JPH0682512A - Fault locator for cable - Google Patents

Fault locator for cable

Info

Publication number
JPH0682512A
JPH0682512A JP23580592A JP23580592A JPH0682512A JP H0682512 A JPH0682512 A JP H0682512A JP 23580592 A JP23580592 A JP 23580592A JP 23580592 A JP23580592 A JP 23580592A JP H0682512 A JPH0682512 A JP H0682512A
Authority
JP
Japan
Prior art keywords
surge
cable
magnetic field
fault
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23580592A
Other languages
Japanese (ja)
Inventor
Toshiharu Miyamoto
俊治 宮本
Yoshikazu Murata
吉和 村田
Takashi Fujieda
敬史 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23580592A priority Critical patent/JPH0682512A/en
Publication of JPH0682512A publication Critical patent/JPH0682512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate fault highly accurately by previously determining an apparent propagation delay time of surge caused by passage through a singular point such as a cross bond thereby correcting the surge detection time of magnetic field sensor. CONSTITUTION:Surge occurring upon fault of a cable is detected through at least two magnetic field sensors arranged at an appropriate interval along the cable and then the fault is located based on the difference between detection times. In this case, apparent propagation time of surge is delayed due to attenuation of the surge at a singular point, e.g. a cross bond, on the cable route. The propagation delay time of surge is previously measured by injecting a surge simulation waveform into a simulation circuit in order to correct surge detection time of the magnetic field sensor. An impulse voltage is applied on the simulation line system in order to simulate a point Q, separated by a predetermined distance from a cross bond IJ1, as a fault point. No fault is present in the section between the magnetic field sensors S1, S2 and this section is recognized as a sound section, thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ケーブルの事故点を標
定する装置に関し、特に標定精度の向上を図ったケーブ
ル事故点標定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for locating an accident point on a cable, and more particularly to a cable accident point locating device for improving the locating accuracy.

【0002】[0002]

【従来の技術】この種の従来技術として、例えば特開昭
63−292076号の「ケーブル事故点標定装置」で
は、地絡事故等によるサージを、ケーブル線路に接近し
て設けた複数の光磁界センサで検出し、各光磁界センサ
から出力される光信号を、光ケーブルを介して伝送端末
装置へ送信し、この伝送端末装置にて、各光信号の受信
タイミングから事故点を標定することが開示されてい
る。
2. Description of the Related Art As a conventional technique of this kind, for example, in "Cable Accident Locator" of Japanese Patent Laid-Open No. 63-292076, a plurality of optical magnetic fields provided near a cable line for a surge caused by a ground fault or the like. It is disclosed that an optical signal detected by a sensor and output from each optical magnetic field sensor is transmitted to a transmission terminal device via an optical cable, and the transmission terminal device locates an accident point from the reception timing of each optical signal. Has been done.

【0003】又、特開平4−54470号公報の「送電
線の故障点標定装置」では、送電線の3点に設置した各
子局において、サージパルスの検出に応答してパルス信
号を隣接する子局へ送信し、前記パルス信号を受信した
子局では、当該子局で検出したパルス信号と受信したパ
ルス信号との時間差を検出し、この時間差を親局ーへ送
信し、親局では、時間差データを調べることで健全区間
と故障区間とを判定し、健全区間の時間差データからサ
ージパルスの伝播速度を知り、この速度から、故障区間
における故障点を標定している。
Further, in "Fault point locating device for power transmission line" disclosed in Japanese Patent Laid-Open No. 4-54470, pulse signals are adjacent to each other in response to detection of a surge pulse in each slave station installed at three points of the power transmission line. Transmitted to the slave station, in the slave station receiving the pulse signal, the time difference between the pulse signal detected in the slave station and the received pulse signal is detected, the time difference is transmitted to the master station, and in the master station, The sound section and the failure section are determined by examining the time difference data, the propagation speed of the surge pulse is known from the time difference data of the sound section, and the failure point in the failure section is located from this speed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た標定装置では、ケーブル線路にクロスボンド等の特異
点がある場合には、図1に示したように、特異点通過後
のサージ電流波形が大きく減衰するために、サージ電流
の検出時点がずれ、その結果、波形のサージ伝播時間
が、みかけ上、遅れることになり、事故点の標定値に大
きな誤差を生じた。本発明は、上述した課題を解決する
ためになされたものであり、クロスボンドを通過したと
き生じるサージパルスの伝播時間遅れを補正することで
精度の良い事故点の標定を行える装置を提供することを
目的とする。
However, in the above-described orientation device, when the cable line has a singular point such as a cross bond, the surge current waveform after passing through the singular point becomes large as shown in FIG. Due to the attenuation, the detection time of the surge current was deviated, and as a result, the surge propagation time of the waveform was apparently delayed, resulting in a large error in the estimated value of the accident point. The present invention has been made to solve the above-mentioned problems, and provides an apparatus capable of accurately locating an accident point by correcting a propagation time delay of a surge pulse generated when passing through a cross bond. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は、ケーブルの事
故時に発生したサージを、ケーブルに沿い適当な間隔で
もって取り付けた少なくとも2個の磁界センサで検出
し、その検出時間差から事故点を標定する事故点標定装
置において、ケーブルの途中に設置したクロスボンド等
のケーブルルートにおける特異点通過に伴う減衰により
生じる、みかけ上のサージ伝播時間遅れを予め求めてお
き、上記磁界センサの検出時刻を前記のサージ伝播時間
遅れでもって補正することを特徴とする。
According to the present invention, at least two magnetic field sensors mounted along a cable at appropriate intervals detect a surge generated at the time of a cable accident, and the fault point is located from the detection time difference. In the accident point locating device, the apparent surge propagation time delay, which is caused by the attenuation due to the passage of a singular point in the cable route such as a cross bond installed in the middle of the cable, is obtained in advance, and the detection time of the magnetic field sensor is set to the above. It is characterized in that it is corrected with the surge propagation time delay of.

【0006】[0006]

【作用】図1に示した、みかけ上のサージ伝播時間遅れ
をΔt、サージ伝播速度をvとすれば、Δt・vだけケ
ーブルが長くなった測定結果が得られる。このサージ伝
播時間の遅れΔtは、クロスボンド通過前のサージ波形
の大きさにより若干変化するが、事前にサージ模擬波形
を模擬線路か実線路に注入してΔtを計測しておき、磁
界センサによるサージ検出時刻からこの値Δtを差し引
くことで精度良く事故点の標定を行える。
When the apparent surge propagation time delay shown in FIG. 1 is Δt and the surge propagation speed is v, the measurement result of the cable lengthened by Δt · v can be obtained. The delay Δt of the surge propagation time changes slightly depending on the size of the surge waveform before passing through the cross bond, but the surge simulation waveform is injected into the simulated line or the actual line in advance to measure Δt, and the magnetic field sensor is used. By subtracting this value Δt from the surge detection time, the accident point can be accurately located.

【0007】[0007]

【実施例】図2は、本発明の装置の一実施例を示すシス
テム図である。模擬線路として用いたケーブルは、77
KV、CV、600mm2で全長312.4mあり、ケー
ブル左端より距離L1(132m)の箇所に、クロスボン
ドIJ1があり、又、このクロスボンドIJ1からケーブ
ル右端までの距離L2(180.4m)の区間にもクロスボ
ンドIJ2が存在する。S1およびS2は、ケーブル左端
および右端のケーブルヘッドCH1およびCH2に設置さ
れた磁界センサであり、S2はクロスボンドIJ1に設置
された磁界センサである。H1,H2,H3は、各磁界セ
ンサS1,S2,S3よりの検出信号を光信号に変換する
電/光変換器であり、電/光変換器H3の出力(パルス)
は前段のカウンタC−2へ光ファイバーにて供給され、
又、電/光変換器H2の出力(パルス)は前段のカウンタ
C−1へ光ファイバーにて供給される。カウンタC−2
は、電/光変換器H2よりのパルス入力でカウントを開
始し、電/光変換器H3よりのパルス入力によりそのカ
ウントを停止する。又、カウンタC−1は、電/光変換
器H1よりのパルス入力でカウントを開始し、電/光変
換器H2よりのパルス入力によりそのカウントを停止す
る。伝送装置LS2は、カンウタC−2でのカウント値
を光ファイバにて伝送装置LS1へ伝送し、この伝送装
置LS1は、カウンタC−1でのカウント値および伝送
装置LS2よりのカウント値を光ファイバにて事故点を
標定する親局へ伝送する。
FIG. 2 is a system diagram showing an embodiment of the apparatus of the present invention. The cable used as a simulated track is 77
KV, CV, 600 mm 2 , total length 312.4 m, there is a cross bond IJ 1 at a distance L 1 (132 m) from the left end of the cable, and a distance L 2 (180 mm) from this cross bond IJ 1 to the right end of the cable. Cross bond IJ2 also exists in the section of 0.4 m. S 1 and S 2 are the magnetic field sensor installed in the cable left and right edges of the cable head CH 1 and CH 2, S 2 is a magnetic field sensor installed in cross bond IJ 1. H 1 , H 2 , and H 3 are electro-optical converters that convert the detection signals from the magnetic field sensors S 1 , S 2 , and S 3 into optical signals, and output of the electro-optical converter H 3 (pulses). )
Is supplied to the counter C-2 in the previous stage by optical fiber,
The output (pulse) of the electro-optical converter H 2 is supplied to the counter C-1 at the preceding stage by an optical fiber. Counter C-2
Starts counting by pulse input from the electro-optical converter H 2, and stops counting by pulse input from the electro-optical converter H 3 . The counter C-1 starts counting when a pulse is input from the electro-optical converter H 1 and stops counting when a pulse is input from the electro-optical converter H 2 . The transmission device LS2 transmits the count value of the counter C-2 to the transmission device LS1 by an optical fiber, and the transmission device LS1 transmits the count value of the counter C-1 and the count value of the transmission device LS2 to the optical fiber. It is transmitted to the master station which locates the accident point.

【0008】上記のシステムにおいて、クロスボンドI
1より図中右方向の81.4m点のQを事故点に模擬す
るために17KVのインパルス電圧を印加した。この模
擬線路では、S1−S2区間内には事故はなく健全区間で
ある。この健全区間におけるサージ通過時間t12は次式
で求まる。 t12=KC1−t01 (1) ここでKはカウンタC−1の1カウント当たりの刻み時
間、C1はカウンタC−1のカウント値であり、t
01は、伝送装置LS2から伝送装置LS1のカウンタC−
1を停止させる信号を伝送する光ファイバの伝送時間で
ある。(1)式より、サージの伝播速度vは、 v=L1/t12 (2) で得られる。次に、クロスボンドIJ1から事故点Qま
での距離xは、 x=(L2−v・t23)/2 (3) で得られる。ここでt23は、センサS2とS3との間での
サージの通過時間差であり、 t23=KC2−t02 (4) で与えられる。次に、クロスボンドIJ1より図中右方
向の109.6m点のPを事故点に模擬するために17
KVのインパルス電圧を印加して上記と同じ手順で行
い、それらの実験結果を次表に示す。
In the above system, the cross bond I
Impulse voltage of 17 KV was applied to simulate Q at 81.4 m point in the right direction from J 1 as an accident point. In this simulation line, the S 1 -S 2 in the interval accident is not healthy section. The surge passage time t 12 in this sound section is calculated by the following equation. t 12 = KC 1 −t 01 (1) Here, K is a time interval per count of the counter C-1, C 1 is a count value of the counter C-1, and t
01 is a counter C- of the transmission device LS 2 to the transmission device LS 1 .
1 is a transmission time of an optical fiber for transmitting a signal for stopping 1). From the equation (1), the propagation velocity v of the surge is obtained by v = L 1 / t 12 (2). Next, the distance x from the cross bond IJ 1 to the accident point Q is obtained by x = (L 2 −v · t 23 ) / 2 (3). Here, t 23 is a surge passage time difference between the sensors S 2 and S 3, and is given by t 23 = KC 2 −t 02 (4). Next, in order to simulate P at the position of 99.6 m to the right of the cross bond IJ 1 as an accident point,
The same procedure as above was performed by applying an impulse voltage of KV, and the experimental results are shown in the following table.

【0009】[0009]

【表1】 事故点 t1223 (3)式の結果 誤差 P(109.6m) -0.8539μ秒 -0.3489μ秒 117.1m +7.5m Q( 81.4m) -0.8539μ秒 -0.0473μ秒 93.9m +12.5m[Table 1] Accident point t 12 t 23 Result of formula (3) Error P (109.6m) -0.8539μs -0.3489μs 117.1m + 7.5m Q (81.4m) -0.8539μs -0.0473μs 93.9m + 12.5m

【0010】上表から事故点位置xがほぼわかり、クロ
スボンド点を何箇所通過したかがわかる。一方、本模擬
線路において、クロスボンド点のサージ通過時間の遅れ
Δtは、別途求めた実測結果から平均で0.077μ秒
であった。そこで、表1のt23からこのΔtを差し引
き、これをt'23としてxを求めてみると下表が得られ
た。
From the above table, the accident point position x can be almost known, and the number of crossing points of the cross bond points can be known. On the other hand, in this simulated line, the delay Δt of the surge passage time at the cross bond point was 0.077 μsec on average from the separately measured result. Therefore, the following table was obtained by subtracting this Δt from t 23 in Table 1 and using this as t ′ 23 to obtain x.

【0011】[0011]

【表2】 事故点 t1223 (3)式の結果 誤差 P(109.6m) -0.8539μ秒 -0.1949μ秒 105.3m −4.3m Q( 81.4m) -0.8539μ秒 +0.1067μ秒 81.9m +0.5m[Table 2] Accident point t 12 t 23 Result of formula (3) Error P (109.6m) -0.8539μs -0.1949μs 105.3m -4.3m Q (81.4m) -0.8539μs + 0.1067μs 81.9m + 0.5m

【0012】表2の標定誤差は表1の場合と比較して小
さくなっていることが確認できた。
It was confirmed that the orientation error in Table 2 was smaller than that in Table 1.

【0013】[0013]

【発明の効果】以上説明したように、本発明は、クロス
ボンド等のケーブルルートにおける特異点通過に伴う減
衰により生じる、みかけ上のサージ伝播時間遅れを予め
求めておき、磁界センサで検出した時刻をそのサージ伝
播時間遅れでもって補正するようにしたので、精度の良
い事故点の標定を行える。
As described above, according to the present invention, an apparent surge propagation time delay caused by attenuation caused by passage of a singular point in a cable route such as a cross bond is obtained in advance, and the time detected by the magnetic field sensor is detected. Since it is corrected by the surge propagation time delay, it is possible to locate the accident point with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 クロスボンド通過後のサージ変化を示した図FIG. 1 is a diagram showing a surge change after passing through a cross bond.

【図2】 本発明の一実施例を示すシステム図FIG. 2 is a system diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

S 磁界センサ H 電/光変換器 C カウンタ LS 伝送装置 IJ クロスボンド S Magnetic field sensor H Electro-optical converter C Counter LS Transmission device IJ Cross bond

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ケーブルの事故時に発生したサージを、
ケーブルに沿い適当な間隔でもって取り付けた少なくと
も2個の磁界センサで検出し、その検出時間差から事故
点を標定する事故点標定装置において、ケーブルの途中
に設置したクロスボンド等のケーブルルートにおける特
異点通過に伴う減衰により生じる、みかけ上のサージ伝
播時間遅れを予め求めておき、上記磁界センサの検出時
刻を前記のサージ伝播時間遅れでもって補正することを
特徴とするケーブル事故点標定装置。
1. A surge generated when a cable accident occurs,
In a fault point locator that detects at least two magnetic field sensors installed at appropriate intervals along the cable and locates the fault point from the detection time difference, a singular point in the cable route such as a cross bond installed in the middle of the cable A cable fault point locating device, characterized in that an apparent surge propagation time delay caused by attenuation due to passage is obtained in advance, and the detection time of the magnetic field sensor is corrected by the surge propagation time delay.
JP23580592A 1992-09-03 1992-09-03 Fault locator for cable Pending JPH0682512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23580592A JPH0682512A (en) 1992-09-03 1992-09-03 Fault locator for cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23580592A JPH0682512A (en) 1992-09-03 1992-09-03 Fault locator for cable

Publications (1)

Publication Number Publication Date
JPH0682512A true JPH0682512A (en) 1994-03-22

Family

ID=16991519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23580592A Pending JPH0682512A (en) 1992-09-03 1992-09-03 Fault locator for cable

Country Status (1)

Country Link
JP (1) JPH0682512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852658A (en) * 2012-11-29 2014-06-11 中国人民解放军军械工程学院 Simulation method for lightning return stroke electromagnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852658A (en) * 2012-11-29 2014-06-11 中国人民解放军军械工程学院 Simulation method for lightning return stroke electromagnetic field

Similar Documents

Publication Publication Date Title
US3670240A (en) Method for determining the distance to a fault on power transmission lines and device for its realization on d.c. lines
US20160266192A1 (en) A method of single-ended fault location in hvdc transmission lines
CN102798804B (en) High-voltage power cable fault on-line positioning device
JPH0682512A (en) Fault locator for cable
JP3759798B2 (en) Lightning point location method
US20220111878A1 (en) Device, system and method for monitoring conditions on a railway track
JP2020522938A (en) Testing the energy transmission network and identifying faults in the energy transmission cable
JPH0454470A (en) Fault point locating device for power transmission line
JPH1138074A (en) Partial discharge position orienting method for cable
JPS61215970A (en) Accident point location for cable line
JPS6321159B2 (en)
JPS60169775A (en) Apparatus for locating failure point of power- transmission line
CN107615083A (en) Noise-source analysis method
JPH075221A (en) Fault current detector for transmission line, and method and apparatus for detecting fault section
JPH0862277A (en) Apparatus for locating fault point of transmission line
JPH0815363A (en) Fault location method for transmission line
JPS61215971A (en) Accident point standardizing method for cable line
JPH02103478A (en) Fault locator
JPS63300976A (en) Polarity decision type accident point locating device
JP3839093B2 (en) Method for locating acicular wave generation point in distribution line
JPH065253B2 (en) Accident location method for cable tracks
JPH0810151B2 (en) Ultrasonic velocity measuring device
JPS59225366A (en) Disconnection position detecting system
SU1250245A1 (en) Apparatus for measuring pulse wave velocity
JPH02263173A (en) Locating system for lightning point and accident point on overhead power transmission and distribution line