JPS60169775A - Apparatus for locating failure point of power- transmission line - Google Patents

Apparatus for locating failure point of power- transmission line

Info

Publication number
JPS60169775A
JPS60169775A JP2627584A JP2627584A JPS60169775A JP S60169775 A JPS60169775 A JP S60169775A JP 2627584 A JP2627584 A JP 2627584A JP 2627584 A JP2627584 A JP 2627584A JP S60169775 A JPS60169775 A JP S60169775A
Authority
JP
Japan
Prior art keywords
signal processing
signal
failure point
surge
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2627584A
Other languages
Japanese (ja)
Inventor
Kunio Koshiro
小城 邦雄
Hiroshi Takenaka
竹中 拡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2627584A priority Critical patent/JPS60169775A/en
Publication of JPS60169775A publication Critical patent/JPS60169775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To make it possible to realize the enhancement of noise resistance and the protection of a signal processing apparatus from surge, by simplifying the signal processing apparatus by dispensing with a synchronous circuit and using an optical fiber in signal transmission. CONSTITUTION:The surge wave generated from the failure point F at a distance lA from a terminal A and at a distance lB from a terminal B is propagated to both directions and propagated through an optical fiber while connected to a light signal by a sensor 2 and a photoelectric converter 6. On the basis of the signal propagation delay times in the optical fibers in the A-terminal side and the B-terminal side and time when the surge wave is generated, times of surge wave form signals from both terminals reaching a signal processing apparatus 8 are signal propagation delay times in the photoelectric converter 6 and the signal processing apparatus 8 and take the same value at both terminals. In this case, the center between terminals A, B is set to zero and the A-terminal side from the center to positive while the B-terminal side to negative and, when arrival time difference of surge wave form signals from both terminals is measured, the failure point F can be calculated.

Description

【発明の詳細な説明】 〔1〕 発明の技術分野 架空送電線または管路気中送電線等の送電線への落雷ま
たは地絡等による送電線の故障を検出しかつ故障地点を
標定する装置に関する。
[Detailed Description of the Invention] [1] Technical field of the invention A device for detecting a failure in a power transmission line such as an overhead power transmission line or a conduit aerial power transmission line due to a lightning strike or a ground fault, and locating the failure point. Regarding.

〔2〕 従来技術 送電線の故障点標定装置は、第1図に示すように故障点
Fで発生したサージ波が送電線1を伝播し両端に到着す
るまでの伝播遅延時間差により故障点を標定するもので
あり、両端でサージ波を検出するセンサ2とセンサから
の信号を処理する信号処理装置8と、再装置間で時間差
を計測するためのマイクロ波回線等を用いた同期信号伝
送回線4を必要とする。信号処理装置は同期用信号を基
準とし℃サージ波の到着時刻を計測し、両端での到着時
刻の差と、サージ波の送電線伝播速度から故障点を算出
する方式である。ここで、サージ波の伝播速度はほぼ光
速度であり、到着時刻差の計測はきわめて高精度に行な
う必要があり、したがってその基準となる両端の信号処
理装置での同期方式が重要となる。
[2] As shown in Fig. 1, the conventional power transmission line failure point locating device locates the failure point based on the propagation delay time difference between when the surge wave generated at the failure point F propagates through the transmission line 1 and reaches both ends. A sensor 2 that detects surge waves at both ends, a signal processing device 8 that processes signals from the sensor, and a synchronous signal transmission line 4 that uses a microwave line or the like to measure the time difference between the devices. Requires. The signal processing device measures the arrival time of the °C surge wave using the synchronization signal as a reference, and calculates the failure point from the difference in arrival time at both ends and the transmission line propagation speed of the surge wave. Here, the propagation speed of the surge wave is approximately the speed of light, and the measurement of the arrival time difference must be performed with extremely high precision. Therefore, the synchronization method of the signal processing devices at both ends, which serves as the reference, is important.

〔3〕 従来技術の問題点 故障点標定装置では両端でのサージ波の到着時刻を計測
する場合の基準となる同期信号が重要となるが、この同
期信号自体を伝送するマイクロ波回線等も伝送遅延を伴
うため、あらかじめ同期信号伝送遅延時間を計測する必
要がある。しかじA端からB端まで、またはB端からA
端までの伝送遅延時間を計測することが不可能なためA
端からB端まで信号を伝送し、B端で信号を折り返し再
びA端に信号を伝送したときの遅延時間を2にした時間
をA端からB端、またはB端からA端への同期信号伝送
遅延時間としている。以上のような方式では標定装置を
設置する場所ごとに伝送遅延時間の計測と信号処理装置
の定数設定が必要になる。また、A端からB端までと、
B端からA端までの伝送遅延時間は必ずしも同一である
とは限らない。しかも、両端で高速かつ高精度の同期信
号処理回路を必要とするため装置が高価になる。
[3] Problems with the conventional technology In the failure point locating device, the synchronization signal that serves as a reference when measuring the arrival time of surge waves at both ends is important, but the microwave line etc. that transmits this synchronization signal itself is also important. Since this involves a delay, it is necessary to measure the synchronization signal transmission delay time in advance. From end A to end B, or from end B to A
A because it is impossible to measure the transmission delay time to the end.
A synchronizing signal from A to B, or from B to A, with the delay time set to 2 when a signal is transmitted from end B to end B, and the signal is looped back at end B and transmitted again to end A. This is the transmission delay time. In the above method, it is necessary to measure the transmission delay time and set the constants of the signal processing device for each location where the locating device is installed. Also, from end A to end B,
The transmission delay time from the B end to the A end is not necessarily the same. Furthermore, since high-speed and high-precision synchronous signal processing circuits are required at both ends, the device becomes expensive.

〔4〕 発明の目的 本発明の目的は上記の従来技術の問題点を解決し、信号
処理回路の簡単化、故障点標定精度の向上、かつ同期信
号の伝送遅延時間の計測を不必要にすることである。
[4] Purpose of the Invention The purpose of the present invention is to solve the above problems of the prior art, simplify the signal processing circuit, improve fault location accuracy, and eliminate the need to measure the transmission delay time of synchronization signals. That's true.

〔5〕発明の構成 本発明の故障点標定装置の構成概要を第2図に示す。1
は送電線であり、この両端にサージ波を検出するセンサ
2とセンサの出力を光に変換する電気光変換器(以下E
10変換器という)6と光信号を伝送する光フアイバケ
ーブル7と両端からの光信号を処理して故障点Fの位置
を算出する信号処理装置8より構成される。ここでセン
サ2は従来から使用されているCT (Current
 Transformer)等を使用できる。また両端
からの光フアイバ中を伝播する光信号の伝播遅延時間差
は予め測定できるので既知となる。
[5] Configuration of the Invention An outline of the configuration of the failure point locating device of the present invention is shown in FIG. 2. 1
is a power transmission line, and at both ends there are a sensor 2 that detects surge waves and an electro-optical converter (hereinafter referred to as E) that converts the output of the sensor into light.
10 converter) 6, an optical fiber cable 7 that transmits optical signals, and a signal processing device 8 that processes optical signals from both ends and calculates the position of a failure point F. Here, the sensor 2 is a conventionally used CT (Current
Transformer) etc. can be used. Furthermore, the propagation delay time difference between the optical signals propagating through the optical fiber from both ends can be measured in advance and therefore is known.

〔6〕実施例 第2図に示した故障点標定装置の使用実施例レテついて
詳述する。第2図のA端から距離iA、B端から距離j
lnの故障点Fから発生したサージ波が両方向に速度τ
で伝播し、センサとE10変換器により光信号に変換さ
れ、光フアイバ中を伝播する。
[6] Embodiment An embodiment of the use of the failure point locating device shown in FIG. 2 will be described in detail. Distance iA from end A in Figure 2, distance j from end B
The surge wave generated from the fault point F of ln travels in both directions at a speed τ
It is converted into an optical signal by a sensor and an E10 converter, and propagated through an optical fiber.

このときのA端側、B端側の光フアイバ中の信号伝播遅
延時間をそれぞれτ4、τBとし、サージ波が発生した
時刻を基準にして、両端からのサージ波形信号が信号処
理装置に到着する時刻をそれぞれtA、tBとすると、 が成り立つ。ここでαはセンサ2、E10変換器6信号
処理装置8内での信号伝播遅延時間であり、両端で同じ
値である。XはAB端の中央を0とし中央よりA端側を
正B端側を負とすれば(1)式よりx=()B−ノA)
/2= (tn t*+ (τ^−τs) l ・v/
2 ・−゛(2)か成り立つ。ここでτ^、τB1τが
既知であるから、両端からのサージ波形信号到着時間差
(ts −tA)を計測すれば故障点Xを算出できる。
At this time, the signal propagation delay times in the optical fibers on the A end side and B end side are respectively τ4 and τB, and the surge waveform signals from both ends arrive at the signal processing device based on the time when the surge wave is generated. When the times are respectively tA and tB, the following holds true. Here, α is the signal propagation delay time within the sensor 2, the E10 converter 6, and the signal processing device 8, and is the same value at both ends. If X is 0 at the center of the AB end, and positive on the A end side from the center and negative on the B end side, then from formula (1), x = () B - No A)
/2= (tn t*+ (τ^−τs) l ・v/
2 ・−゛(2) holds true. Here, since τ^ and τB1τ are known, the failure point X can be calculated by measuring the arrival time difference (ts - tA) of the surge waveform signals from both ends.

第3図は第2図中の信号処理装置8の内部回路を具体的
に示したものであり、両端からのサージ波形光信号を光
電気変換器(以下0/E変換器という)9で電気信号に
変換し、トリガ回路10に入力する。トリガ回路はサー
ジ波形がある一定のフレッシュホールドレベルを越える
と出力信号をoNKする。この信号はR−87リツプフ
ロツプ11をナツトし、出力QをON、QをOFFする
。したがちて、A端に先にサージ波形が到着した場合は
ANDゲーグー2のA端側入力QはONでB端側用カク
ハB端にサージ波形が到着するまでONでありサージ波
形が到着した時点でOFFされるので、ANDゲート1
2の出力は、A端に先にサージ波形が到着し、その後B
端にサージ波形が到着するまでの間ONとなる。その他
の場合は常にOFFである。
FIG. 3 specifically shows the internal circuit of the signal processing device 8 in FIG. The signal is converted into a signal and input to the trigger circuit 10. The trigger circuit turns on the output signal when the surge waveform exceeds a certain fresh hold level. This signal nuts the R-87 lip-flop 11, turning output Q on and turning output Q off. Therefore, if the surge waveform arrives at the A end first, the input Q on the A end side of AND game 2 is ON and the input Q for the B end side remains ON until the surge waveform arrives at the B end. Since it is turned off at this point, AND gate 1
In the output of 2, the surge waveform arrives at the A end first, and then the B
It remains ON until the surge waveform arrives at the end. In other cases, it is always OFF.

逆に、B端に先にサージ波形が到着し、その後A端にサ
ージ波形が到着するとANDゲート13の出力はB端に
サージ波形が到着してがらA端にサージ波形が到着する
までの間ONになる。R−Sフリップフロップllaは
ANDゲーグー2の出力にζよりナツトされ、ANDゲ
ート13の出力でりナツトされる。したがってR−Sフ
リップフロップllaの出力QはA端に先にサージ波形
が到着した場合のみONになる。ORゲート14はA端
またはB端にサージ波形が到着し、その後B端またはA
端にサージ波形が到着するまでの間ONとなる。アップ
ダウンカウンタ16はORゲート14の出力がONの期
間のみ、R−Sフリップフロップlla+7)出ヵ信号
のON、OFFに従ってクロック発生回路15の出力ク
ロックをカウントアツプまたはカウントダウンする。ま
た、アップダウンカウンタ16に(2)式のオフセット
時間(τA−τB)に相当するクロック数をあらかじめ
ロードしておけばカウンタ値が0の場合故障点が中央と
なり、正の場合はA端側、負の場合はB端側になる。故
障点算出回路17はORゲート14の出力がONになる
ことにより、故障が発生したことを検知し、つぎにOR
ゲート14の出力がOFFになった後にカウンタ値を読
み取りこのカウンタ値を(2)式に従って距離に換算し
て出力するものである。
Conversely, if the surge waveform arrives at the B end first, and then the surge waveform arrives at the A end, the output of the AND gate 13 will be the same until the surge waveform arrives at the A end. It turns on. The R-S flip-flop lla is connected to the output of the AND gate 2 through ζ, and is connected to the output of the AND gate 13. Therefore, the output Q of the R-S flip-flop lla turns ON only when the surge waveform arrives at the A terminal first. The OR gate 14 receives the surge waveform at the A end or B end, and then
It remains ON until the surge waveform arrives at the end. The up/down counter 16 counts up or down the output clock of the clock generation circuit 15 only while the output of the OR gate 14 is ON, according to the ON/OFF status of the output signal of the R-S flip-flop lla+7). In addition, if the up/down counter 16 is loaded in advance with the number of clocks corresponding to the offset time (τA - τB) in equation (2), if the counter value is 0, the failure point will be at the center, and if it is positive, the failure point will be at the A end. , if it is negative, it will be on the B end side. The fault point calculation circuit 17 detects that a fault has occurred when the output of the OR gate 14 turns ON, and then performs an OR gate.
After the output of the gate 14 is turned off, the counter value is read, and the counter value is converted into a distance according to equation (2) and output.

〔7〕効果 本発明による故障点標定装置は従来の装置に必要であっ
た同期回路を不必要にすることに工っで信号処理回路を
極めて簡単に構成可能にし、かつ信号伝送に光ファイバ
を用いることにより、耐ノイズ性向上と信号処理装置の
ザージからの保護を実現できる。また従来必要であった
標定装置設置箇所での同期信号伝播遅延時間の測定が不
必要になる利点がある。とくにA端とB端の距離が数1
0m程度の管路気中送電線の場合には両端から信号処理
装置への光ファイバを等長にすることにより、(2)式
のオフセット時間(τA−τB)の影響がなくなり、極
めて高精度に故障点を標定することが可能となる。
[7] Effects The failure point locating device according to the present invention eliminates the need for the synchronization circuit required in conventional devices, making it possible to configure the signal processing circuit extremely easily, and using optical fiber for signal transmission. By using this, it is possible to improve noise resistance and protect the signal processing device from surge. Another advantage is that it becomes unnecessary to measure the synchronization signal propagation delay time at the location where the locating device is installed, which was conventionally necessary. In particular, the distance between end A and end B is several 1
In the case of a pipeline aerial power transmission line with a length of approximately 0 m, by making the optical fibers from both ends to the signal processing device the same length, the effect of the offset time (τA - τB) in equation (2) is eliminated, resulting in extremely high accuracy. It becomes possible to locate the failure point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の故障点標定装置の構成図。 第2図は本発明の故障点標定装置の構成図。 第3図は本発明の故障点標定装置の信号処理装置内部の
回路構成図である。 ■・・・・・・送電線 2・・・・サージ波検出センサ 3・・・信号処理装置 4 ・・同期信号伝送回線 5 ・電気信号伝送用リード線 6・・電気光変換器(E10変換器9 7・・・光フアイバケーブル 8・・・・ 信号処理装置 9・・・・光電気変換器(0/E変換器)lO・・・・
・トリガ回路 11、lla・・・ フリップ70ツブ12.13・・
・・・・ ANDゲーグー4・・・・・ORゲート 15−・・・クロック発生回路 16・・・ アップダウンカウンタ 17・・・・・・故障1点算出回路 く (■
FIG. 1 is a configuration diagram of a conventional failure point locating device. FIG. 2 is a configuration diagram of the failure point locating device of the present invention. FIG. 3 is a circuit configuration diagram inside the signal processing device of the fault point locating device of the present invention. ■...Power transmission line 2...Surge wave detection sensor 3...Signal processing device 4...Synchronization signal transmission line 5 -Electrical signal transmission lead wire 6...Electro-optical converter (E10 conversion Device 9 7... Optical fiber cable 8... Signal processing device 9... Optoelectrical converter (0/E converter) lO...
・Trigger circuit 11, lla... Flip 70 tube 12.13...
...AND game 4...OR gate 15-...clock generation circuit 16...up/down counter 17...fault 1 point calculation circuit (■

Claims (1)

【特許請求の範囲】[Claims] (1)送電線の故障点標定装置において、送電線の両端
K、送電線の故障時に発生するサージ波形を検知するセ
ンサを設置しこれらのセンサに電気を光に変換するE1
0変換器を電気信号伝送用リード線を介して接続し、前
記E10変換器から発信される光を光フアイバケーブル
により、光を電気に変換する0/E変換器、トリガ回路
、フリップフロップ論理ゲート、クロック発生回路、ア
ップダウンカウンタ、故障点算出回路等から構成される
信号処理装置に伝送するように構成したことを特徴とす
る送電線の故障点標定装置。
(1) In the power transmission line failure point locating device, sensors are installed at both ends of the power line K to detect the surge waveform that occurs when the power line fails, and these sensors convert electricity into light E1.
An O/E converter, a trigger circuit, and a flip-flop logic gate that connects the E10 converter via an electrical signal transmission lead wire and converts the light emitted from the E10 converter into electricity using an optical fiber cable. 1. A fault point locating device for a power transmission line, characterized in that it is configured to transmit data to a signal processing device comprising a clock generation circuit, an up/down counter, a fault point calculation circuit, and the like.
JP2627584A 1984-02-14 1984-02-14 Apparatus for locating failure point of power- transmission line Pending JPS60169775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2627584A JPS60169775A (en) 1984-02-14 1984-02-14 Apparatus for locating failure point of power- transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627584A JPS60169775A (en) 1984-02-14 1984-02-14 Apparatus for locating failure point of power- transmission line

Publications (1)

Publication Number Publication Date
JPS60169775A true JPS60169775A (en) 1985-09-03

Family

ID=12188730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627584A Pending JPS60169775A (en) 1984-02-14 1984-02-14 Apparatus for locating failure point of power- transmission line

Country Status (1)

Country Link
JP (1) JPS60169775A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103478A (en) * 1988-10-13 1990-04-16 Tokyo Electric Power Co Inc:The Fault locator
JPH02232570A (en) * 1989-03-06 1990-09-14 Tokyo Electric Power Co Inc:The Fault detector for power equipment
AU747525B2 (en) * 1998-12-18 2002-05-16 Future Fibre Technologies Pty Ltd Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
JP2011122977A (en) * 2009-12-11 2011-06-23 Mitsubishi Electric Corp Partial discharge position locating device and method
CN106124925A (en) * 2016-06-12 2016-11-16 广东电网有限责任公司惠州供电局 The distance-finding method of transmission line malfunction and device and locating verification method and system
JP2020522938A (en) * 2017-06-02 2020-07-30 オミクロン・エナジー・ソリューションズ・ゲーエムベーハーOmicron Energy Solutions Gmbh Testing the energy transmission network and identifying faults in the energy transmission cable

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103478A (en) * 1988-10-13 1990-04-16 Tokyo Electric Power Co Inc:The Fault locator
JPH02232570A (en) * 1989-03-06 1990-09-14 Tokyo Electric Power Co Inc:The Fault detector for power equipment
AU747525B2 (en) * 1998-12-18 2002-05-16 Future Fibre Technologies Pty Ltd Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US6621947B1 (en) 1998-12-18 2003-09-16 Future Fibre Technologies Pty Ltd Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US6778717B2 (en) 1998-12-18 2004-08-17 Future Fibre Technologies Pty Ltd. Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
JP2011122977A (en) * 2009-12-11 2011-06-23 Mitsubishi Electric Corp Partial discharge position locating device and method
CN106124925A (en) * 2016-06-12 2016-11-16 广东电网有限责任公司惠州供电局 The distance-finding method of transmission line malfunction and device and locating verification method and system
JP2020522938A (en) * 2017-06-02 2020-07-30 オミクロン・エナジー・ソリューションズ・ゲーエムベーハーOmicron Energy Solutions Gmbh Testing the energy transmission network and identifying faults in the energy transmission cable
US11287461B2 (en) 2017-06-02 2022-03-29 Omicron Energy Solutions Gmbh Testing an energy transmission network and localizing a fault location in an energy transmission cable

Similar Documents

Publication Publication Date Title
CN104569741A (en) Transmission line fault location method based on optical fiber composite overhead ground wire
CN103777063B (en) A kind of fibre optic current sensor
US8861899B2 (en) Optical fiber current transformer with optical fiber temperature acquisition and temperature compensation
CN108918940B (en) All-fiber current mutual inductance system with temperature compensation and method
US20200110124A1 (en) Single-end traveling wave fault location using line-mounted device
CN108414906A (en) The system and method for partial discharge of transformer is detected using Mach-Zehnder fiber optic interferometrics
JPS60169775A (en) Apparatus for locating failure point of power- transmission line
US8773119B2 (en) System for fiber DC magneto-optic detection and method thereof
CN110749420B (en) OFDR detection device
CN108957227B (en) Cable fault position detection method
CN107167068B (en) Test system for acquiring position of moving body
JPH02105076A (en) Fault point locating type traveling wave relay device
CN111896838B (en) Double-end traveling wave fault location method based on information characteristic identification
JP2777240B2 (en) Fault location device
CN109506684B (en) Wavelength correction method and system for fast scanning laser demodulation FBG sensor
JP3759798B2 (en) Lightning point location method
CN201229372Y (en) Three-phase optical fiber electronic mutual-inductor
JPH11202017A (en) Operation confirming method of fault point orientating apparatus for power cable line
SU565262A1 (en) Device for detecting power cables insulation damage spot
CN101383072B (en) Complete optical fiber safety and defense sensor
CN103812553A (en) Method for calibrating time-delay asymmetry of high-accuracy optical fibre bidirectional time comparison devices
JPH05142286A (en) Locating equipment of accident point
SU1218476A1 (en) Device for determining location of failure in combined fibre-optic cable
CN117433593A (en) Long-distance ultra-high voltage GIL pipeline detection system based on distributed optical fibers
CN104849531B (en) Ammeter low current fibre optical sensor