JP3839093B2 - Method for locating acicular wave generation point in distribution line - Google Patents

Method for locating acicular wave generation point in distribution line Download PDF

Info

Publication number
JP3839093B2
JP3839093B2 JP13338396A JP13338396A JP3839093B2 JP 3839093 B2 JP3839093 B2 JP 3839093B2 JP 13338396 A JP13338396 A JP 13338396A JP 13338396 A JP13338396 A JP 13338396A JP 3839093 B2 JP3839093 B2 JP 3839093B2
Authority
JP
Japan
Prior art keywords
time
signal
slave stations
distribution line
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13338396A
Other languages
Japanese (ja)
Other versions
JPH09318697A (en
Inventor
良作 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP13338396A priority Critical patent/JP3839093B2/en
Publication of JPH09318697A publication Critical patent/JPH09318697A/en
Application granted granted Critical
Publication of JP3839093B2 publication Critical patent/JP3839093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配電線において、完全地絡故障の前駆現象として発生する微地絡(間欠地絡とも言う)で生じる針状波形の零相電流や零相電圧を検出して針状波発生地点を標定する方法に関する。
【0002】
【従来の技術】
故障点を標定しようとする送電線の両端に、前記送電線に発生した故障により生じるサージを受信するサージ受信器を設け、両端における前記サージの受信時刻の差分により前記送電線の故障点の位置を標定する故障点標定装置において、前記サージの受信時刻の差分を標準電波JJY又はNHKの時報により較正する故障点標定装置が特開昭56−63274号公報や特開昭63−51274号公報で公知である。
【0003】
また、図5に示すような3相の配電線1の絶縁が劣化して、基本波電流が流れる完全地絡に至る前に、基本波成分のほとんどない通称微地絡と呼ばれる針状波形の零相電流I0 や零相電圧V0 が完全地絡の前駆現象として発生する場合がある。
【0004】
図5に示すように、針状波を検出するセンサ2,3を配電線1上に間隔を置いて設け、針状波の検知信号をそれぞれケーブル4,5によって子局6,7に伝え、子局6,7は受信した前記検知信号を適宜の信号形態の情報として通信線8を介して親局9へ伝送するシステムが周知である。
【0005】
この周知のシステムでは、親局9が配電線1へ給電する変圧器を備えた変電所内に設けられ、かつセンサ2,3が区間開閉器に内蔵されていて、親局9から適宜の制御信号を通信線8、子局6,7、及びケーブル4,5を介して前記各区間開閉器に伝送してこれらの区間開閉器を操作する配電線自動化システムとしても活用されている。
【0006】
【発明が解決しようとする課題】
図5の配電線1において、地点Eで微地絡としての針状波が発生した場合、地点Eからセンサ2までの距離L1 又は地点Eからセンサ3までの距離L2 を知ることができれば、配電線の保守上極めて有効である。
【0007】
そのためには、子局6,7が内蔵する内部時計又はカウンタの時刻を正確な時刻信号で較正しておけば、センサ2,3からの針状波検知信号を子局6,7がそれぞれ受信した時刻の差分によって、距離L1 又はL2 を標定することができると考えられる。
【0008】
同図で、e1 ,e2 は微地絡地点Eで発生した針状波がそれぞれセンサ2,3に到達する伝搬時間、h0 はセンサ2,3の針状波検知遅れ時間、c1 はセンサ2による針状波検知信号がケーブル4により子局6に伝送される時間、c2 はセンサ3による針状波検知信号がケーブル5により子局7に伝送される時間である。
【0009】
今、何らかの方法で子局6,7の内部時計を正確に合わせておけば、地点Eで発生した針状波をセンサ2,3がそれぞれ検知して、その検知信号を子局6,7がそれぞれ受信するまでの時間をE1 ,E2 とすると、前記内部時計の基準時間からみて、
子局6では E1 =e1 +h0 +c1 ・・・(1)
子局7では E2 =e2 +h0 +c2 ・・・(2)
の値E1 ,E2 が得られるので、これらの値E1 ,E2 のデータを通信線8を介して親局9に伝送し、その差分E1 −E2 を演算すれば、
1 −E2 =(e1 −e2 )+(c1 −c2 ) ・・・(3)
となる。
【0010】
(3)式の右辺にe1 +e2 を加えて1/2すると、
(1/2)・{(e1 −e2 )+(c1 −c2 )+(e1 +e2 )}
=e1 +(1/2)・(c1 −c2 ) ・・・(4)
となる。
【0011】
1 =c2 に定めておけば、(4)式で伝搬時間e1 が求められるから、配電線1上の針状波サージの伝搬速度Veを乗じて、地点Eからセンサ2までの距離L1 を次の(5)式で求めることができる。
【0012】
1 =e1 ・Ve ・・・(5)
このようにして針状波の発生地点Eを標定できるかのように思えるが、この方法では次の三つの問題点がある。
【0013】
第1の問題点は子局6と7の内部時計を正確に合わせることが実際上困難なことである。
第2の問題点は通信線の長さ、即ち子局6と7間の距離を知らねばならないことである。
【0014】
そして、第3の問題点はケーブル4と5の長さを等しくするか、それとも各ケーブル4,5の長さを予め正しく知っておかねばならないことである。
第1の問題点に対して、親局9から、時刻基準信号Aを一定の時間間隔(周期)で繰り返して通信線8を介して子局6と7に送出し、この時刻基準信号Aを子局6と7で受信した都度、それぞれ子局6と7の内部時計を較正する方法が考えられる。
【0015】
しかし、この方法では通信線8上を子局6の位置から子局7の位置まで時刻基準信号Aが伝搬する時間a2 だけ、子局7の内部時計が常に遅れた時刻を刻むことになり、前述の(2)式であらわされる時間E2 の代わりに次の(6)式の時間E2 ′が得られる。
【0016】
2 ′=e2 +h0 +c2 −a2 ・・・(6)
従って時間E2 を得るためには、(6)式で得た時間E2 ′から伝搬時間a2 だけ補正する必要がある。
【0017】
そのためには伝搬時間a2 を知らねばならないが、伝搬時間a2 を知るために、子局6,7間の距離(厳密には両子局間の通信線8の長さ)を実測したり、距離を地図上で求めたりすることになるが、子局の位置を変更する度にその作業が必要となるという面倒がある(第2の問題点)。
【0018】
また、各センサ2又は3と、それぞれ対応する子局6又は7との間のケーブル4,5の長さについても同様で、布設変更の場合には多大の手間が必要となるという面倒がある(第3の問題点)。
【0019】
時刻基準信号Aを通信線8で送る上記方法について、式を整理して示すと、次のようになる。但し、t3 は時刻基準信号Aが子局6を通過してから針状波が地点Eで発生するまでの時間、つまり子局6の基準時刻から針状波が発生するまでの時間である(図2参照)。
【0020】
1 ′=t3 +e1 +h0 +c1 ・・・(7)
2 ′=t3 +e2 +h0 +c2 −a2 ・・・(8)
(1/2)・(E1 ′−E2 ′+e1 +e2
=e1 +(1/2)・(c1 −c2 +a2 ) ・・・(9)
求めたいのは伝搬時間e1 であるから、そのためには(9)式で明らかなように、伝送時間c1 ,c2 や伝搬時間a2 を知る必要があり、これらの時間はケーブル4,5の長さや通信線8の子局間の長さにより決定される。
【0021】
従って設備変更の都度ケーブルや通信線の長さを求めて、補正項としての伝送時間c1 ,c2 や伝搬時間a2 を求めなくてはならない。
短距離で設置台数が少ないときは良いが、長距離となって複雑な配電線網の場合には、仮に100台のセンサとそれに対応する100台の子局を設けた場合、各センサと対応する子局を接続するケーブルについては合計100本のケーブルの長さを測定する必要があるうえに、子局間の通信線の長さについては任意の2台の子局間の長さを知る必要があるため、
(1/2)・(100−1)×100=4950箇所
についての通信線の長さを実測するか地図上から計算して求めておく必要があり現実的ではない(第2と第3の問題点)。
【0022】
更に、ケーブルや通信線の場合、温度によって誘電率が変化し、針状波検知信号の伝送時間や時刻基準信号の伝搬時間が変化するため、その補正を行わないと標定誤差が大きくなる。
【0023】
しかし、現実には太陽光が当たっている部分と日陰の部分を区別して温度補正を行うことは不可能であるという別の問題点もある。
そこで、本発明はこれらの問題点を解消できる配電線における針状波発生地点の標定方法を提供することを目的とする。
【0024】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、
配電線(1)上に間隔をおいて配設した少なくとも2個のセンサ(2)(3)で微地絡地点(E)で発生した針状波を検知し、それぞれのセンサ(2)(3)からの検知信号をそれぞれケーブル(4)(5)によって子局(6)(7)に伝送するとともに、子局(6)(7)は受信した前記検知信号を適宜の信号形態の情報として通信線(8)を介して親局(9)へ伝送するシステムであって、親局(9)から通信線(8)を介して子局(6)(7)へ時刻基準信号(A)を間欠的に伝送して子局(6)(7)の内部時計を較正する針状波発生地点の標定方法において、
配電線(1)に強制的に故意に別の信号(B)を注入し、この信号(B)をセンサ(2)(3)で検知した検知信号をケーブル(4)(5)を介して子局(6)(7)に伝送し、
信号(B)をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(R1 )(R2 )と、前記針状波をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(E1 ′)(E2 ′)とに基づいて一方のセンサ(2)から微地絡地点(E)までの距離(L1 )を標定することを特徴とする配電線における針状波発生地点の標定方法である。
【0025】
そして、請求項2の発明は、請求項1の配電線における針状波発生地点の標定方法において、
信号(B)をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(R1 )(R2 )の時間差(R2 −R1 )と、前記針状波をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(E1 ′)(E2 ′)の時間差(E2 ′−E1 ′)とから一方のセンサ(2)から微地絡地点(E)までの距離(L1 )を標定することを特徴とするものである。
【0026】
【発明の実施の形態】
図1は本発明の配電線における針状波発生地点の標定方法の好ましい実施の形態のブロック図、図2は図1のブロック図の動作を説明するタイムチャート、図3は図1の配電線へ信号Bを注入する信号注入装置の回路図、図4は信号Bを注入した配電線の電圧波形を示す図である。
【0027】
これらの図において、1は3相高圧の配電線で、図示されてない左方の変電所に設けた変圧器によって給電されている。2,3は配電線1上に間隔をおいて設けた光センサで、微地絡地点Eで発生した針状波形の零相電流I0 や零相電圧V0 を検知して、検知信号を光ケーブル4,5によってそれぞれ子局6,7に伝える。
【0028】
8は同軸ケーブルからなる通信線で、前記変電所に設けた親局9と子局6,7等との間を接続し、親局9からの各種制御信号を子局6,7等へ伝送すると共に、子局6,7等からの情報を親局9へ伝送する。なお、子局6,7の駆動用電源(低電力)は低圧配電線から供給されるほか、親局9などから通信線8により低電力を送るようにしてもよい。
【0029】
Aは子局6,7の内部時計を較正するための時刻基準信号で、一定の間隔(周期)Τで親局9から通信線8に繰り返し送出されているパルス状の電気信号である。
【0030】
Pは配電線1と通信線8上の任意の地点で、a1 はこの地点Pから子局6に時刻基準信号Aが伝搬する伝搬時間、a2 は子局6から子局7に時刻基準信号Aが伝搬する伝搬時間である。
【0031】
Bは配電線1に強制的に故意に注入したパルス状の信号で、その注入タイミングは任意でよいが、図3のようにコンデンサ11と短絡スイッチ12を直列に接続した信号注入装置10を配電線1とアース間に挿入して短絡スイッチ12を瞬間的に短時間だけ閉じてパルス状の信号Bを注入する本実施態様の場合には、図4に示すように、商用周波数の基本波13のゼロクロスポイント14の位置から離れた位相で信号Bを注入する。
【0032】
1 は地点Pを信号Aが通過してから信号Bが通過するまでの遅れ時間、b1 は注入された信号Bが光センサ2まで伝搬する伝搬時間、b2 は信号Bが光センサ2から光センサ3まで伝搬する伝搬時間である。
【0033】
1 ,e2 は微地絡地点Eで発生した針状波が配電線1上を光センサ2と3にそれぞれ伝搬する伝搬時間、c1 ,c2 は光センサ2,3が、信号Bや前記針状波を検知した検知信号がそれぞれ光ケーブル4,5を介して子局6,7に伝送される伝送時間である。
【0034】
また、h0 は、光センサ2,3が信号Bや前記針状波を検知して検知信号を出力するまでの検知遅れ時間である。
図1のシステムで、配電線1に強制的に故意にパルス状の信号Bを任意のタイミングで注入する。地点Pで時刻基準信号Aと信号Bを見ると、信号Bが時刻基準信号Aの通過後遅れ時間t1 だけ後であることを図1は示している。
【0035】
時刻基準信号Aは地点Pを通過後、伝搬時間a1 を要して子局6に達し、信号Bは注入後伝搬時間b1 を要して光センサ2に達する。
そして、光センサ2は信号Bを検知して、検知遅れ時間h0 だけ遅れて検知信号を光ケーブル4を介して子局6へ伝送する。光センサ2からの信号Bの検知信号が子局6へ伝送される伝送時間はc1 を要する。
【0036】
なお、時刻基準信号Aが通信線8上を伝搬する伝搬速度と、信号Bが配電線1上を伝搬する伝搬速度は、通信線8と配電線1の線路定数が異なれば異なっている。
【0037】
更に時間が経過すると、時刻基準信号Aは子局6到達後伝搬時間a2 を経過して子局7に到達し、信号Bは光センサ2に到達後伝搬時間b2 を経過して光センサ3に到達する。
【0038】
光センサ3に到達した信号Bは検知遅れ時間h0 後に光センサ3から光ケーブル5に出力され、伝送時間c2 を経て子局7に受信される。
地点Pでは、時刻基準信号Aと信号Bの時間差はt1 であるが、子局6に時刻基準信号Aが到達してから、信号Bを光センサ2が検知した検知信号を子局6が受信するまでの時間R1 と、子局7に時刻基準信号Aが到達してから、信号Bを光センサ3が検知した検知信号を子局7が受信するまでの時間R2 は、
1 =(b1 +h0 +c1 )−a1 ・・・(10)
2 =(b1 +b2 +h0 +c2 )−(a1 +a2 )・・・(11)
となる。
【0039】
これらの時間R1 ,R2 を適宜の信号形態の情報として通信線8を介して親局9に送り、親局に設けた図示されてないメモリに記憶させておく。
時刻基準信号Aは通信線8を通じて一定の時間間隔(周期)Τで間欠的に送出されて、子局6と7の内部時計を繰り返し較正しているが、子局7の内部時計は子局6の内部時計に比較して、前述のように伝搬時間a2 だけ遅れている。
【0040】
この状態で、配電線1上の微地絡地点Eで針状波が発生すると、針状波が伝搬時間e1 ,e2 だけ経過して光センサ2,3に到達する。
そして、検知遅れ時間h0 で光センサ2,3に検知され、それぞれ光ケーブル4,5を介して伝送時間c1 ,c2 を経てそれぞれの検知信号が子局6,7に受信される。
【0041】
時刻基準信号Aが子局6に到達してから、光センサ2,3の針状波検知信号つまり微地絡発生を子局6,7がそれぞれ受信するまでのタイミングを図2に示す。
【0042】
時刻基準信号Aが子局6に到達通過後、時間t3 だけ後に地点Eで微地絡が生じて針状波が発生したとすると、子局6の内部時計を基準にして、子局6,7がそれぞれ光センサ2,3からの針状波検知信号を受信するまでの時間E1 ′,E2 ′は、
1 ′=t3 +e1 +h0 +c1 ・・・(12)
2 ′=t3 +e2 +h0 +c2 −a2 ・・・(13)
となるが、この(12)(13)式は、前記(7)(8)式と同じ内容である。
【0043】
(12)(13)式の時間E1 ′,E2 ′を適宜の信号形態の情報として通信線8を介して子局6,7から親局9へ伝送する。
親局では、先に記憶しておいた時間R1 ,R2 と、子局から伝送された時間E1 ′,E2 ′を使って次のように演算する。
【0044】
先ず、先に記憶した時間R1 ,R2 から、
2 −R1 =b2 +c2 −c1 −a2 ・・・(14)
を得るが、図1から明らかなようにb2 =e1 +e2 であるから、
2 −R1 =e1 +e2 +c2 −c1 −a2 ・・・(15)
となる。
【0045】
また針状波についての時間E1 ′,E2 ′から、
2 ′−E1 ′=e2 −e1 +c2 −c1 −a2 ・・・(16)
となる。
【0046】
従って、強制的に故意に配電線1へ注入したパルス状の信号Bを光センサ2,3で検知した検知信号を子局6,7がそれぞれ受信した時間R2 とR1 の時間差(R2 −R1 )と、針状波を光センサ2,3で検知した検知信号を子局6,7がそれぞれ受信した時間E1 ′とE2 ′の時間差(E2 ′−E1 ′)とから、親局9で次の(17)式のようにして伝搬時間e1 を求める。
【0047】
(1/2)・{(R2 −R1 )−(E2 ′−E1 ′)}=e1 ・・・(17)
この(17)式に配電線1上の伝搬速度Veを乗ずると、光センサ2から微地絡発生地点Eまでの距離L1 を次の(18)式のようにして算出標定できる。
【0048】
1 =(1/2)・{(R2 −R1 )−(E2 ′−E1 ′)}・Ve・・・(18)
(18)式には、通信線8上の時刻基準信号Aの伝搬速度は含まれていない。従って通信線8の温度が変化して通信線8上の信号の伝搬速度が変わっても、その影響を受けることなく正確な距離L1 を標定できる。このことは、通信線上の温度分布が不均一であっても正確な距離L1 を標定できること意味している。
【0049】
配電線1は通常架空による場合が多いから、この場合空気絶縁であって、温度が変化しても伝搬速度Veは変化しない。仮りに配電線1が地中ケーブルを含む場合でも、地中の温度はほぼ一定に保たれているため大きな標定誤差を生じる虞れはない。
【0050】
因みに、本発明の方法によらず、通信線の温度変化により、信号の伝搬速度に1%の誤差が生じたとすれば、3km程度の区間で測定した場合には1%に相当する30mの標定誤差を生じ、配電線の電柱の間隔を考慮すると、別の電柱として識別することになり、実用上問題が残ることになる。
【0051】
更にまた、(18)式では、その右辺で、光ケーブル4,5の伝送時間c1 ,c2 が打ち消されるため、光ケーブル4,5の長さの影響も受けないという利点がある。
【0052】
なお、本発明は、針状波を検知するセンサを少なくとも2個必要とし、上記実施態様では、センサを設けた区間内における針状波の発生位置を標定するものである。
【0053】
センサを3個以上設けて、そのうちの各2個について結果を出して、それから平均値を求めるなどの演算をすれば、より標定精度を上げることができる。
また、配電線に信号(B)を注入して、時間信号(R1 )(R2 )を自動的に親局(9)に記憶させる作業は、配電線の切り換えやセンサ及び子局の設置点を変更した時と、温度変化が大きくなった適当な場合に行う。
【0054】
各子局において、針状波がセンサの右方から来たのか左方から来たのか区別する機能を持たせることにより、微地絡地点(E)が2個のセンサ(2)(3)の間にない場合でも、右方からか、左方からかが判り、更に信頼性が向上させられる。
【0055】
【発明の効果】
本発明の配電線における針状波発生地点の標定方法は、上述のように構成されているので、
1).通信線(8)の布設距離は(18)式で自動的に補正されて無関係になるため、通信線(8)の布設毎に実測したり地図上で求める必要がない。
【0056】
2).センサ(2)(3)から子局(6)(7)へ検知信号を伝送するケーブル(4)(5)の長さについても(18)式で自動的に補正されて無関係となるから通信線(8)と同様に、実測したり地図上で長さを求める必要がない。
【0057】
3).通信線(8)や、センサ(2)(3)から子局(6)(7)へ検知信号を伝送するケーブル(4)(5)上の信号の伝搬速度や伝送速度も(18)式で自動補正されて無関係となるから、温度変化による標定誤差への悪影響の虞れもない。
【0058】
4).従って、センサ(2)(3)に対応する子局(6)(7)の取付位置は直近とする必要がなく、任意の位置で良く、取付位置の自由度がある。
5).配電線の切り替えによって電力輸送経路が変えられることがしばしばあるが、このような場合でも実測や地図などで距離を測定しなくても良い。
【図面の簡単な説明】
【図1】本発明の実施の形態のブロック図である。
【図2】図1のブロック図の動作を説明するタイムチャートである。
【図3】図1の配電線へ信号Bを注入する信号注入装置の回路図である。
【図4】信号Bを注入した配電線の電圧波形を示す図である。
【図5】従来技術のブロック図である。
【符号の説明】
1 配電線
2,3 光センサ(センサ)
4,5 光ケーブル
6,7 子局
8 通信線
9 親局
10 信号注入装置
B 別の信号
E 微地絡発生地点
1 ′,E2 ′ 時間
1 距離
1 ,R2 時間
2 −R1 時間差
2 ′−E1 ′ 時間差
[0001]
BACKGROUND OF THE INVENTION
The present invention detects a needle-like wave zero-phase current and zero-phase voltage generated by a fine ground fault (also called an intermittent ground fault) that occurs as a precursor of a complete ground fault in a distribution line, and generates a needle-like wave generation point. It is related with the method of locating.
[0002]
[Prior art]
Provided at both ends of the transmission line to be located the failure point is a surge receiver that receives a surge caused by the failure that occurred in the transmission line, and the position of the failure point of the transmission line by the difference in the reception time of the surge at both ends In the fault location device for locating the error, a fault location device that calibrates the difference in the reception time of the surge by the time signal of the standard radio wave JJY or NHK is disclosed in Japanese Patent Laid-Open Nos. 56-63274 and 63-51274. It is known.
[0003]
Further, before the insulation of the three-phase distribution line 1 as shown in FIG. 5 deteriorates and reaches a complete ground fault in which the fundamental current flows, a needle-like waveform called a so-called micro ground fault with almost no fundamental wave component is formed. The zero-phase current I 0 and the zero-phase voltage V 0 may occur as a complete ground fault precursor phenomenon.
[0004]
As shown in FIG. 5, sensors 2 and 3 for detecting acicular waves are provided on the distribution line 1 at intervals, and the detection signals of the acicular waves are transmitted to the slave stations 6 and 7 by cables 4 and 5, respectively. A system is known in which the slave stations 6 and 7 transmit the received detection signals to the master station 9 via the communication line 8 as information of an appropriate signal form.
[0005]
In this known system, the master station 9 is provided in a substation provided with a transformer for supplying power to the distribution line 1 and the sensors 2 and 3 are built in the section switch. Is transmitted to the respective section switches via the communication line 8, the slave stations 6 and 7, and the cables 4 and 5, and is utilized as a distribution line automation system for operating these section switches.
[0006]
[Problems to be solved by the invention]
In the distribution line 1 of FIG. 5, when a needle-like wave as a fine ground fault occurs at the point E, if the distance L 1 from the point E to the sensor 2 or the distance L 2 from the point E to the sensor 3 can be known. It is extremely effective for maintenance of distribution lines.
[0007]
For this purpose, if the time of the internal clock or counter built in the slave stations 6 and 7 is calibrated with an accurate time signal, the slave stations 6 and 7 receive the needle wave detection signals from the sensors 2 and 3, respectively. It is considered that the distance L 1 or L 2 can be determined based on the difference in time.
[0008]
In the figure, e 1 and e 2 are propagation times when the needle-like waves generated at the minute ground fault point E reach the sensors 2 and 3, respectively, h 0 is the needle-wave detection delay time of the sensors 2 and 3, and c 1 Is the time for the needle-shaped wave detection signal from the sensor 2 to be transmitted to the slave station 6 by the cable 4, and c 2 is the time for the needle-shaped wave detection signal from the sensor 3 to be transmitted to the slave station 7 by the cable 5.
[0009]
Now, if the internal clocks of the slave stations 6 and 7 are accurately set by some method, the sensors 2 and 3 detect the needle-like waves generated at the point E, and the slave stations 6 and 7 detect the detected signals. Assuming that the time until reception is E 1 and E 2 , respectively, from the reference time of the internal clock,
In the slave station 6, E 1 = e 1 + h 0 + c 1 (1)
In the slave station 7, E 2 = e 2 + h 0 + c 2 (2)
Values E 1 and E 2 are obtained, so that data of these values E 1 and E 2 is transmitted to the master station 9 via the communication line 8 and the difference E 1 −E 2 is calculated.
E 1 −E 2 = (e 1 −e 2 ) + (c 1 −c 2 ) (3)
It becomes.
[0010]
When e 1 + e 2 is added to the right side of equation (3) and halved,
(1/2) · {(e 1 −e 2 ) + (c 1 −c 2 ) + (e 1 + e 2 )}
= E 1 + (1/2) · (c 1 −c 2 ) (4)
It becomes.
[0011]
If c 1 = c 2 , the propagation time e 1 can be obtained by the equation (4). Therefore, the distance from the point E to the sensor 2 is multiplied by the propagation velocity Ve of the needle wave surge on the distribution line 1. L 1 can be obtained by the following equation (5).
[0012]
L 1 = e 1 · Ve (5)
Although it seems as if the needle wave generation point E can be determined in this way, this method has the following three problems.
[0013]
The first problem is that it is practically difficult to set the internal clocks of the slave stations 6 and 7 accurately.
The second problem is that the length of the communication line, that is, the distance between the slave stations 6 and 7 must be known.
[0014]
The third problem is that the lengths of the cables 4 and 5 must be equal, or the lengths of the cables 4 and 5 must be known correctly in advance.
For the first problem, the master station 9 repeats the time reference signal A at a constant time interval (cycle) and sends it to the slave stations 6 and 7 via the communication line 8. A method of calibrating the internal clocks of the slave stations 6 and 7 each time they are received by the slave stations 6 and 7 can be considered.
[0015]
However, in this method, the internal clock of the slave station 7 is always delayed by the time a 2 when the time reference signal A propagates from the position of the slave station 6 to the position of the slave station 7 on the communication line 8. , the following equation (6) time E 2 'is obtained in place of the time E 2 represented by the foregoing equation (2).
[0016]
E 2 '= e 2 + h 0 + c 2 -a 2 (6)
Thus in order to obtain a time E 2, it is necessary to correct only propagation time a 2 (6) time E 2 'obtained by the formula.
[0017]
For this purpose, the propagation time a 2 must be known, but in order to know the propagation time a 2 , the distance between the slave stations 6 and 7 (strictly, the length of the communication line 8 between both slave stations) is measured, Although the distance is obtained on a map, there is a trouble that the work is required every time the position of the slave station is changed (second problem).
[0018]
The same applies to the lengths of the cables 4 and 5 between each sensor 2 or 3 and the corresponding slave station 6 or 7, respectively. In the case of changing the installation, a great deal of trouble is required. (Third problem).
[0019]
The above method for sending the time reference signal A through the communication line 8 is summarized as follows. However, t 3 is the time from when the time reference signal A passes through the slave station 6 until the needle wave is generated at the point E, that is, the time from the reference time of the slave station 6 until the needle wave is generated. (See FIG. 2).
[0020]
E 1 '= t 3 + e 1 + h 0 + c 1 (7)
E 2 ′ = t 3 + e 2 + h 0 + c 2 −a 2 (8)
(1/2) · (E 1 ' -E 2' + e 1 + e 2)
= E 1 + (1/2). (C 1 −c 2 + a 2 ) (9)
Since it is desired to obtain the propagation time e 1, it is necessary to know the transmission times c 1 and c 2 and the propagation time a 2 as is apparent from the equation (9). 5 and the length between slave stations of the communication line 8.
[0021]
Accordingly, the length of the cable or communication line must be obtained every time the equipment is changed, and the transmission times c 1 and c 2 and the propagation time a 2 as correction terms must be obtained.
It is good when the number of installations is short and the number is small, but in the case of a long and complex distribution network, if 100 sensors and 100 slave stations corresponding to them are provided, each sensor will be supported. It is necessary to measure the total length of 100 cables for the cables connecting the slave stations, and know the length between any two slave stations for the length of the communication line between the slave stations. Because you need
(1/2) · (100-1) × 100 = 4950 It is not practical because the length of the communication line needs to be actually measured or calculated from the map (second and third) problem).
[0022]
Furthermore, in the case of a cable or communication line, the permittivity changes with temperature, and the transmission time of the needle wave detection signal and the propagation time of the time reference signal change.
[0023]
However, in reality, there is another problem that it is impossible to perform temperature correction by distinguishing between a portion exposed to sunlight and a shaded portion.
Therefore, an object of the present invention is to provide a method for locating a needle wave generation point in a distribution line that can eliminate these problems.
[0024]
[Means for Solving the Problems]
In order to achieve the object, the invention of claim 1
Needle-like waves generated at the micro ground fault point (E) are detected by at least two sensors (2) (3) arranged at intervals on the distribution line (1), and each sensor (2) ( 3) The detection signals from 3) are transmitted to the slave stations (6) and (7) through the cables (4) and (5), respectively, and the slave stations (6) and (7) send the received detection signals to the appropriate signal form information. As a time reference signal (A) from the master station (9) to the slave stations (6) (7) via the communication line (8). ) Is intermittently transmitted to calibrate the internal clock of the slave stations (6) and (7).
Forcibly injecting another signal (B) into the distribution line (1) and detecting the signal (B) with the sensors (2) and (3) via the cables (4) and (5) Transmit to slave stations (6) and (7)
The time (R 1 ) (R 2 ) when the detection signal obtained by detecting the signal (B) by the sensors (2) and (3) is received by the slave stations (6) and (7), and the acicular wave is detected by the sensor (2) ( 3) From one sensor (2) to the micro ground fault point (E) based on the time (E 1 ') (E 2 ') when the detection signal detected in 3) is received by the slave station (6) (7) A method for locating a needle wave generation point in a distribution line, characterized by locating a distance (L 1 ).
[0025]
And the invention of Claim 2 is the location method of the acicular wave generation | occurrence | production point in the distribution line of Claim 1,
The time difference (R 2 −R 1 ) between the times (R 1 ) and (R 2 ) of receiving the detection signals detected by the sensors (2) and (3) at the slave stations (6) and (7); Time difference (E 2 ′ −E 1 ′) of time (E 1 ′) (E 2 ′) at which the slave station (6) (7) received the detection signal detected by the sensor (2) (3). The distance (L 1 ) from one sensor (2) to the minute ground fault point (E) is determined.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
1 is a block diagram of a preferred embodiment of a method for locating a needle wave generation point in a distribution line of the present invention, FIG. 2 is a time chart for explaining the operation of the block diagram of FIG. 1, and FIG. 3 is a distribution line of FIG. 4 is a circuit diagram of a signal injection device for injecting the signal B into the circuit, and FIG.
[0027]
In these drawings, reference numeral 1 denotes a three-phase high-voltage distribution line, which is fed by a transformer provided at a left substation (not shown). Reference numerals 2 and 3 are optical sensors provided on the distribution line 1 at intervals. The optical sensors 2 and 3 detect the zero-phase current I 0 and the zero-phase voltage V 0 having a needle-like waveform generated at the minute ground fault point E, and output detection signals. The signals are transmitted to the slave stations 6 and 7 by optical cables 4 and 5, respectively.
[0028]
A communication line 8 is a coaxial cable that connects the master station 9 and the slave stations 6, 7, etc. provided in the substation, and transmits various control signals from the master station 9 to the slave stations 6, 7, etc. At the same time, information from the slave stations 6 and 7 is transmitted to the master station 9. Note that the drive power (low power) for the slave stations 6 and 7 may be supplied from the low voltage distribution line, or may be sent from the master station 9 or the like via the communication line 8.
[0029]
A is a time reference signal for calibrating the internal clocks of the slave stations 6 and 7, and is a pulse-like electrical signal repeatedly sent from the master station 9 to the communication line 8 at a constant interval (period).
[0030]
P is an arbitrary point on the distribution line 1 and the communication line 8, a 1 is a propagation time for the time reference signal A to propagate from this point P to the slave station 6, and a 2 is a time reference from the slave station 6 to the slave station 7. This is the propagation time for signal A to propagate.
[0031]
B is a pulse signal forcibly deliberately injected into the distribution line 1. The injection timing may be arbitrary, but a signal injection device 10 in which a capacitor 11 and a short-circuit switch 12 are connected in series as shown in FIG. In the case of this embodiment in which the short-circuit switch 12 is momentarily closed for a short time by inserting it between the electric wire 1 and the ground and injecting the pulsed signal B, as shown in FIG. The signal B is injected at a phase away from the position of the zero cross point 14.
[0032]
t 1 is a delay time from when the signal A passes through the point P to when the signal B passes, b 1 is a propagation time for the injected signal B to propagate to the photosensor 2, and b 2 is a signal B from the photosensor 2. It is the propagation time which propagates from to the optical sensor 3.
[0033]
e 1 and e 2 are propagation times for the needle-like wave generated at the micro ground fault point E to propagate on the distribution line 1 to the optical sensors 2 and 3, respectively, c 1 and c 2 are the optical sensors 2 and 3, and the signal B And the detection time for detecting the needle-like wave is the transmission time for transmitting to the slave stations 6 and 7 via the optical cables 4 and 5, respectively.
[0034]
Further, h 0 is a detection delay time until the optical sensors 2 and 3 detect the signal B and the acicular wave and output a detection signal.
In the system of FIG. 1, a pulsed signal B is forcibly and intentionally injected into the distribution line 1 at an arbitrary timing. Looking at the time reference signal A and the signal B at the point P, FIG. 1 shows that the signal B is later by the delay time t 1 after the passage of the time reference signal A.
[0035]
After passing the point P, the time reference signal A takes the propagation time a 1 and reaches the slave station 6, and the signal B takes the propagation time b 1 after injection and reaches the optical sensor 2.
The optical sensor 2 detects the signal B and transmits the detection signal to the slave station 6 via the optical cable 4 with a delay of the detection delay time h 0 . The transmission time for transmitting the detection signal of the signal B from the optical sensor 2 to the slave station 6 requires c 1 .
[0036]
The propagation speed at which the time reference signal A propagates on the communication line 8 and the propagation speed at which the signal B propagates on the distribution line 1 are different if the line constants of the communication line 8 and the distribution line 1 are different.
[0037]
When the time further elapses, the time reference signal A reaches the slave station 7 after passing the propagation time a 2 after reaching the slave station 6, and the signal B passes through the propagation time b 2 after reaching the optical sensor 2. Reach 3
[0038]
The signal B reaching the optical sensor 3 is output from the optical sensor 3 to the optical cable 5 after the detection delay time h 0 , and is received by the slave station 7 through the transmission time c 2 .
At the point P, the time difference between the time reference signal A and the signal B is t 1 , but after the time reference signal A arrives at the slave station 6, the slave station 6 detects the detection signal detected by the optical sensor 2. a time R 1 to the reception, after reaching the time reference signal a to the child station 7, the time R 2 of a detection signal of the signal B is the optical sensor 3 detects until slave station 7 is received,
R 1 = (b 1 + h 0 + c 1 ) −a 1 (10)
R 2 = (b 1 + b 2 + h 0 + c 2 ) − (a 1 + a 2 ) (11)
It becomes.
[0039]
These times R 1 and R 2 are sent to the master station 9 via the communication line 8 as appropriate signal form information and stored in a memory (not shown) provided in the master station.
The time reference signal A is intermittently transmitted through the communication line 8 at a constant time interval (period) 、, and the internal clocks of the slave stations 6 and 7 are repeatedly calibrated. Compared to the internal timepiece 6, it is delayed by the propagation time a 2 as described above.
[0040]
In this state, when a needle-like wave is generated at a fine ground fault point E on the distribution line 1, the needle-like wave reaches the optical sensors 2 and 3 after a lapse of propagation times e 1 and e 2 .
Then, the optical sensors 2 and 3 detect the detection delay time h 0 , and the respective detection signals are received by the slave stations 6 and 7 via the optical cables 4 and 5 through the transmission times c 1 and c 2 , respectively.
[0041]
FIG. 2 shows the timing from when the time reference signal A reaches the slave station 6 until the slave stations 6 and 7 receive the needle wave detection signals of the optical sensors 2 and 3, that is, the occurrence of a fine ground fault.
[0042]
If the time reference signal A reaches the slave station 6 and passes through and passes a time t 3 , and if a fine ground fault occurs at a point E and a needle-like wave is generated, the slave station 6 is referenced based on the internal clock of the slave station 6. , 7 are time E 1 ′, E 2 ′ until the needle-shaped wave detection signals from the optical sensors 2, 3 are received respectively.
E 1 '= t 3 + e 1 + h 0 + c 1 (12)
E 2 ′ = t 3 + e 2 + h 0 + c 2 −a 2 (13)
However, the expressions (12) and (13) have the same contents as the expressions (7) and (8).
[0043]
(12) The times E 1 ′ and E 2 ′ of the equation (13) are transmitted from the slave stations 6 and 7 to the master station 9 through the communication line 8 as information of appropriate signal forms.
The master station performs the following calculation using the previously stored times R 1 and R 2 and the times E 1 ′ and E 2 ′ transmitted from the slave station.
[0044]
First, from the previously stored times R 1 and R 2 ,
R 2 −R 1 = b 2 + c 2 −c 1 −a 2 (14)
However, since b 2 = e 1 + e 2 as apparent from FIG. 1,
R 2 −R 1 = e 1 + e 2 + c 2 −c 1 −a 2 (15)
It becomes.
[0045]
From the time E 1 ′ and E 2 ′ for the needle wave,
E 2 '-E 1' = e 2 -e 1 + c 2 -c 1 -a 2 ··· (16)
It becomes.
[0046]
Therefore, the time difference (R 2) between the time R 2 and the time R 1 when the slave stations 6 and 7 respectively received the detection signals detected by the optical sensors 2 and 3 forcibly and intentionally injected into the distribution line 1 by the optical sensors 2 and 3. −R 1 ) and the time difference (E 2 ′ −E 1 ′) between the time E 1 ′ and E 2 ′ when the slave stations 6 and 7 received the detection signals detected by the optical sensors 2 and 3, respectively. From the above, the master station 9 obtains the propagation time e 1 as shown in the following equation (17).
[0047]
(1/2) · {(R 2 −R 1 ) − (E 2 ′ −E 1 ′)} = e 1 (17)
When the (17) multiplying the propagation rate Ve on distribution line 1 in formula, the distance L 1 from the light sensor 2 to a fine ground絡発dough point E can be calculated orientation as the following equation (18).
[0048]
L 1 = (1/2) · {(R 2 −R 1 ) − (E 2 ′ −E 1 ′)} · Ve (18)
Expression (18) does not include the propagation speed of the time reference signal A on the communication line 8. Therefore, even if the temperature of the communication line 8 changes and the propagation speed of the signal on the communication line 8 changes, the accurate distance L 1 can be determined without being affected by the change. This means that the accurate distance L 1 can be determined even if the temperature distribution on the communication line is not uniform.
[0049]
Since the distribution line 1 is usually aerial, it is air-insulated in this case, and the propagation velocity Ve does not change even if the temperature changes. Even if the distribution line 1 includes an underground cable, since the underground temperature is kept substantially constant, there is no possibility of causing a large orientation error.
[0050]
Incidentally, if there is a 1% error in the signal propagation speed due to a change in the temperature of the communication line, regardless of the method of the present invention, a standardization of 30 m corresponding to 1% when measured in a section of about 3 km. When an error is generated and the distance between the power poles of the distribution line is taken into consideration, it is identified as a different power pole, and a problem remains in practice.
[0051]
Furthermore, the expression (18) has an advantage that the transmission times c 1 and c 2 of the optical cables 4 and 5 are canceled on the right side thereof, so that the length of the optical cables 4 and 5 is not affected.
[0052]
The present invention requires at least two sensors for detecting the acicular wave, and in the above embodiment, the generation position of the acicular wave in the section in which the sensor is provided is determined.
[0053]
If three or more sensors are provided, a result is obtained for each two of them, and an operation such as obtaining an average value is performed, then the orientation accuracy can be further increased.
In addition, the operation of injecting the signal (B) into the distribution line and automatically storing the time signal (R 1 ) (R 2 ) in the master station (9) includes switching the distribution line and installing sensors and slave stations. This is done when the point is changed and when the temperature change becomes large.
[0054]
Each slave station has a function of discriminating whether the needle wave comes from the right side or the left side of the sensor, so that the fine ground fault point (E) has two sensors (2) (3). Even if it is not between, it can be determined from the right side or the left side, and the reliability is further improved.
[0055]
【The invention's effect】
Since the method of locating the needle wave generation point in the distribution line of the present invention is configured as described above,
1). Since the laying distance of the communication line (8) is automatically corrected by the equation (18) and becomes irrelevant, it is not necessary to actually measure the communication line (8) for every laying of the communication line (8) or obtain it on a map.
[0056]
2). Since the lengths of the cables (4) and (5) for transmitting the detection signals from the sensors (2) and (3) to the slave stations (6) and (7) are automatically corrected by the equation (18) and are irrelevant. Similar to the line (8), it is not necessary to actually measure or obtain the length on the map.
[0057]
3). The propagation speed and transmission speed of signals on the communication line (8) and the cables (4) and (5) for transmitting the detection signals from the sensors (2) and (3) to the slave stations (6) and (7) are also expressed by the formula (18). Since it is automatically corrected and becomes irrelevant, there is no possibility of adverse influence on the orientation error due to temperature change.
[0058]
4). Accordingly, the attachment positions of the slave stations (6) and (7) corresponding to the sensors (2) and (3) do not need to be closest, and may be arbitrary positions, and there is a degree of freedom of the attachment positions.
5). The power transport route is often changed by switching the distribution line, but even in such a case, it is not necessary to measure the distance by actual measurement or a map.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a time chart for explaining the operation of the block diagram of FIG. 1;
3 is a circuit diagram of a signal injection device that injects a signal B into the distribution line of FIG. 1;
FIG. 4 is a diagram illustrating a voltage waveform of a distribution line into which a signal B is injected.
FIG. 5 is a block diagram of the prior art.
[Explanation of symbols]
1 Distribution lines 2, 3 Optical sensor (sensor)
4, 5 Optical cables 6, 7 Slave station 8 Communication line 9 Master station 10 Signal injection device B Other signal E Slight ground fault occurrence point E 1 ', E 2 ' Time L 1 Distance R 1 , R 2 Time R 2 -R 1 hour difference E 2 '-E 1 ' time difference

Claims (2)

配電線(1)上に間隔をおいて配設した少なくとも2個のセンサ(2)(3)で微地絡地点(E)で発生した針状波を検知し、それぞれのセンサ(2)(3)からの検知信号をそれぞれケーブル(4)(5)によって子局(6)(7)に伝送するとともに、子局(6)(7)は受信した前記検知信号を適宜の信号形態の情報として通信線(8)を介して親局(9)へ伝送するシステムであって、親局(9)から通信線(8)を介して子局(6)(7)へ時刻基準信号(A)を間欠的に伝送して子局(6)(7)の内部時計を較正する針状波発生地点の標定方法において、
配電線(1)に強制的に故意に別の信号(B)を注入し、この信号(B)をセンサ(2)(3)で検知した検知信号をケーブル(4)(5)を介して子局(6)(7)に伝送し、
信号(B)をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(R1 )(R2 )と、前記針状波をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(E1 ′)(E2 ′)とに基づいて一方のセンサ(2)から微地絡地点(E)までの距離(L1 )を標定することを特徴とする配電線における針状波発生地点の標定方法。
Needle-like waves generated at the micro ground fault point (E) are detected by at least two sensors (2) (3) arranged at intervals on the distribution line (1), and each sensor (2) ( 3) The detection signals from 3) are transmitted to the slave stations (6) and (7) through the cables (4) and (5), respectively, and the slave stations (6) and (7) send the received detection signals to the appropriate signal form information. As a time reference signal (A) from the master station (9) to the slave stations (6) (7) via the communication line (8). ) Is intermittently transmitted to calibrate the internal clock of the slave stations (6) and (7).
Forcibly injecting another signal (B) into the distribution line (1) and detecting the signal (B) with the sensors (2) and (3) via the cables (4) and (5) Transmit to slave stations (6) and (7)
The time (R 1 ) (R 2 ) when the detection signal obtained by detecting the signal (B) by the sensors (2) and (3) is received by the slave stations (6) and (7), and the acicular wave is detected by the sensor (2) ( 3) From one sensor (2) to the micro ground fault point (E) based on the time (E 1 ') (E 2 ') when the detection signal detected in 3) is received by the slave station (6) (7) A method for locating a needle wave generation point in a distribution line, characterized by locating a distance (L 1 ).
信号(B)をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(R1 )(R2 )の時間差(R2 −R1 )と、前記針状波をセンサ(2)(3)で検知した検知信号を子局(6)(7)で受信した時間(E1 ′)(E2 ′)の時間差(E2 ′−E1 ′)とから一方のセンサ(2)から微地絡地点(E)までの距離(L1 )を標定することを特徴とする請求項1記載の配電線における針状波発生地点の標定方法。The time difference (R 2 −R 1 ) between the times (R 1 ) and (R 2 ) of receiving the detection signals detected by the sensors (2) and (3) at the slave stations (6) and (7); Time difference (E 2 ′ −E 1 ′) of time (E 1 ′) (E 2 ′) at which the slave station (6) (7) received the detection signal detected by the sensor (2) (3). The method for locating a needle wave generation point in a distribution line according to claim 1, wherein a distance (L 1 ) from one sensor (2) to a minute ground fault point (E) is determined.
JP13338396A 1996-05-28 1996-05-28 Method for locating acicular wave generation point in distribution line Expired - Lifetime JP3839093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13338396A JP3839093B2 (en) 1996-05-28 1996-05-28 Method for locating acicular wave generation point in distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13338396A JP3839093B2 (en) 1996-05-28 1996-05-28 Method for locating acicular wave generation point in distribution line

Publications (2)

Publication Number Publication Date
JPH09318697A JPH09318697A (en) 1997-12-12
JP3839093B2 true JP3839093B2 (en) 2006-11-01

Family

ID=15103457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13338396A Expired - Lifetime JP3839093B2 (en) 1996-05-28 1996-05-28 Method for locating acicular wave generation point in distribution line

Country Status (1)

Country Link
JP (1) JP3839093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137465A (en) * 2021-11-24 2022-03-04 浙江威星智能仪表股份有限公司 Detection and correction method for double-Hall metering abnormity

Also Published As

Publication number Publication date
JPH09318697A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
Gale et al. Fault location based on travelling waves
US7602873B2 (en) Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link
US11320475B2 (en) Testing system for traveling wave fault detectors
RU2524383C1 (en) Synchronisation method for differential current protection
Mohamed et al. Partial discharge location in power cables using a double ended method based on time triggering with GPS
CN102798804B (en) High-voltage power cable fault on-line positioning device
JP5373260B2 (en) Accident point location method and system for transmission and distribution systems
CN1489819B (en) Method for determining time when obtaining current measuring value and protection system for power networks
US9989567B2 (en) Method of measuring the energy consumption of the branches of an electrical network and measurement equipment implementing said method
US20170059636A1 (en) Differential protection method, differential protection device and differential protection system
JP7429339B2 (en) Parameter-independent traveling wave-based fault localization using asynchronous measurements
CN111386468B (en) Travelling wave based fault localization using unsynchronized measurements for transmission lines
JP3839093B2 (en) Method for locating acicular wave generation point in distribution line
CA2490620C (en) Method and system for transmitting an information signal over a power cable
KR20080094478A (en) Merging unit
US11949222B2 (en) Sample time offset alignment of electric power system samples independent of a common time source
US6867577B2 (en) Differential protective method to generate an error signal characteristic of a fault current
JP2777240B2 (en) Fault location device
EP0026801B1 (en) Method of and apparatus for transmitting information about flow of fault current in a faulty section of an electric power transmission system
JPH0454470A (en) Fault point locating device for power transmission line
JPH049777A (en) Transmission line fault locating device and method
JPS63300976A (en) Polarity decision type accident point locating device
JPH1054863A (en) Method and apparatus for location of fault point
SU1684704A1 (en) Method of measuring total energy losses in high-voltage electric power line
CN118483636A (en) Method and system for calibrating voltage measurements in an electrical measurement system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term